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ABSTRACT The prediction of the battery temperature and terminal voltage under dynamic load condition
is crucial for a satellite battery management system. Restricted by parameter measurability and computing
resources, equivalent circuit model has been commonly used in battery management system. But this model
cannot satisfy the necessary performance under dynamic load for usual work of satellites. On account of
this problem, a combined temperature single particle model is developed for 18650 cells in this paper. The
proposed model consists of two sub-models, an electrochemical model and a thermal model, which are
coupled together in an iterative manner through physicochemical temperature dependent parameters. The
electrochemical sub-model mainly simplifies the calculation of lithium-ion concentration in electrode, while
an expression for battery temperature distribution is employed in the thermal sub-model. In addition, genetic
algorithm is adopted to estimate model parameters by exciting the battery under different operation condi-
tions. This proposed model can provide accurate predictions of terminal voltage and surface temperature
at various operating conditions and the proper simplification of mathematical structure making it ideal for
real-time battery management system application. Finally, the model is validated against both constant and
dynamic load conditions.

INDEX TERMS Battery management systems, mathematical model, satellites, thermal analysis.

I. INTRODUCTION
Battery is a critical component for energy storage in space-
craft. It stores the excess power produced by solar cells in
the sun, and provides the electricity to spacecraft in the dark.
For the battery of satellite, typical cycle-life target is 5 years
(30,000 cycles) for Low Earth Orbit (LEO) and 15 years
(1350 cycles) for Geosynchronous Earth Orbit (GEO) [1].
Thus, due to the requirements of long-life and high energy
density, Lithium-ion battery have been widely adopted by
new generation of satellites.

The operation safety of lithium-ion battery and prolonga-
tion of battery serve life are relied heavily on battery man-
agement system (BMS) [2]. With respect to the lithium-ion
battery of satellite, two distinct characteristics (high capacity
and large serial parallel numbers) would cause several prob-
lems such as safety, durability and uniformity. The changing
discharge current, depth of discharge, and ambient temper-
ature (AT) would cause large monitoring errors of battery
state including capacity and resistance. Besides, BMS should
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prevent over-charge and over-discharge which could induce
rapid attenuation of battery performance, and adjust work
strategy to prolong battery life [3]. Therefore, satellite BMS
needs accurate and efficient models to control current and
temperature for single battery under the request of low dis-
charge current and variable work condition.

In existing literatures, electrical model and electrochemical
model have appeared as twomain models in the fields of state
monitoring and prediction of battery. The electrical model
such as equivalent circuit model (ECM) is widely used in
satellite BMS due to its simplicity and low computational
cost [4]. Thevenin model is one of the most common models
for state of charge (SOC) estimation and battery simulation.
It is usually composed of one open circuit voltage source
and one or two resistor-capacitor (RC) networks [5]. Classic
Thevenin model uses one voltage source to represent battery
open-circuit voltage (OCV), one resistance to represent ohmic
polarization which is equal direct current resistance (DCR),
and two RC networks to describe the phenomenon of concen-
tration polarization and activation polarization respectively.
One RC networks representing activation polarization could
be simplified as resistance and merged into ohmic resistance
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because activation polarization will be equilibrium in mil-
liseconds. The other RC network representing concentration
polarization gives Thevenin model the ability to approxi-
mately reflect the response of dynamic loading. This means
that the dynamic process of voltage only depends on current.
It will bring large error to the battery model especially under
dynamic loading. For example, the voltage could rise after
discharge stops, and this process not only depends on current
but also relates to SOC and temperature. This phenomenon
obviously reflects the limitation of Thevenin model. This
disadvantage can be mitigated by constructing the relation
between resistor, capacitor and SOC, state of health (SOH)
and temperature [6], [7], yet the model built by this manner is
still labor-intensive and time-consuming and usually has low
generalization ability to new batteries [8]. So, the electrical
model cannot completely satisfy the satellite BMS.

Electrochemical model accurately describes the discharge
behavior of lithium-ion battery through analyzing physical
phenomena such as the transport and diffusion of charges and
lithium-ions [9]. The pseudo-two-dimensional (P2D) model
describes the lithium salt transport phenomenon in the elec-
trolyte and solid phases, and captures charge transfer reaction
in the positive and negative porous electrodes [10]. With
the full mechanism’s description and highly precise, P2D
model has already become one of the most common models
in electrochemical model, and it has been widely used in
researching electrochemical parameters of battery including
the electrolyte concentration, electrolyte potential, solid-state
potential, and solid-state concentration [11]. Rigorous P2D
model uses coupled nonlinear partial differential equations
to exactly describe internal chemical processes of batteries,
and that would take seconds to minutes to simulate every
time step. In order to improve computational efficiency, many
researches have simplified and improved the P2D model,
such as Dao et al. [12] used several techniques such as
volume-averaging, Galerkin’s method and curve-fitting to
simplify P2D model. Yuan et al. [13] simplified the com-
putation process through modifying boundary condition and
adopting Padé approximation method. Ma et al. [14] also
adopted dimensionality reduction and Padé approximation
to build a simplified one-dimensional Lithium-ion battery
model.

Single particle model (SP) also evolves from P2D model.
It assumes that in an electrode the local volumetric transfer
current density is constant and equals to the average value.
That means that all the pore wall fluxes of particles are the
same. Besides, this model assumes that all the particles in an
electrode follow the same behavior and the current passed
through the electrode is uniformly distributed over all the
particles. Consequently, each electrode is modeled as two
spherical particles in which intercalation and de-intercalation
phenomena occur, and the effects of concentration and poten-
tial in the solution phase between the particles have been
neglected [15]. Due to these assumptions, SP model is very
simple and requires low computational cost. And the accu-
racy of the SP model is acceptable under low current [16].

Therefore, it has been applied to online estimation [17] and
life analysis [18]–[20].

Temperature has a significant impact on battery behavior.
The main reason is that some electrochemical parameters
are sensitive to temperature, such as diffusion coefficient
and resistance. Northrop et al. [21] researched temperature
profile ofmain parameters and proposed a simple P2Dmodel.
Damay et al. [22] analyzed the thermal behavior of battery
and proposed a heat sources model. Wang et al. [23] sim-
plified the heat sources model and combined with finite-
element method to effectively track surface temperature of
battery. Then, Farag et al. [24] further analyzed heat effect
and developed a combined electrochemical, heat generation
and thermal model.

Although there have been abundant research works in
model simplification, the great computational cost is still the
primary obstacle for its application on satellite BMS which
hold limited computation resource. Meanwhile, electrochem-
ical model needs more than 16 electrochemical parame-
ters [12], some of which are unmeasured or unmeasurable
and will prevent the application of electrochemical model in
satellite BMS.

In general, electrochemical model has the highest accuracy
but the largest complexity, while ECM is simple but has
low accuracy. To balance complexity and accuracy, a united
model of electrochemical model and electrical model has
been studied recently. Prasad and Rahn [25] deduced the
parameters of electrical model (resistance and capacitance)
from single partial model. Liu et al. [26] employed Butler-
Volmer equation-based electrical model to capture the voltage
change induced by changing rates for the high-power lithium
battery. Zhang et al. [27] deduced the parameters of electrical
model (Open cycle voltage, resistance, and capacitance) from
P2D model. These methods have improved the estimation
accuracy of model parameters, but cannot handle the issue
under dynamic current response.

The satellite battery discharge current and ambient temper-
ature are always changing periodically. In general, the battery
discharge current is below 0.5C, and the ambient temperature
keeps within specified bounds. So, to predict battery behavior
more accurate and efficient under both static and dynamic
loading conditions, a combined temperature single particle
model (CTSPM) for discharge has been proposed in this
paper. This model can predict the voltage of battery consid-
ering the effects of temperature and loadings. Further, the
proposed model can predict the end of discharge. Compared
with electrical model, it has higher precision by considering
the dynamic concentration and the impact of temperature.
Compared with electrochemical model, this model simpli-
fies the SP model through average volume [28] and obtains
the electrode potential through look-up table. Then, concen-
tration is calculated by Fick’s law of diffusion. Thus, this
model neglects the information of lithium-ion concentration
distribution and potential distribution which are unnecessary
for satellite BMS, and its computational speed is very fast.
Particularly, combining with the degradation of parameters,
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CTSPM can capture battery state of health and predict the
remaining useful life of battery.

This paper is organized as follows. In Section II, the struc-
ture of CTSPM is described, In Section III, a simplified
electrochemical model is established. In Section IV, heat
generation has been analyzed and simplified thermal model
is established. In section V, the experimental process has
been described and genetic algorithm is employed to iden-
tify parameters of model. In Section VI, the simulation and
experiment results are given along with detailed analysis. The
conclusions are drawn finally in Section VII.

II. CTSPM STRUCTURE
This section will present the main contributions of this paper,
i.e., how the CTSPM allows BMS to operate the battery effec-
tively in safe conditions and improve its prediction accuracy
of terminal voltage and surface temperature under dynamic
current condition. Fig. 1 shows a schematic representation
of CTSPM and its sub-models. The CTSPM is capable of
simulating cell terminal voltage and surface temperature. It is
divided into two different sub-models including electrochem-
ical model and thermal model.

FIGURE 1. Schematic diagram for CTSPM.

Firstly, the electrochemical model describes cells terminal
voltage under low current (usually less than the 1C rate,
where the ‘‘1C’’ rate refers to a rate at which the battery
will be discharged to empty in an hour after fully charged
at room temperature) as a function of the electrode sur-
face state of charge. To quickly obtain the electrode surface
state of charge, a simplified lithium-ion diffusion transport
model has been proposed. In the electrochemical model, both
lithium-ion diffusion coefficient and resistance are sensitive
to temperature, and the effect of temperature is described by
Arrhenius equation.

Secondly, the thermal model calculates the inner tem-
perature, and the obtained inner temperature is fed back
to the electrochemical model as an input. Reversible and
irreversible heat have been considered as a function of the
measured current, the SOC, and the resistance. Then, the tem-
perature model evaluates the inner temperatures as a function
of heat generation rate, ambient temperature, cell geometry,

and boundary conditions. Meanwhile, an empirical formula
has been employed to output surface temperature.

In Fig. 1, the yellow circles represent inputs and the blue
circles represent outputs. The colored-doted blocks represent
software functions. The CTSPM inputs are data provided by
the sensors, and the outputs are processed data transferred to
the main BMS.

In this section, the general formulation of the CTSPM is
presented. In the following sections, the two sub-models are
discussed in details.

III. ELECTROCHEMICAL MODEL
A. TERMINAL VOLTAGE MODEL
In fact, concentration polarization reflects the change of
potential caused by variation of electrolyte concentration.
Assuming that the temperature is constant in the SP model,
then, the electrode potential is the function of the concen-
tration of Li+ ions in the intercalation particle of electrode.
So, the terminal voltage Vt is different between two electrode
potentials and can be rewritten as [29]

Vt = Up
(
θp
)
− Un (θn)− R�I (1)

where I is the battery load current, Uk , k = n, p is the
electrode potential. The subscripts n and p to denote the
negative electrode and the positive electrode, respectively. θk ,
k = n, p is the electrode surface state of charge and it is a
function of the normalized surface concentration

θk = cs,k,surf /cmax
s,k,surf (2)

where cs,k,surf , k = n, p is the concentration of Li+ ions
in the electrode surface, cmax

s,k,surf , k = n, p is the maximum
concentration of Li+ ions in the electrode surface. R� is the
total resistance

R� =
1
A

(
δp

2κp
+
δsep

2κsep
+
δn

2κn
−

RTin
apδpi0,pF

+
RTin

anδni0,nF

)
+Rf + Rc (3)

where A is the area of electrode, R is universal gas con-
stant, F is Faraday constant, Tin is the inner temperature of
battery, ap is the specific contact area of the positive, an
is the specific contact area of the negative, δp, δn and δsep
denote the thicknesses of positive, negative and separator
element, respectively. κp, κn and κsep represent the effective
conductivity in the positive, negative, and separator element,
respectively. Rf is the film resistance at interphase, and Rc is
the resistance at the current collectors. i0,k , k = n, p is the
exchange current density at cell edges [30]

i0,k = Fkeff
[
ce,k (x, t)

]αa [cs,k,surf (x, t)]αc ·[
cmax
s,k,surf − cs,k,surf (x, t)

]αa
(4)

where ce,k is the electrolyte concentration, keff is the reaction
rate constant, αa and αc are the transfer coefficient. In the
SP model, the constant electrolyte concentration assumption
has been validated for lower rates (<1C), and both transfer
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coefficient αa and αc can be set as 0.5 in general [31]. Then,
(4) can be rewritten as

i0,k = κk
√
θk (1− θk) (5)

where κ=Fce,kcmax
s,k,surf keff . Substituting (3) and (5) into (1),

the terminal voltage is rewritten as

Vt = Up
(
θp
)
− Un (θn)− R�

(
θp, θn

)
I (6)

Because lithium-ion transfer obeys the second Fike’s law, and
the two electrodes have a symmetric initial condition and
boundary condition, the state of charge in electrode surface
θk can be described as

θp = I · t/qs,p,max (7)

θn = 1− I · t/qs,n,max (8)

where qs,k,max , k = n, p is the maximum active charge in the
electrode surface which can be calculated by

qs,k,max = qmax
vs,k
vk

(9)

where qmax, k = n, p is the maximum active charge in the
electrode, vs,k , k = n, p is the volume of the electrode surface
part which is interpreted in Section III.B, vk , k = n, p is
the volume of the electrode. In this paper, we assumed that
qp,max = qn,max, vs,p = vs,n, and vp = qn. qmax is the
maximum active charge in battery which can be expressed
by the function of battery capacity Cbattery

qmax = 3600 · Cbattery (10)

According to (7)-(9), θn can be represented as

θn = 1− θp (11)

Thus, finally, terminal voltage is described as the function of
the positive electrode surface state of charge

Vt = G
(
θp
)
− R�

(
θp
)
I (12)

At a small current condition (<1/20C), the lithium-ion con-
centration gradient can be neglected and the lithium-ion
concentration in the electrode follows a uniform distribu-
tion. Under these simplifications, the surface concentration
is equal to the average concentration approximately. That
means θp is equal to battery SOC under equilibrium state. So,
the curve Voc = G(θp) can be measured by the small current
discharge test (1/20C) and would be used through the look-up
table method.

Resistance is also a function of θp. Yang’s et al. [32] indi-
cated that the resistance rapidly increases with the depth of
discharge. This lawworks in all stages of battery degradation.
The aging experiment also indicates thatDCR-SOC curves in
different degradation stages keep the same shape and overall
increase with aging. Therefore, for estimating the resistance
under different SOH, the function R� can be represented as

R� = R0 + H
(
θp
)

(13)

where R0 is the resistance at SOC = 1,H (θp) is a shape func-
tion that can be obtained through the look-up table method.

FIGURE 2. Concept of SP model simplification.

In this paper, H (θp) is one of DCR-SOC curve divide by
resistance at SOC = 1

B. SIMPLIFIED LITHIUM DIFFUSION TRANSPORT MODEL
As Fig. 2 shows, the SP model neglects the effects of con-
centration and potential in the electrolyte phase, and assumes
that each electrode is modeled as one spherical particle. That
means lithium-ions move from the positive electrode to the
negative electrode indirectly and the lithium-ion concentra-
tion in the solid phase for each electrode is described by the
radial diffusion equation

∂ck
∂t
= D

1
r2
∂

∂r

(
r2
∂ck
∂r

)
(14)

with boundary condition

∂ck
∂r

∣∣∣∣
r=0
= 0 ,

∂ck
∂r

∣∣∣∣
r=Rk

= −
JLi

D
(15)

where JLi is the pore wall flux of lithium-ion in the electrolyte
and D is the diffusion coefficient that influences the transfer
of lithium-ion.

According to the radial diffusion equation and boundary
condition, the lithium-ion concentration changes drastically
at the surface of the electrode where the reactions take place
and change slowly at the center of the spherical particle. Thus,
the total electrode volume can be divided into two individual
parts, one for the bulk (with subscript bulk) and one for
the surface (with subscript surf) [30]. The concentration of
lithium-ion is assumed as uniform distribution in the respec-
tive individual parts. With this assumption, the lithium-ion
transformation can be described by Fick’s first law. In the
discharge process, lithium-ions transport from the surface of
the negative electrode to the surface of the positive electrode.
Meanwhile, lithium-ion in the electrode is transferred from
bulk to surface in negative and surface to bulk in positive.
So, (14) can be rewritten as one-dimensional formulation

JLibs = D

(
cs,p,surf − cs,p,bulk

)
δbv

(16)

186220 VOLUME 7, 2019



J. Chen et al.: Simplified Extension of Physics-Based Single Particle Model

where JLibs is the flux of lithium-ion for the interface between
bulk and surface, δbv is the equivalent diffuse distance.
According to (15), the charge number in the electrode surface
and bulk can be expressed as

qs,p = q0s,p + (I − q̇) t (17)

qb,p = q0b,p + q̇t (18)

where q0s,p is the charge number in the electrode surface at
initial time, q0s,p is the charge number in the electrode bulk at
initial time, q̇ is the charge transfer velocity

q̇ = FAJLibs (19)

For simplification, (19) can be rewritten as

q̇ = DL
(
cs,p,surf − cs,p,bulk

)
(20)

where DL = FAD/δbv is a lumped diffusion coefficient.
cs,p,surf and cs,p,bulk can be calculated by

cs,p,surf =
qs,p
Fvs,p

(21)

cs,p,bulk =
qb,p
Fvb,p

(22)

vp = vs,p + vb,p (23)

where vb,p is the volume of the positive electrode bulk part.
Consequently, cs,p,surf can be calculated by (16)-(23) and
finally obtain the θp from (2).

In the positive electrode, lithium-ion intercalate to elec-
trode when battery discharge and de-intercalate to electrode
when battery charge. The two different processes lead that
DL has different values under the process of intercalation
and de-intercalation [33]. DL is also a function of SOH and
temperature [11]. In our research work, the effect of SOH is
not considered, which may be studied in the future. Then,
DL can be described as (24) and the effect of battery inner
temperature f (T ) will be discussed in Section III.C.

DL =

{
Dc; I < 0
f (T ) · Dd ; I > 0

(24)

whereDc is the diffusion coefficient in the charge process and
Dd is the diffusion coefficient in the discharge process.

C. THERMAL DEPENDENT PARAMETERS
Arrhenius equation governs the most significant temperature-
dependent parameters including diffusion coefficient and
electrolyte ionic conductivity. So, the diffusion coefficient
under the discharge process can be described as [14]

DL = Dd · e−βD(1/Tin−1/T0) (25)

where βD is the coefficient which is related to temperature,
and Tin is the current inner temperature, T0 is the standard
temperature.

Resistance and OCV also follow Arrhenius equation. And
because the effect of temperature to them is relatively minor,
R�(T ) and Voc(T ) can be simplified as linear equation [14]

R� (T ) = Rref + αrTin (26)

Voc (T ) = Vref +
(
Tin − Tref

) ∂Uoc
∂T

(27)

where Rref and Vref are the value of parameters at standard
inner temperature, αr is the temperature coefficient, and
∂Uoc/∂T is the entropic heat coefficient.

IV. THERMAL MODEL
A. HEAT GENERATION MODEL
For lithium-ion battery, temperature has significant impact on
battery parameters such as resistance, diffusion coefficient,
and reaction rate constants. During the charge or discharge
process, the temperature may fluctuate in large range. So,
the influence of temperature should be considered in battery
model.

The main components that generation heat in lithium-ion
battery include positive plate, separator and negative plate.
And there are four heat sources: electrical losses, entropic
heat, heat generated by side reaction, and heat of mixing [34].
Compared to other heat sources, heat generated by side reac-
tion and heat of mixing are relatively minor, thus they are
ignored in our proposed model. And the total heat sources
considered here can be expressed by

Q̇gen = Q̇irr + Q̇rev (28)

where Q̇irr is the irreversible heat generated. It is quantified
by how much the instantaneous cell potential deviates from
the equilibrium potential, which is calculated by

Q̇irr = I (Vt − Uoc) = I2R� (29)

the reversible heat generated Q̇rev describes the change of
entropic. It is usually calculated as the following

Q̇rev = I · Tin
∂Uoc
∂T

(30)

the entropic heat coefficient ∂Uoc/∂T is a function of SOC
and it differs for different types of battery. A common way of
calculating it is measuring the steady equilibrium potential
at different temperature points and different SOC points [24].
Then, we can obtain ∂Uoc/∂T at any SOC by the look up table
method.

B. TEMPERATURE MODEL
Distribution of temperature in battery is inhomogeneous.
According to the second law of thermodynamics, the temper-
ature is nearly uniform at the center of battery but changes
drastically in the area near the surface. To accommodate this,
we can assume that the total volume can be split into inner
and surface and the temperature keeps uniformity in their own
part. Consequently, the inner temperature can be described by
the following equation

M · Cb
∂Tin
∂t
= Q̇gen − hsAsurf

(
Tsurf − Tamb

)
(31)

where M is the weight of battery, Cb is the specific heat,
Asurf is the battery surface area, hs is the convective heat
transfer coefficient, Tamb is the ambient temperature and
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Tsurf is the surface temperature of battery. The relationship
between inner temperature and surface temperature can be
described as [35]

Tin = Tsurf (1+ λ)− Tambλ (32)

where λ is the ratio between heat transfer resistance inside the
cell and heat transfer resistance outside the cell.

V. EXPERIMENTAL SETUP AND PARAMETERS
IDENTIFICATION
A. BATTERY TEST BENCH
A battery test bench has been established to acquire measure-
ment data such as load current, terminal voltage and ambient
temperature. The configuration of the test bench is shown
in Fig. 3, which consists of a battery test systemBTS-2016CL
(produced by WuHan LANDY electronic company) and a
host computer for profile setting and data storage.

FIGURE 3. Battery test bench.

The battery used in this test is SANYO UR18650AA
lithium-ion battery. Parameters of the battery are given
in Table 1.

TABLE 1. Parameters of the battery under test (UR18650AA).

B. EXPERIMENTAL PROCESS
In this paper, two main experimental setups are implemented.
The first one is conducted on lithium-ion battery cell to
parameterize, while the second one is used to validate the
model of CTSPM. These experimental data could also be
employed to estimate the parameters of Thevenin model and
validate the advantages of our model.

In the first experimental setup, the necessary parameters
for CTSPM will be obtained. As shown in Fig. 4, the oper-
ation of CTSPM needs four kinds of test to measure the

FIGURE 4. The application flow of CTSPM.

necessary parameters like capacity, OCV curve, resistance
curve, and dU /dT curve. Meanwhile it should provide data
for estimating parameters like Dc, Dd , βD, hs, and Cb.
To measure theOCV-SOC curve and the maximum discharge
capacity, a complete discharge under 1/20C at ambient tem-
perature is implemented. Then a hybrid pulse power char-
acteristics (HPPC) test has been implemented to measure
the DCR-OCV curve [36]. Besides a quiescent voltage test
is conducted to obtain the ∂Uoc/∂T-SOC curve [37]. In this
study, the static voltage has been measured at six SOC points
(100%, 70%, 55%, 35%, 20%, 0%) and three AT points
(291K, 297K, 303K). These test results of SANYO battery
are shown in Fig. 5(a-c). Diffusion coefficient is changedwith
SOC and it usually takes the average value. Then, the process
of voltage recovery after discharge stop is equivalent to the
charge process. So, an intermittent discharge process which
includes four periods of constant current discharge processes
and four periods of the standing process has been designed to
estimate these parameters. Considering the CTSPM applied
to low current and the effect of current and temperature,
the intermittent discharge test has been implemented under
different conditions (AT: 295K; I : 0.5C; AT: 295K, I : 1.0C;
AT: 303K; I : 0.5C; AT: 303K; I : 1.0C). The corresponding
response curves of voltage and temperature of intermittent
discharge test are shown in Fig. 7(a-b) respectively.

FIGURE 5. Current profile and parameters curve: (a) OCV-SOC curve;
(b) DCR-OCV curve; (c) Entropy coefficient curves; (d) Current profile of
DST test.

186222 VOLUME 7, 2019



J. Chen et al.: Simplified Extension of Physics-Based Single Particle Model

FIGURE 6. Satellite battery work profile: (a) GEO satellite discharge
current. (b) LEO satellite discharge current.

FIGURE 7. Data for GA estimation: (a) Voltage data; (b) Temperature data.

The second experimental setup is mainly used to vali-
date the proposed model. As mentioned before, developing
CTSPM is oriented by the application requirements of satel-
lite batteries. Two main types of satellite, GEO satellite and
LEO satellite has obviously different typical loads, as shown
in Fig. 6 (a) and Fig. 6 (b), respectively. The load of GEO
satellite is stable and the discharge current can be considered
as constant. By contrast, the load of LEO satellite has changed
obviously in the discharge process. Thus, the verification
experiment is conducted by considering the following two
cases: Case 1, constant stress test (CST); Case 2, dynamic
stress test (DST).

CST is discharging a fully charged battery to cut-off of
voltage. In this research, CST is executed under different con-
stant current (0.5C and 1C) and ambient temperature (298K
and 303K). It reflects the basic discharge performance and
it is usually implemented for validating battery models. DST
is used for observing the dynamic process of voltage change.
It contains multi-segment of constant discharge current under
constant ambient temperature (297K) and the load profile is
shown in Fig. 5(d).

For comparison, the simulation results of one-order
Thevenin model which is one of the common ECMs have
been added. The ECM parameters polarization resistance Rs
and polarization capacitance Cs are estimated by recursive
least square (RLS). The values of each parameter and their
sources are listed in Table 2. Ohmic resistance Re is measured
by interval discharge which lasts 10s with each terminal
voltage descending 0.1V. The battery OCV and capacity are
measured through constant-current discharge at 0.1A and
they are also used for CTSPM.

C. THERMAL DEPENDENT PARAMETERS
Table 3 summarizes seven parameters of CTSPM model
about electrochemistry. OCV curve and capacity can be mea-
sured through constant-current discharge with 0.05C at 297K,

TABLE 2. Thevenin-1RC model parameters.

TABLE 3. Electrochemical parameters of CTSPM.

while resistance can bemeasured through a specific discharge
process at 297K as described in Section V.B. Lithium-ion
diffusion coefficient is different for each cell and it cannot be
measured for commercial battery. In fact, each discharge pro-
cess corresponds to unique diffusion coefficient. So, the dif-
fusion coefficient can be estimated by method of parameter
optimization.

Table 4 lists six parameters about the temperature of
CTSPMmodel. The temperature factor of capacity and resis-
tance can be obtained through measuring the performance
characteristics of battery under different ambient temper-
atures and calculating the parameters by the least square
method. The temperature factors of diffusion are hard to
measure directly for finished cells and can be estimated from
experimental data as well. Otherwise, measuring the surface
thermal conductivity, inner thermal conductivity and specific
heat need special equipment which is beyond the ability of
commonly used experiment bench, so these parameters are
also needed to be estimated in this paper. It is an effective
manner that using multi-parameter optimization methods like
particle swarm optimization [38], harmony search [9] and
genetic algorithm (GA) [39] to estimate battery parameters.
By balancing the precision and computational cost, GA has
been adopted to estimate these parameters with dynamic

TABLE 4. Temperature parameters of CTSPM.
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discharge current data. For GA, the variables include Dc, Dd ,
βD, hs, and Cb. The fitness function is

Obj_Function = min
[
(Vm − VGA)2 + (Tm − TGA)2

]
(33)

where Vm is the measured battery voltage, Tm is the measured
surface temperature, VGA is the output voltage of CTSPM,
and TGA is the output surface temperature of CTSPM.
To obtainVGA and TGA, the experiment data should be input to
CTSPM which includes OCV-SOC curve, discharge current,
and quantity. The other parameters of GA keep default in the
optimization toolbox of MATLAB. In order to decrease the
randomness of optimization results, the optimization process
would be run five times and the averaged values are used [9].

VI. MODEL VALIDATION
A. UNDER CONSTANT CURRENT CONDITION
Constant current discharge is the basic working model
of battery. Thus, we validate the performance of CTSPM
under constant current discharge condition firstly, with the
results described in Section V.B. Fig. 8 shows the compar-
ison results between simulated data and experimental data
under the operating condition of constant current discharge
(0.5C, 1C) at typical ambient temperature (298K, 303K).
Fig. 8(a) and Fig. 8(b) depict the voltage result under two
discharge currents at 298K and 303K, respectively. The sim-
ulated voltage errors of CTSPM and Thevenin model to
experimental data under 298K are shown in Fig. 8(c), while
Fig. 8(d) shows the error results under 303K. It is indicated
that the results estimated by CTSPM can match well with
experimental results and are better than the results obtained
by Thevenin model. Especially at low SOC, Thevenin model
is unacceptable but CTSPM can still agree well with experi-
mental results. Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are summarized in Table 5 and compu-
tational formulas of RMSE and MAE are given by (34)-(36).
It is also clearly illustrated that CTSPM is much better than
Thevenin under different operating conditions.

Xerror = Xs − Xm (34)

RMSE =

√√√√1
p

p∑
i=1

(
X ierror − X̄error

)2 (35)

MAE =
1
p

p∑
i=1

∣∣∣X ierror − X̄error ∣∣∣ (36)

where Xs is the simulation value, Xm is the measurement
value, while Xerror refers to the error between simulation
value and measurement value and X̄error represents the mean
of error.

The error of CTSPM increases evidently at low SOC. The
possible reason is that the diffusion coefficient has changed
and this parameter is assumed as constant in CTSPM.
Otherwise, various diffusion coefficients and maximum store
charge in battery lead to the increasing error at low SOC and
this effect will be researched in future.

FIGURE 8. Simulation result for constant current conditions: (a) Terminal
voltage at 298K; (b) Terminal voltage at 303K; (c) Terminal voltage at
298K; (d) Terminal voltage at 303K; (e) Surface temperature at 298K;
(f) Surface temperature at 303K; (g) Surface temperature simulation error
at 298K; (h) Surface temperature simulation error at 303K.

TABLE 5. The simulation error of voltage under constant operating
conditions.

The simulation results of surface temperature under two
current discharges are shown in Fig. 8(e) for 298K and
in Fig. 8(f) for 303K. RMSE and MAE are summarized
in Table 6. It clearly demonstrates that CTSPM can accurately
simulate surface temperature variations of the experimental
battery with maximum error of 0.3K under 0.5C discharge
current. Under 1.0C discharge current, the error become
larger especially for middle SOC but the error is still less
than 1.5K.

B. UNDER DYNAMIC CURRENT CONDITION
The main advantage of CTSPM over ECM (one-order
Thevenin model) is the ability of describing battery behavior
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TABLE 6. The simulation error of temperature under constant operating
conditions.

FIGURE 9. Simulation result for dynamic current conditions: (a) Terminal
voltage at 297K; (b) Terminal voltage error at 297K; (c) Zoom out the third
stage discharge curve; (d) Zoom out the sixth stage discharge curve;
(e) Surface temperature at different temperature; (f) Surface temperature
error.

under dynamic current condition. To verify this advantage,
the experiments of dynamic discharge current have been
designed and described in Section V.B, and the experiments
are conducted under the ambient temperature of 297K. Cor-
responding experimental results and simulation results esti-
mated by different methods are shown in Fig. 9. The voltage
results are depicted in Fig. 9(a). and the voltage errors of
CTSPM and Thevenin model under 297K are demonstrated
in Fig. 9(b). The results indicate that the voltage estimated
by proposed model matches well with experimental results,
and they are superior to the results of Thevenin model. The
voltage curves of third stage and sixth stage discharge process
have been zoomed out in Fig. 9(c) and Fig. 9(d) respec-
tively. After discharge current has changed, CTSPMhas obvi-
ous advantage compared with Thevenin model. Especially,
the estimation result of Thevenin model is not consistent with
experimental data at low SOC as shown in Fig. 9(c). At the
static process (0C), Thevenin model simulation also cannot
reflect the process of self-recharge but the simulation results
of CTSPM are still consistent with experimental results. The

global RMSE and MAE are summarized in Table 7. The
local RMSE and MAE which are defined as the discharge
process within 10 minutes after current change are summa-
rized in Table 8. Obviously, the error of CTSPM is reduced
to about 1/3 that of Thevenin model. It obviously illustrates
that CTSPM has better performance than Thevenin under
dynamic current condition.

TABLE 7. The simulation error of voltage under dynamic operating
conditions.

TABLE 8. The simulation error of voltage after current change ten
minutes.

The surface temperature simulation result under two ambi-
ent temperatures are shown in Fig. 9(e) and the error of
temperature is shown in Fig. 9(f). RMSE and MAE are sum-
marized in Table 9. It can be seen that, CTSPM can simulate
surface temperature variations very close to experimental
results with maximum error of 1K under 297K.

TABLE 9. The simulation error of temperature under dynamic operating
conditions.

Besides, CTSPM also has superior computational effi-
ciency compared with ECM. In order to illustrate the com-
putational cost of different models, CPU execution time is
employed. The models are executed on a computer with
Corel-i7 6800 processor, 8G RAM. The CTSPM and ECM
are implemented using MATLAB 9.2. SP model and P2D
model are based on COMSOL 5.2 which is more efficient
than MATLAB in general, and the difference between these
two softs is no significant effect on this research results.
In this validation work, a discharge operating profile which
includes 11,000 sampling points is designed and three kinds
of battery model are simulated. The average simulation times
of different models are presented in Table 10. It obvious that
CTSPM has the highest computational efficiency.

TABLE 10. The simulation time of different models.

VOLUME 7, 2019 186225



J. Chen et al.: Simplified Extension of Physics-Based Single Particle Model

VII. CONCLUSION
In conclusion, CTSPM is presented for battery simulation
under dynamic load condition, which maintains accurate esti-
mation for terminal voltage and surface temperature over a
broad range of ambient temperature and discharge rate. The
electrochemical model neglects the electrolyte concentration
difference and simplifies the electrode as a single particle
similar with the SP model. Then, the lithium-ion diffusion
transport is simplified as consistency diffusion between two
regions. The temperature-dependent electrochemical model
considers the variations in model parameters through Arrhe-
nius equation. The proposed thermal model consists of two
lumped thermal nodes interconnected by simplifying the ther-
mal transfer model. The heat generation model considers
two sources of heat during operation (irreversible losses and
reversible losses). These two models (electrochemical and
thermal model) are coupled together in an iterative fash-
ion to predict cell terminal voltage and surface temperature
accurately and efficiently. In addition, the application of the
look-up table method decreases the error caused by data
fitting.

The CTSPM is validated under the constant current at
different current rates and temperatures. Then, this model
is validated under the operating conditions of dynamic cur-
rent. The parameters of CTSPM are obtained through direct
measurement and estimation by GA. The validation results
show that CTSPM has less error and higher efficiency than
Thevenin model under different operating conditions. Com-
pared with electrochemical model, CTSPM also has bet-
ter parameter measurability and require less computation
cost. Consequently, CTSPM may be a superior model that
satisfies the real-time application requirements of satellite
BMS.
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