
Received November 30, 2019, accepted December 14, 2019, date of publication December 23, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961334

A Novel Parallel Architecture for Template
Matching based on Zero-Mean Normalized
Cross-Correlation
XIAOTAO WANG 1, XINGBO WANG 2, AND LIANGLIANG HAN 3
1College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2College of Automation and the College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China

Corresponding author: Xingbo Wang (sinbowang@163.com)

This work was supported in part by Advance Research Project on Civil Aerospace Technology under Grant D030103, and in part by
Advance Research Project on Manned Aerospace Technology under Grant 030601.

ABSTRACT Template matching based on zero-mean normalized cross-correlation measure (ZNCC) has
been widely used in a broad range of image processing applications. To meet the requirements for high
processing speed, small size, and variable image size in automatic target recognition systems, a novel
field-programmable gate array (FPGA)-based parallel architecture is presented in this paper for the ZNCC
computation. The proposed architecture employs two groups of RAM blocks, one of which is used for the
multiply-accumulate operations of the real and the reference images and the other for data rearrangement
of the reference image, and their functions are switched through 2-input multiplexers when searching at the
next row. Moreover, the sum of the pixels in the searching area of the real image is computed through serially
accumulating the differences between the new column in the current searching area and the old column in
the last searching area using one dual-port RAM. Simultaneously, the sum of the squares of the pixels is
calculated in the same way. Using the Altera Stratix II FPGA chip (EP2S90F780I4) as the target device,
the compilation results with Quartus II show that compared with the traditional architecture, the synthesis
logic utilization decreases from 63% to 35% and the usage of DSP blocks decreases from 59% to 39%, while
the memory bits only increase by 8% and the usage of other resources is nearly the same. The simulation and
practical experimental results show that the proposed architecture can effectively improve the performance
of the practical automatic target recognition system.

INDEX TERMS FPGA, normalized cross-correlation measure, parallel architecture, template matching.

I. INTRODUCTION
Template matching has been widely used in a broad range
of applications related to computer vision and image pro-
cessing, such as automatic target recognition, medical image
fusion for diagnosis [1], satellite image monitoring, and
binocular stereo vision [2], etc. The basic algorithms of
template matching are tasked to find the possible location
of a template image in a real image through calculating the
similarity measure between the template and the searching
area within that real image. The typical similarity measures
adopted in template matching algorithms include but are
not limited to, nonnormalized cross-correlation, normalized

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

cross-correlation (NCC), zero-mean normalized cross-
correlation (ZNCC), sum of absolute differences (SAD),
sum of squared differences (SSD), and so on. Due to their
invariance to brightness and/or contrast variations, NCC and
ZNCC are by far the most popular similarity measures used
in template matching [3].

To obtain the precise location of a template in a real image,
it is required to compare portions of the two images in a
large number of relative positions. Therefore, the computa-
tional burden required for template matching may be unaf-
fordable for many embedded applications, such as automatic
target recognition and tracking, with the requirements for
real-time processing, small size, and low-power consump-
tion [4]. Several techniques have been developed to speed
up the computation of the basic searching procedure [5].

186626 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-4131-7763
https://orcid.org/0000-0003-4764-9387
https://orcid.org/0000-0002-1636-8884
https://orcid.org/0000-0002-4558-9803


X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

However, these techniques can be trapped into a local extreme
which may lead to a wrong localization of the target [3].

In the applications with a high window overlap between
frames, such as motion estimation [1], feature detection [6],
defect detection [7], etc., an efficient method has been pro-
posed in [6], [7] to calculate the ZNCC measure, which
uses precalculated sum tables to compute the terms in the
denominator of the ZNCC measure and uses the fast Fourier
transform (FFT) to compute the numerator (the standard
cross-correlation (CC)) in the spectral domain. The proposed
approach has been further improved in [1] through using
precalculated sum tables to calculate both the numerator and
the denominator of the ZNCCmeasure to eliminate the redun-
dancy of the repeated ZNCC calculations between different
frames. However, this method is not appropriate for real-time
images without a window overlap, such as those employed in
automatic target recognition. In addition, although the FFT
in the frequency domain can be used to calculate the standard
CC, it will dramatically increase the computational cost as the
size of the template image increases [7].

One better choice of meeting the real-time requirement is
to implement the computation of the ZNCC measure with an
application-specific integrated circuit (ASIC). In [8], an effi-
cient VLSI architecture has been proposed to accelerate the
ZNCC computation for image registration. The architecture is
very suitable for small templates since it needs M2 window
processors for a reference block of size M × M pixels. For
a relatively larger template, cascaded chip configuration can
be used to speed up the process of locating the best match;
however, it will consume a large amount of resources and
complicate the logic architecture and its workflow. Further-
more, the ASIC-based implementation can be expensive and
is inflexible to support a variety of matching algorithms for
different stages of image processing tasks.

In fact, the computation time of the ZNCC measure can be
reduced by exploiting the intrinsic parallelism in thematching
processing procedure. In [4], [9], several approaches have
been proposed to utilize the parallelism to accelerate the tem-
plate matching process for image correlation in a multipro-
cessor system. Moreover, a graphics processing unit (GPU),
a processor customized primarily for graphics processing,
also uses the intrinsic parallelism for such purposes [10].
However, these approaches cannot meet the requirements for
small size and low-power consumption, especially for many
embedded applications such as an automatic target recogni-
tion system.

An alternative approach is to use a field programmable
gate array (FPGA) for the parallel implementation of the
ZNCC computation. On one hand, FPGAs can greatly accel-
erate image processing with parallel operations; on the other
hand, FPGAs contain many multiply-accumulate (MAC)
operations available for the ZNCC computation. In [11],
several efficient architectures based on FPGAs have been
proposed for the implementation of the ZNCC computation.
Although the computation can be achieved during data read-
ing, the spatial architecture needs m × m MAC operations,

and (n-m) × m × p shift registers to implement the needed
delay lines, where n and m refer to the sizes of the rows of
the real-time and the reference images, respectively, and p is
pixel bit-width. For a relatively large image, the above ZNCC
computation needs more MAC operations than a general
FPGA chip can afford. In [12], a real-time FPGA-based
template matching module has been presented for visual
inspection applications. The subsampling method is incor-
porated to reduce the number of pixels within the reference
image and the searching block of the target image, which
greatly improves the efficiency of the ZNCC computation
but decreases the accuracy of the system. In the architectures
proposed in [11], [12], the sizes of images cannot be varied
according to the practical requirements due to the fixed num-
ber of delay lines and MAC operations. In [13], an efficient
FPGA architecture has been proposed to compute multiple
ZNCC-based template matchings. The architecture utilizes
feedback FIFOs for the correlation window computations,
which results in a large amount of resource consumption.
In [14], an FPGA-based ZNCC architecture is proposed for
robotic visual tracking. The architecture consumes a rela-
tively small amount of hardware resources but has difficulty
in meeting the requirements for variable parameters and high
precision in automatic target recognition applications. In [15],
two architectures based on FPGA have been proposed for the
implementation of the ZNCC-based image matching with a
variable image size. In the architectures, a large number of
multiple-input multiplexers (MUXs) are used to select the
RAM blocks for the reference image to correspond to those
for the real-time image when searching at different rows,
which greatly increases the usage of logic resources of the
FPGA chips used.

To meet the requirements for high processing speed, small
size, and variable image size in an automatic target recogni-
tion (ATR) system, a novel FPGA-based parallel architecture
is proposed to further reduce the resource utilization and
processing time of the ZNCC computation with a variable
image size in this paper. In the proposed architecture, two
groups of RAM blocks, each of which is allocated to buffer
the whole reference image, are used for the MAC operations
of the real and reference images and data rearrangement of the
reference image. The data rearrangement is achieved through
reading the reference image into one group of RAM blocks
according to the sequence of the RAM blocks (of the real
image) used for the MAC computation at the next row of
the real image. When computing the ZNCC measure at the
next row, the functions of the two groups of RAM blocks
are swapped through using 2-input multiplexers. In addition,
the sum of the real image within the region under examination
is implemented through serially accumulating the results of
subtracting the old column in the last searching area from
the new column in the current searching area using one dual-
port RAMbuffering the corresponding rows of the real image.
Simultaneously, the corresponding sum of squares of the pix-
els can also be implemented in the same way. Consequently,
compared with the first architecture in [15], referred to as the

VOLUME 7, 2019 186627



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

traditional architecture in this paper, the logic gates and DSP
blocks used in the proposed architecture are dramatically
reduced.

Using the Altera Stratix II FPGA chip (EP2S90F780I4)
[16] as the target device in an automatic target recognition
systemwith a reference image with maximum size of 80× 80
and a real-time image with maximum size of 512 × 512,
the compilation results with Quartus II 8.0 [17] have shown
that, compared with the traditional architecture, the usage
of ALUTs (adaptive look-up tables) of the proposed archi-
tecture decreases from 46% to 19%, the usage of DSP
blocks decreases from 59% to 39%, and the logic utilization
decreases from 63% to 35%, while the memory bits only
increase by 8% and the usage of other resources is nearly
the same. The simulation and practical experimental results
show that the proposed architecture can effectively improve
the speed and localization precision of the target recognition
system. Furthermore, the hardware implementation of the
proposed architecture with a variable image size based on an
FPGA can meet the space requirements for a smaller system
size and has the flexibility to adapt to the changing image
matching strategies.

The remainder of this paper is organized as follows. The
basic principles of the proposed architecture are introduced in
Section II. The simulation results as well as the experimental
results are presented in Section III. Some practical issues are
discussed in Section IV. Finally, conclusions are presented in
Section V.

II. BASIC PRINCIPLES
A. ZERO-MEAN NORMALIZED CROSS-CORRELATION
The objective of template matching is to find the location of
a reference image (template) within a larger real image, and
the most popular method is to compute the ZNCC measure
between the template and the portion of the real image under
examination, as shown in Fig. 1. Let A and B be the real image
of K × L pixels and the reference image of M × N pixels,
respectively. Given a searching location (u,v), (0≤ u ≤ K -M ,
0 ≤ v ≤ L-N ), the zero-mean normalized cross-correlation

FIGURE 1. The image matching.

measure is defined as,

C(u, v)

=

∑∑
[A(i+ u, j+ v)− A(u, v)]× [B(i, j)− B]{∑∑

[A(i+u, j+v)−A(u, v)]2
}1/2{∑∑

[B(i, j)−B]2
}
1/2
,

(1)

where
∑∑

denotes
∑M−1

i=0
∑N−1

j=0 . B is the mean value of
the reference image (B), which is given as follows:

B =
1
MN

∑∑
B(i, j),

A(u, v) is the mean value of the real image (A) within the
region under examination, which is given as follows:

A(u, v) =
1
MN

∑∑
A(i+ u, j+ v).

Let Acc(u, v) =
∑∑

A(i+u, j+v), A2cc(u, v) =
∑∑

A(i+
u, j + v)2, ABcc(u, v) =

∑∑
A(i + u, j + v)B(i, j), Bcc =∑∑

B(i, j), and B2cc =
∑∑

(B(i, j))2. Then, equation (1)
can be further rewritten as follows:

C(u, v)

=
[M · N · ABcc(u, v)− Acc(u, v) · Bcc]{

MN ·A2cc(u, v)−(Acc(u, v))2
}1/2{MN ·B2cc−(Bcc)2}1/2 .

(2)

Then, the matching result is given by the location where
C(u,v) is maximized and exceeds a prescribed threshold. For
convenience, these abbreviations are also available in the
following descriptions, figures, and tables.

Compared with (1), equation (2) is simpler and easier to
be implemented using parallel architectures. Furthermore,
a more precise result of the ZNCC measure can be obtained
by (2) through using fixed-point arithmetic with bit growth
for the adder and multiplier, since there are no rounding
errors introduced by the division operations in the compu-
tation of B and A(u, v). Therefore, equation (2) is more suit-
able for FPGA implementation, especially for the fixed-point
implementation [15]. In addition, the ABcc(u,v) term in the
numerator of (2) also denotes the standard cross-correlation
between the template and the portion of the real image under
examination, i.e., the standard cross-correlation operation is
contained in the ZNCC computation.

B. THE PROPOSED ARCHITECTURE
The above ZNCC computation requires computing all terms
in the numerator and the denominator of (2), which will
consume large computational time and logic resources. In this
paper, a novel approach is proposed to reduce the utilization
and processing time of the ZNCC-based template matching
with a variable image size. Since the ZNCC computation
is the principal operation of template matching, we mainly
consider the implementation of the ZNCC computation using
FPGAs and leave the subsequent searching for the maximum
value of the ZNCC measures to be performed by an external
microprocessor. The proposed architecture is illustrated in

186628 VOLUME 7, 2019



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

FIGURE 2. The block diagram of the proposed parallel architecture.

Fig. 2. For the sake of clarity, Fig. 2 and the following
figuresmainly illustrate the block diagram of the data flow for
the ZNCC computation, and omit the addresses and control
signals, such as write, read, etc. In this work, the numbers
of rows and columns of the real and the reference image
matrices, K , L,M , and N , are variable parameters input from
the external microprocessor, with K ≤ Kmax, L ≤ Lmax,
M ≤ Mmax, and N ≤ Nmax, where Kmax, Lmax, Mmax
and Nmax are, respectively, the maxima of the numbers of
rows and columns of the two images given by the system
requirements.

In the proposed architecture, the Exter-ORRAM is an
external RAM used for buffering the reference image and the
real image. The module ‘‘Timing Control’’ mainly serves as
a finite state machine to control the whole workflow of the
ZNCC computation and to calculate the relevant parameters.
The module ‘‘External Communication Interface’’ is used
to perform communication with the external microproces-
sor for parameter input, command input, and status output.
The module ‘‘ZNCC computation’’ is the main processing
unit of the ZNCC computation, which is composed of sev-
eral submodules, including ABcc computation, Acc compu-
tation, A2cc computation, Bcc and B2cc computation, and
subsequent computation submodules. These submodules are
implemented based on the following analyses.

1) ABCC COMPUTATION
According to (2), the ABcc computation involves calculating
the products of any two corresponding pixels of the reference
image and the portion of the real image under examina-
tion and then computing the sum of all the above products.
To balance the computational time and the logic resource
utilization, Mmax parallel MAC operations are needed to
compute theABcc in the column direction, corresponding to
the maximum number of rows of the reference image matrix.
For the practical input parameters, K , L, M , and N , it is
necessary to disable the unused computation units. The M
MAC operations can be accomplished in parallel in one clock
period; therefore, the ABcc computation at a given searching
position can be finished in N clock periods.

According to the system requirements for image sizes,
Mmax RAM blocks of size 1 × Nmax (ORAM[0], . . .,
ORAM[Mmax-1]) are allocated for buffering the
reference image, and Mmax RAM blocks of size
1 × Lmax (RRAM[0], . . ., RRAM[Mmax-1]) for the real
image. For the specific parameters, only M rows of both the
reference and the real image matrices are used for the ZNCC
computation at each searching location. When computing the
ABcc at the next row of the real image, the pixels in the new
row of the image must be input to one of the RAM blocks
to replace its old content which will not be used anymore.
Thus, the correspondences between the RAM blocks for the
reference image and those for the real image are changed,
as shown in Fig. 3. Fig. 3(a) illustrates the correspondences
between the RAM blocks of the two images when computing
the ABcc at the first row of the real image. When computing
at the 2nd row, the (M+1)-th row of the real image is input to
RRAM[0] to replace its old content (the first row of the real
image that is not used anymore). In this case, RRAM[0] does
not correspond to ORAM[0] but to ORAM[M -1], RRAM[1]
corresponds to ORAM[0], and so on, as shown in Fig. 3(b).

FIGURE 3. The correspondences between ORAM and RRAM when
searching at the first row (a) and at the second row (b).

From the above analysis, it is necessary to rearrange the
RAMblocks of the reference image or those of the real image,
to make their data properly correspond while computing the
ABcc. Since the capacity of each RAM block of the reference
image is relatively small, it will be simple and easy to imple-
ment logic synthesis and routing for the data rearrangement
of these RAM blocks. The traditional architecture proposed
in [15] directly usesMmaxmultiplexers withMmax inputs to

VOLUME 7, 2019 186629



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

implement the data rearrangement of the RAM blocks for the
reference image. For a relatively large reference image, it will
cost a large amount of logic resources.

In the proposed architecture, an additional group of RAM
blocks (ORAMB) for buffering the reference image is intro-
duced to further reduce the logic utilization of the FPGA
chip used. Therefore, there are two groups of RAM blocks
(ORAMA and ORAMB) used for the ABcc computation
and the data rearrangement, respectively. The functions
of the two groups of RAM blocks are switched between
the ABcc computation and the data rearrangement through
Mmax 2-to-1 multiplexers. When computing the ZNCCmea-
sure at the first row of the real image, one group of RAM
blocks (ORAMA) is used for the ABcc computation, while
the other (ORAMB) is used for the data rearrangement of the
reference image. When computing the ZNCC measure at
the second row, the (M + 1)-th row of the real image will
be input to replace the old content of RRAM[0]. Therefore,
the data rearrangement is performed through reading the
reference image again from the outer RAM into ORAMB
according to the sequence of the updated RAM blocks of
the real image (RRAM) used for the ABcc computation at
the second row, i.e., the M -th row of the reference image is
input to ORAMB[0], the first row to ORAMB[1], and so on,
as shown in Fig. 4(a). When computing the ZNCCmeasure at
the second row, the content of RRAM[0] is updated with the
(M + 1)-th row of the real image. ORAMB is switched to be
used for the ABcc computation and ORAMA to be used for
the data rearrangement of the reference image through 2-to-1
multiplexers. During the ABcc computation at this searching
row, the reference image is input to ORAMA according to the
sequence of RRAMused for computing at the third row of the
real image, as shown in Fig. 4 (b). In this way, the functions of
the two groups of RAM blocks are switched back and forth
between the ABcc computation and the data rearrangement
through the 2-to-1 multiplexers when computing the ZNCC
measure at different rows.

The block diagram of the ABcc computation is shown
in Fig. 5, with the legend of the operations shown
in Fig. 6, which are also available in the following figures.
In the ABcc computation, one group of RAM blocks
(ORAMA or ORAMB) for the reference image is selected
for the ABcc computation by the 2-to-1 multiplexers under
the control of the module ‘‘Timing Control’’. The data of the
selected RAM blocks are simultaneously multiplied by the
corresponding data of the RAM blocks (RRAM) for the real
image. Then, a parallel adder ‘‘PAdd1’’ is used to sum the
outputs of the multipliers for each column of the reference
and the real images,

∑M−1
i=0 A(i+ u, j+ v)B(i, j). Finally,

the accumulator module ‘‘Accu3’’ is used to accumulate the
outputs of ‘‘PAdd1’’, and thus theABcc(u,v) at a given search-
ing position (u,v) is achieved.
In the traditional architecture, for each RAM block of

the real image, there is one Mmax-input multiplexer used to
select one of the Mmax RAM blocks of the reference image.
Therefore, Mmax multiplexers with Mmax inputs are needed

FIGURE 4. The correspondences between ORAMA or ORAMB and RRAM:
(a) when searching at the first row, (b) when searching at the second row.

FIGURE 5. The block diagram of the ABcc computation.

to achieve the correspondences between the RAM blocks of
the reference image and the real image.While in the proposed
architecture, only one 2-to-1 multiplexer is required to select
one of the two RAM blocks (in ORAMA and ORAMB,
respectively) for each RAM block of the real image.

Although some logic resources are needed to control the
extra group of RAM blocks in the proposed architecture,
a 2-to-1 multiplexer will consume far less logic resources
than an Mmax-to-1 multiplexer. Therefore, the total logic
resources will be significantly decreased through the replace-
ment of Mmax Mmax-input multiplexers with Mmax 2-to-1
multiplexers, as demonstrated in Section III.

186630 VOLUME 7, 2019



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

FIGURE 6. The legend for operations.

2) ACC AND A2CC COMPUTATION
Since theAcc andA2cc computations involve only the portion
of the real image under examination, the overlapping portion
of the real image at the adjacent searching positions can be
taken advantage of to reduce the computational time and logic
resources of the two modules.

At the first searching position of each row, Acc(u, 0) can
be calculated as follows:

Acc(u, 0)=
∑M−1

i=0

∑N−1

j=0
A(i+ u, j)

=

∑M+u−1

i=0

∑N−1

j=0
A(i, j)−

∑u−1

i=0

∑N−1

j=0
A(i, j).

Acc(u, 0) can be implemented using the module ‘‘Accu1 for
the 1st Column’’, as shown in Fig. 7. The detail of the
logic schematic of this module is shown in Fig. 8, where the
accumulator ‘‘RowAccu1’’ accumulates the first N pixels of
the u-th row of the real image (i.e.,

∑N−1
j=0 A(u, j)), the accu-

mulator ‘‘ColAccu1’’ directly accumulates the outputs of
‘‘RowAccu1’’ (i.e.,

∑M+u−1
i=0

∑N−1
j=0 A(i, j)), and each delay

register (DFF) delays its input with one clock cycle. Then,
Acc(u, 0) is obtained by subtracting the output of the M -th
DFF (

∑u−1
i=0

∑N−1
j=0 A(i, j)) from the output of ‘‘ColAccu1’’.

Therefore, Acc(u, 0) can be computed during inputting the
real image from the external RAM (Exter-ORRAM in Fig. 7)
to the internal RAM blocks (RRAM[0], . . ., RRAM[M -1]) of
the FPGA.

FIGURE 7. The block diagram of the Acc and A2cc computation.

FIGURE 8. The logic schematic of the module ‘‘Accu1 for the 1st Column’’
in Fig. 7.

In the same way, A2cc(u, 0) can be implemented with the
module ‘‘Accu2 for the 1st Column’’ and a square operation
module, as shown in Fig. 7.

From the second searching position of each row, i.e., for
any given v0(v0 ≥ 0), as shown in Fig. 1, Acc(u, v0 + 1) can
be calculated as follows:

Acc(u, v0 + 1)

= Acc(u, v0)+
∑M−1

i=0
A(i+u,N+v0)−

∑M−1

i=0
A(i+u, v0)

= Acc(u, 0)+
∑v0

z=0

×

[∑M−1

i=0
A(i+ u,N + z)−

∑M−1

i=0
A(i+ u, z)

]
= Acc(u, 0)+

∑v0−1

z=0

×

[∑M−1

i=0
A(i+ u,N + z)−

∑M−1

i=0
A(i+ u, z)

]
+

[∑M−1

i=0
A(i+ u,N + v0)−

∑M−1

i=0
A(i+ u, v0)

]
According to the above equation, Acc(u, v0 + 1) can be
directly implemented via a parallel adder, an accumulator,
and an adder in two clock periods, as proposed in traditional
architecture [15]. The M -input parallel adder adds the pixels
(A(i+ u, N + v0), 0 ≤ i ≤ M − 1) in the (N + v0)-th column
(the ‘‘new column’’ as shown in Fig. 1) in parallel, and then
subtracts the pixels (A(i + u,v0), 0≤ i ≤ M -1) in the v0-th
column (the ‘‘old column’’) in parallel. Then, the accumulator
adds its current content with the output from the parallel
adder. Lastly, Acc(u,v0 + 1) is obtained through adding the
above accumulated result with Acc(u,0) via the adder. With
additional M parallel square operations, A2cc(u,v0+1) can
also be computed in the same way in only two clock periods.
Acc(u,v0+1) can also be rewritten as,

Acc(u, v0 + 1)

= Acc(u, v0)
∑M−1

i=0
[A(i+ u,N + v0)− A(i+ u, v0)]

= Acc(u, 0)β(u, v0)+ α(u, v0) (3)

where

α(u, z) =
∑M−1

i=0
[A(u+ i,N + z)− A(u+ i, z)],

β(u, v0) =
∑v0−1

z=0
α(u, z).

VOLUME 7, 2019 186631



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

α(u,z) can be calculated in serial mode through accumulating
each A(u+ i,N + z)-A(u+ i,z) (0≤ i ≤ M -1). The above idea
can be used to implement the Acc(u,v0+1) and A2cc(u,v0+1)
computation within M clock periods using one dual-port
RAM (RRAM2), as shown in Fig. 7. During the ABcc com-
putation at a given searching location (u, v0), the pixels in the
(N+v0)-th column and the v0-th column (A(i+u,N+v0) and
A(i + u, v0), (0≤ i ≤ M -1)) are output simultaneously from
the dual-port RAM to the subtractor under the control of the
module ‘‘timing control’’. The module ‘‘Accu6’’ accumulates
the subtracted result (A(i + u,N + v0)-A(i + u,v0)) of the
subtractor for the (i+u)-th row, and α(u,v0) is obtained. Then,
the second accumulator ‘‘Accu7’’ adds its current content
with the result from ‘‘Accu6’’ and outputs β(u,v0)+ α(u,v0).
Finally, Acc(u,v0 + 1) is obtained through adding the output
of ‘‘Accu7’’ to that of ‘‘Accu2 for the 1st Column’’ (Acc(u,0))
via an adder.

In the same way as the Acc computation, the A2cc com-
putation can also be implemented in such a serial mode. The
A2cc module consists of a subtractor, an adder, the modules
‘‘Accu8’’ and ‘‘Accu9’’, except for two extra squaring opera-
tions, as shown in Fig. 7.

Therefore, the parallel-addition operations of the Acc and
A2cc computation, along with M -2 square operations for the
A2cc computation used in the traditional architecture can
be cancelled, where M and 2 are the numbers of square
operations used in the A2cc computation of the traditional
architecture and the proposed architecture, respectively.
Consequently, compared with traditional architecture,
the resource usage, including logic gates and DSP blocks,
is reduced.

3) BCC AND B2CC COMPUTATION
For a given reference image, Bcc and B2cc are constants and
can be computed only once in the whole searching process.
Therefore, Bcc and B2cc can be calculated using an accumu-
lator, and a square operation module followed by an accu-
mulator, respectively, during inputting the reference image
from the external RAM (Exter-ORRAM) to the internal
RAM blocks (ORAMA[0], . . ., ORAMA[M -1]), as shown
in Fig. 5.

4) MORE ABOUT THE ZNCC COMPUTATION
OnceBcc,B2cc,Acc,A2cc, andABcc have been obtained, it is
easy to calculate M · N · B2cc-(Bcc)2, M · N · A2cc-(Acc)2,
and M · N ·ABcc-Acc·Bcc. In the proposed architecture, the
denominator of the ZNCC measure is computed first by
two square-root modules ‘‘Sqrt’’ and then by one multiplier
module, as shown in Fig. 9. To facilitate the subsequent
processing, the numerator and the denominator of (2) are first
converted from the fixed-point to the floating-point format
using the modules ‘‘fpConvert1’’ and ‘‘fpConvert2’’, respec-
tively. Then, the ZNCC measure can be obtained through
a floating-point division operation with the output in the
floating-point format.

FIGURE 9. The block diagram of the subsequent computation.

C. THE WORKFLOW OF THE PROPOSED ARCHITECTURE
The workflow of the proposed architecture consists of the
following sequential and parallel steps after the system ini-
tialization with m = 0, n = 0, R(0) = ORAMA, and
R(1)=ORAMB, as shown in Fig. 10, where all subprocesses
in every step are performed in parallel. The sequential steps
are denoted by the symbol Sx, where x is an integer number.

FIGURE 10. The workflow of the proposed architecture.

186632 VOLUME 7, 2019



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

Step S1: (1.1) Input the reference image from the
external RAM (Exter-ORAM) to one group (R(0)) of
the internal RAM blocks (ORAMA[0], ORAMA[1], . . .,
ORAMA[M -1]) in the row order; at the same time, (1.2)
accumulate these data with the module ‘‘Accu2’’ for the Bcc
computation; and (1.3) accumulate the squares of these data
with the module ‘‘Accu1’’ for the B2cc computation.
Step S2: (2.1) Input the data from the first up to the M -th

rows of the real image from the external RAM (Exter-RRAM)
to the internal RAM blocks (RRAM[0], RRAM[1],. . .,
RRAM[M -1]) and RRAM2 in the row order; at the same
time, (2.2) compute Acc(0,0) and A2cc(0,0) of the por-
tion of the real image under examination with the modules
‘‘Accu1 for the 1st column’’ and ‘‘Accu2 for the 1st column’’,
respectively; and (2.3) compute M · N · B2cc - (Bcc)2.

Step S3: (S3A) Compute ABcc(m,n), Acc(m,n), A2cc(m,n)
in the order from the first to the (L-N + 1)-th columns of
them-th searching row; at the same time, (S3B) rearrange the
reference image.

Step S4: m = m + 1. If m < K -M + 1, then proceed to
Step S5; else, stop the whole process and change the status of
the completion indicator.

Step S5: Once the steps from S2 to S4 for the ZNCC com-
putation and the data rearrangement of the reference image
have been finished, (5.1) input the (M +m)-th row of the real
image from the external RAM to the corresponding internal
RAM block and RRAM2; at the same time, (5.2) compute
Acc(m,0) and A2cc(m,0) with the modules ‘‘Accu1 for the 1st
column’’ and ‘‘Accu2 for the 1st column’’, respectively.

Step S6: Switch the functions of the two groups of RAM
blocks between the ZNCC computation and the data rear-
rangement for the ZNCC computation at the next row:
Rt = R(0), R(0) = R(1), and R(1) = Rt. Reset n = 0. Return
to Step S3.

In the above workflow, Step S3 comprises two parallel
processes, Step S3A and S3B. The details of Step S3A and
Step S3B are given, as shown in Fig. 10.

Step S3A: (3.1) Compute ABcc(m,n) with the group of
RAM blocks (R(0)) of the reference image within N clock
periods; at the same time, (3.2) compute Acc(m,n) and
A2cc(m,n) in serial mode within M clock periods; and (3.3)
compute C(m,n) and save it into the external RAM.

Step S3B: Rearrange the reference image through reading
the image from the external RAM to the other group of RAM
blocks (R(1)) according to the order of the internal RAM
blocks of the real image (RRAM) that will be updated in Step
S5 for the ZNCC computation at the (m+ 1)-th row.
In the proposed architecture, since the data of the reference

and the real images are stored in the same external RAM
(Exter-ORRAM), the data input from the outer RAM can be
performed separately for the reference and the real images,
as shown in Fig. 2. The data input can also be performed
simultaneously if the data of the two images are stored in two
individual outer RAMs. Then, the corresponding steps in the
workflow can be further optimized.

D. PRACTICAL IMPLEMENTATION
From the above analyses, the computational time of the above
proposed architecture can be calculated from the workflow,
which has been labeled with the computation time in clock
periods for each step, as shown in Fig. 10. Step S3A can
be finished in T1 clock periods until all the computations
of ABcc(m,n), Acc(m,n), and A2cc(m,n) at a given searching
position are finished, where T1 is given as follows:

T1 =

{
M , M > N
N , otherwise

Step S3 can be finished in T2 clock periods.

T2 =

{
(L − N + 1) · T1, if (L − N + 1) · T1 > M · N
M · N , otherwise

Step S5 will be performed only after all the steps from S3 to
S4 have been finished. Therefore, the ZNCC computation can
be finished in Ct clock periods,

Ct = K · L +M · N + (K −M + 1) · T2

Then, the total computation time of the ZNCC computation
is given as Ct/fclk, where fclk is the global clock frequency of
the system.

In this work, 8-bit grayscale image data are input to the
system with a reference image with variable size of M × N
(2 ≤ M ≤ 80, 2 ≤ N ≤ 80), and a real-time image with
variable size of K × L (2 ≤ K ≤ 512, 2 ≤ L ≤ 512),
i.e., Mmax = Nmax = 80, and Kmax = Lmax = 512.
Accordingly, the proposed architecture with the desired
data width was implemented with 80 parallel MAC opera-
tions on the EP2S90F780I4 (the FPGA device from Altera
Corporation) [16]. The integrated development software,
Quartus II 8.0 with SP1 [17], was used to perform logic anal-
ysis, synthesis, placement, routing, and function and timing
simulation. All of the modules in the proposed architecture
were implemented in the VHDL (VHSIC Hardware Descrip-
tion Language) [18] and synthesized with Quartus II. The
system global clock was chosen to be 70 MHz, which was
generated by PLL with an external 25 MHz clock input. For
M = Mmax, N = Nmax, K = Kmax, and L = Lmax, since
M = N and (L-N +1)·N > M ∗N , T2 = 34640 and the total
processing time is theoretically 218.1 ms.

To achieve sufficient positioning accuracy of the practical
ATR system, the numerical accuracy of the result of the
ZNCC calculation is required to reach the order of 10−6.
Therefore, the data in the fixed-point format for all the oper-
ations of both the proposed and the traditional architectures
have been sufficiently extended.

III. SIMULATION AND EXPERIMENTAL RESULTS
A. COMPILATION RESULTS
According to the compilation result of Quartus II, an 80-to-1
multiplexer needs 237 ALUTs, while a 2-to-1 multiplexer
needs only 8 ALUTs. Therefore, 18320 (80 × (237-8))

VOLUME 7, 2019 186633



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

ALUTs will be saved in the proposed architecture with
80 2-to-1 multiplexers, compared to the traditional archi-
tecture with 80 80-to-1 multiplexers. In addition, a por-
tion of the ALUTs will be saved for the cancellation of
the parallel-addition modules for the Acc and A2cc com-
putation. The resource usages of the two architectures are
listed in Table 1, including the numbers of ALUTs, registers
and MACs (included in DSP blocks), given by the reports
from the compiler. As shown in Table 1, compared with
the traditional architecture, the usage of ALUTs of the pro-
posed architecture is decreased from 33684 to 13929, and
the reduced number is approximately equal to the theoretical
value, 18320. As a result, the utilization of the ALUTs is
decreased from 46% to 19%, and the logic utilization is
decreased from 63% to 35%. The usage of RAM bits is
increased by 378880 bits (equal to the theoretical value,
80 × 80 × 8 + 512 × 80 × 8) and is only increased by 8%
compared with the traditional architecture. The usage of DSP
blocks is decreased from 226 to 148 (decreased by 20%),
and the reduced number is equal to the theoretical value
(M -2 = 78).

TABLE 1. The resource usage of the proposed architecture.

The propagation delays and the total thermal power dis-
sipation have also been estimated for the two architectures
as a reference for practical applications using the classic
timing analyzer tool and the power analyzer tool (PowerPlay)
integrated with Quartus II, respectively. Compared with the
traditional architecture, the propagation delay of the pro-
posed architecture is decreased from 9.05 ns to 8.29 ns
(decreased approximately by 8.4%), and the total thermal
power dissipation of the proposed architecture is decreased
from 2347.00 mW to 1878.29 mW (decreased approximately
by 19.9%).

B. SIMULATION RESULTS
To verify the logical correctness of the proposed architecture,
a group of simulated image data was input to the system with
the reference image of size 17 × 17 and the real image of
size 40 × 40, where 17 and 40 are the input parameters of
the system. For functional verification and easy simulation,
the data input for the real image starts from 0 and increases
by 1 along the direction of the row, the data input for the
reference image starts from 64 and increases by 1 along
the direction of the row. The data of the two images are
constrained in the range from 0 to 255, the upper bound of an
8-bit unsigned fixed-point datum. If the input value is greater

than 255, any carry bit is considered as overflow and will be
discarded.

The simulation waveform of the proposed architecture is
shown in Fig. 11, where the nodes Bcc, B2cc, Acc, A2cc,
and ABcc are defined as before. The output nodes Result_S,
Result_E, and Result_M denote the sign, exponent, and man-
tissa components of the results of the ZNCC measure in
the 32-bit floating-point format, respectively. The input node
clk5 is the system clock.

The results of the proposed architecture have been com-
pared with the theoretical ones, as listed in Table 2, where
only the first 6 groups of the results are shown for the
sake of space. According to the simulation waveform of
the proposed architecture, Bcc and B2cc are constants
(Bcc = 35280 and B2cc = 5773872), and the values of Acc,
A2cc, and ABcc are the same as the theoretical ones. In the
table, Result_M2 denotes the mantissa of the theoretical
result in the 32-bit floating-point format. It clearly illustrates
that the proposed architecture can achieve the accuracy on the
order of 10−6.

TABLE 2. The simulation and theoretical results.

C. PRACTICAL EXPERIMENTAL RESULT
In our practical automatic target recognition system, the block
diagram of the ZNCC-based image matching subsystem is
shown in Fig. 12, where Exter-ORRAM and Exter-RAM
are the external RAMs used for buffering the reference and
the real images and the results of the ZNCC computation,
respectively. Addr and Data are the address and data buses,
respectively. RD, WR and CS are the control signals used
for data input from and output to the external RAM.
ADSP-TS201S [19] is an embedded processor from ADI
Corporation.

The whole work process of the above subsystem is given
as follows. First, the embedded processor (ADSP-TS201S)
issues the commands to send the data of the reference and the
real images to the RAMs (Exter-ORRAM and Exter-RAM)
and to send the parameters of the image sizes and the start
command to the FPGA. Then, the FPGA starts to perform
the ZNCC computation and saves the results to the exter-
nal RAM (Exter-RAM). When the computation is finished,
the FPGA transmits an interrupt signal to ADSP-TS201S to
indicate the completion of the image matching procedure.
In return, ADSP-TS201S will also query the associated status
register of the FPGA to confirm the completion before further
processing. The long-term stability test has been conducted
for the proposed architecture using infrared image data with

186634 VOLUME 7, 2019



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

FIGURE 11. The simulation waveform of the proposed architecture.

FIGURE 12. The block diagram of zero-mean normalized cross-correlation
image matching subsystem.

different parameters. It has shown that the results of the
ZNCC computation in template matching met the require-
ments for practical localization precision, and the system
can work well. The computation time of the architecture
has been evaluated using ADSP-TS201S and was identical
to the theoretical time given in the previous section. For a
reference image of size 80× 80 and a real-time image of size
512 × 512, at a system clock of 70 MHz, the time consumed
for the proposed architecture is lower than the one (224 ms
in [15]) for the traditional architecture. It is obvious that the
proposed architectures can further improve the system speed.

The performance comparisons of the implementations of
the FPGA and the multiple parallel microprocessors using
ADSP-TS201S have also been conducted. The speed of the
FPGA implementation is approximately equal to that of
implementation with four parallel microprocessors in 32-bit
single precision floating-point format at the full speed of
500 MHz. However, the precision that the latter implemen-
tation can achieve is significantly lower than the precision
requirement of the order of 10−6 due to the rounding errors
of the intermediate results. If the implementation with four
parallel microprocessors uses the 64-bit double precision
floating-point format, although it can meet the precision
requirement, its speed will be decreased by 3 to 4 times.

In addition, it is apparent that the implementation based
on FPGA can greatly reduce the system size and power
consumption, compared with the implementation based on
multiple microprocessors.

IV. DISCUSSION
As mentioned above, since the ABcc computation in the
numerator of the ZNCC definition is just a standard CC,
the module of the ABcc computation can be used to compute
the standard CC measure. Accordingly, the workflow for the
ZNCC computation can also be adapted to the computation
of the standard CC.

From a practical point of view, the numerical precision of
the algorithm must be taken into consideration because of the
possible existence of false maximum values induced by the
numerical truncation in the computation process. To obtain
the subpixel accuracy of localization, the first several maxi-
mum values of the ZNCC results are required for further pro-
cessing, such as surface fitting, and the architecture proposed
in [20] can also be used with slightly extra computation time
and resource consumption.

In addition, FPGAs have been increasingly used as an
efficient platform for the ASIC prototype development and
verification. Although we mainly consider the parallel imple-
mentation of the ZNCC based on the FPGA in this paper,
the proposed architecture can also be used to develop an
efficient ASIC for the ZNCC-based template matching.

V. CONCLUSION
To meet the requirements for small size and low-power dissi-
pation in an embedded automatic target recognition system,
a novel resource-efficient parallel architecture based on an
FPGA has been proposed in this paper for the implementation
of the ZNCC computation. In the proposed architecture, two
groups of RAM blocks, each of which is used to buffer the
reference image, are alternately used for the ABcc compu-
tation and the data rearrangement of the reference image.
The functions of the two groups of RAM blocks are switched
back and forth through 2-input multiplexers when computing
the ZNCC measure at different rows of the real image.

VOLUME 7, 2019 186635



X. Wang et al.: Novel Parallel Architecture for Template Matching Based on ZNCC

Moreover, the Acc computation is implemented through seri-
ally accumulating the results of subtracting the old column
in the last searching area from the new column in the new
searching area using one dual-port RAM. Simultaneously,
the A2cc is implemented in the same way. Consequently,
compared with the traditional architecture, the logic uti-
lization and DSP blocks of the proposed architecture are
enormously decreased with a slight increase in memory
utilization. Compilation and simulation results on a Stratix II
FPGA device (EP2S90F780I4) as well as practical experi-
ments in an automatic target recognition system have shown
that the proposed architecture can effectively improve the
performance of the practical target recognition system.

REFERENCES
[1] J. Luo and E. Konofagou, ‘‘A fast normalized cross-correlation calculation

method for motion estimation,’’ IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 57, no. 6, pp. 1347–1357, Jun. 2010.

[2] D. G. Bailey, Design for Embedded Image Processing on FPGAs.
Hoboken, NJ, USA: Wiley, 2011.

[3] L. D. Stefano, S. Mattoccia, and M. Mola, ‘‘An efficient algorithm for
exhaustive template matching based on normalized cross correlation,’’ in
Proc. 12th IEEE Int. Conf. Image Anal. Process., Sep. 2003, pp. 322–327.

[4] A. Rosenfeld and A. C. Kak, Digital Picture Processing. New York, NY,
USA: Academic, 1982, pp. 200–212.

[5] J. P. Lewis, ‘‘Fast template matching,’’ in Proc. Can. Image Process.
Pattern Recognit. Soc. Vis. Interface, Quebec City, QC, Canada,May 1995,
pp. 120–123.

[6] D. M. Tsai and C. T. Lin, ‘‘Fast normalized cross correlation for defect
detection,’’ Pattern Recognit. Lett., vol. 24, no. 15, pp. 2625–2631,
Nov. 2003.

[7] L. J. Siegel, H. J. Siegel, andA. E. Feather, ‘‘Parallel processing approaches
to image correlation,’’ IEEE Trans. Comput., vol. C-31, no. 3, pp. 208–218,
Mar. 1982.

[8] N. Gupta and N. Gupta, ‘‘A VLSI architecture for image registration in real
time,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 9,
pp. 981–988, Sep. 2007.

[9] M. Cavadini, M. Wosnitza, and G. Troster, ‘‘Multiprocessor system for
high-resolution image correlation in real time,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 9, no. 3, pp. 439–449, Jun. 2001.

[10] S. Mori, M. Kumagai, K. Miki, R. Fukuhara, and H. Haneishi, ‘‘Develop-
ment of fast patient position verification software using 2D-3D image reg-
istration and its clinical experience,’’ J. Radiat. Res., vol. 56, pp. 818–829,
Sep. 2015.

[11] A. Lindoso and L. Entrena, ‘‘High performance FPGA-based image corre-
lation,’’ J. Real-Time Image Process., vol. 2, pp. 223–233, Dec. 2007.

[12] J.-Y. Chen, K.-F. Hung, H.-Y. Lin, Y.-C. Chang, Y.-T. Hwang, C.-K. Yu,
C.-R. Hong, C.-C.Wu, and Y.-J. Chang, ‘‘Real-time FPGA-based template
matching module for visual inspection application,’’ in Proc. IEEE/ASME
Int. Conf. Adv. Intell. Mechatronics, Jul. 2012, pp. 1072–1076.

[13] E. S. Albuquerque, A. P. A. Ferreira, J. G. M. Silva, J. P. F. Barbosa,
R. L. M. Carlos, D. S. Albuquerque, and E. N. S. Barros, ‘‘An FPGA-
based accelerator for multiple real-time template matching,’’ in Proc.
29th Symp. Integr. Circuits Syst. Design, Belo Horizonte, Brazil, Brasilia,
Aug./Sep. 2016, pp. 1–6.

[14] Z. Chen, ‘‘Eye-to-hand robotic visual tracking based on template matching
on FPGAs,’’ IEEE Access, vol. 7, pp. 88870–88880, 2019.

[15] X. Wang and X.Wang, ‘‘FPGA based parallel architectures for normalized
cross-correlation,’’ in Proc. 1st Int. Conf. Inf. Sci. Eng. (ICISE), 2009,
pp. 225–229.

[16] Stratix II Device Handbook, Altera, San Jose, CA, USA, 2007.
[17] Quartus II Version 8.0 Handbook, Altera, San Francisco, CA, USA,

2007.
[18] B. Brown and Z. Vranesic, Fundamentals of Digital Logic With VHDL

Design, 2nd ed. Toronto, ON, Canada: McGraw-Hill, 2005.
[19] Analog Devices. (2006). TigerSHARC Embedded Processor ADSP-

TS201S. Norwood, MA, USA. [Online]. Available: http://www.analog.
com/media/en/technicaldocumentation/data-sheets/ADSPTS201S.pdf

[20] S. Dong, X. Wang, and X. Wang, ‘‘A novel high-speed parallel scheme for
data sorting algorithm based on FPGA,’’ in Proc. 2nd Int. Congr. Image
Signal Process. (CISP), Tianjin, China, 2009, pp. 1–4.

XIAOTAO WANG was born in Shandong, China,
in 1976. He received the B.S. degree in automa-
tion, the M.S. degree in navigation guidance and
control, and the Ph.D. degree in control theory
and engineering from the Harbin Institute of Tech-
nology, Harbin, China, in 1999, 2001, and 2005,
respectively.

Since 2010, he has been an Associate Professor
with the College of Astronautics, Nanjing Univer-
sity of Aeronautics and Astronautics. His current

research interests include high-speed parallel implementation of image pro-
cessing algorithms and motion control technique for space mechanism.

XINGBO WANG received the Ph.D. degree from
Shandong University, Jinan, China, in 2011. Since
2012, he has been a Lecturer with the College of
Automation and the College of Artificial Intelli-
gence, Nanjing University of Posts and Telecom-
munications. His main research interests include
high-speed parallel implementation of image pro-
cessing algorithms and wireless sensor networks.

LIANGLIANG HAN received the M.S. degree
from the Shanghai Academy of Spaceflight
Technology, Shanghai, China, in 2013.

Since 2010, he has been an Engineer with the
Shanghai Institute of Aerospace System Engineer-
ing. His current research interests include mecha-
nism design and control algorithms of space robot
and its end-effectors.

186636 VOLUME 7, 2019


	INTRODUCTION
	BASIC PRINCIPLES
	ZERO-MEAN NORMALIZED CROSS-CORRELATION
	THE PROPOSED ARCHITECTURE
	ABCC COMPUTATION
	ACC AND A2CC COMPUTATION
	BCC AND B2CC COMPUTATION
	MORE ABOUT THE ZNCC COMPUTATION

	THE WORKFLOW OF THE PROPOSED ARCHITECTURE
	PRACTICAL IMPLEMENTATION

	SIMULATION AND EXPERIMENTAL RESULTS
	COMPILATION RESULTS
	SIMULATION RESULTS
	PRACTICAL EXPERIMENTAL RESULT

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	XIAOTAO WANG
	XINGBO WANG
	LIANGLIANG HAN


