
Received November 14, 2019, accepted December 3, 2019, date of publication December 23, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961401

Which Is More Effective in Guiding Households to
Choose Bus Travel—A Transit Subsidy
Policy or Discount Policy?
TIANCHAO GUAN 1,2, AND TONGFEI LI 3
1Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
2State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
3Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

Corresponding author: Tianchao Guan (14114195@bjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 91846202, Grant 71890972, and Grant
71901017, and in part by the Science and Technology Foundation of Beijing Jiaotong University under Grant 2016RC012. The work of
T. Li was supported in part by the BJUT Humanities and Social Sciences Foundation, and in part by the National Natural Science
Foundation of China under Grant 71901007.

ABSTRACT The continuous increase in the number of private cars has caused an imbalance in the travel
of cars and buses. This phenomenon has become a bottleneck restricting urban transportation economy and
sustainable development. This paper examines the effectiveness of policy options in motivating travelers
to choose buses instead of cars. Using of reference dependence describes mode choice behaviors with two
attributes under different public transit policies in uncertain conditions. At the same time, we also consider
using the bus fare concession strategy to guide the traveler to reasonably choose the bus travel, and establish
a bi-level programming model to optimize the bus fare proportions. Among them, the lower-level planning
considers the two attributes impact of traffic policy on travelers’ decision to bus travel. Using the upper-
level planning, the optimal fare preferential proportion for different policy decisions is decided considering
the lowest total system cost. The study highlights that the transit subsidy policy can be employed to guide
travelers to choose bus travel preferentially. Model effectiveness is verified using numerical examples. The
model is indispensable for the implementation of future traffic demand management strategies.

INDEX TERMS Bus travel, reference dependence, transit discount policy, transit subsidy policy.

I. INTRODUCTION
Traffic demand management has been employed to address
to release traffic congestion problems since the 1960s. Traf-
fic demand management aims to alleviate traffic congestion
by influencing households’ travel behavior through vari-
ous policies, regulations, and modernized information equip-
ment. While, with the development of the economy and
the improvement of family living standards, we have con-
cluded that the travel demand for private cars has gradu-
ally increased. Taking Beijing as an example, the capital of
China, it experienced exponential growth in the total number
of private cars ownership, from 5.591 million in 2014 to
6.084 million in 2018 [1]. This phenomenon has caused the
imbalance between buses and private cars and has become
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a bottleneck restricting urban transportation economy and
sustainable development. Likewise, it also brings new ques-
tions and challenges, especially to managers who advocate
bus travel. In principle, the manager sometimes ignores the
traveler’s choice behavior when implementing the traffic pol-
icy, which leads to the failure to achieve the expected results.
If we want to achieve the expected results, managers need
to analyze the impact of this policy on the traveler’s choice
behavior. In practice, travel choices are also affected by a
variety of uncertainties, such as transportation policies, travel
purposes, travel distance, travelers’ age, income, and travel
expenses, etc. In the choice, there may be no completely
rational behavior for travelers. So, reference [2] first pro-
posed the expected utility theory (EUT) or random utility
theory (RUT) to discuss the choice behavior. They generally
believe that travelers are fully aware of the probability of each
mode choice occurring. They also assume that travelers are
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TABLE 1. Research related to choose behavior.

based on the choice of minimum travel cost or maximum
travel utility. However, this basic assumption was verified
by behavioral economists and empirical economists using
experimental methods to verify its irrationality [3]–[6]. Sub-
sequently, reference [7]–[13] also proved that travelers are
differences in personal cognitive and logical reasoning. It will
be impossible to understand the exact probability of each
choice. And it is necessary to have a reference point in the
choice. So, reference [14], [16] and other scholars combined
the personal perception characteristics and the reference point
to propose prospect theory (PT) and cumulative prospect the-
ory (CPT). However, as travelers increase and become famil-
iar with the travel environment, reference dependencies will
gradually diminish for travelers. Likewise, travelers also mis-
takenly underestimate the probability of a large probability

event or overestimate the probability of a small probabil-
ity event. In order to avoid the dependence on the travel
environment and the error of travel probability estimation,
reference [15], [17], [18] proposed the reference dependence
theory (RDT).

There are two basic attributes of loss avoidance and a
reference point in RDT. The reference point attribute pays
more attention to the traveler’s choice preferences, ignoring
the opportunity cost loss and risk attitudes. Rarely, the loss
avoidance attribute can better explain the opportunity cost
loss and risk attitudes. In addition, RDT can describe both
uncertain and deterministic scenarios and is more universal.
Therefore, when the two attributes are determined, the result
of the mode choice will be determined. TABLE 1 lists the
related studies of two attributes of RDT at home and abroad.
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TABLE 2. Contributions to literatures.

As can be seen from TABLE 1, the two attributes are widely
used in various fields. Most of these studies only focus on
one of the two attributes which in path selection, residential
choice, road toll, road network design. Furthermore, existing
research pays more attention to the network and ignores the
impact of travel policy on choice behavior. Reasonable travel
policies are of great significance in guiding bus travel. On the
one hand, managers who advocate bus travel can accurately
obtain the behavior characteristics of travelers for global con-
trol. On the other hand, travelers can reasonably arrange their
own travel through transportation policies to avoid unneces-
sary travel. In this study, we characterize two attributes of
RDT and traffic policy to reveal the choice behavior in a
continuum model framework. We compare the effectiveness
of the two policies through traveler’s choice behavior and
provide theoretical support for the effective implementation
of the policies.

TABLE 2 summarizes the differences among the related
studies together with these papers’ contributions.

The paper proceeds as-is: the next section, the paper
presents a basic model for travelers based on transit sub-
sidy and discount policy. Section 3 describes a bi-level
program and the solution algorithms apply in the model.
Finally, numerous studies and conclusions are discussed in
Section 4 and Section 5.

II. BASIC CHOICE MODEL CONSIDERED
TRANSPORTATION POLICIES
In this section, we propose a model with two transportation
modes to illustrate which policy is more effective for bus
travel, which is a modification of the stylized behavioral
economics model [14], [15], [22], [23], [30], [31]. In this
model, two traffic policies are considered, namely, the bus
fare subsidy policy and bus fare discount policy. Travelers
are willing to choose the best mode to travel to maximize
their utility within their travel budget. Managers are more
interested in knowing which policies are more effective in
guiding travelers to choose buses. To facilitate the presenta-
tion of basic ideas without loss of generality, Section 2.1 lists
some of the basic assumptions and symbols employed in this
paper.

A. ASSUMPTIONS AND SYMBOLS
In this model, we assume that total travel demand is ran-
dom and the total travel demand distribution is a normal

distribution with a mean of x and variance of cvx. And,
the travel demand distribution for each mode can also be
expressed as X j

i
∼ N

(
x j
i
,
(
cvj

i
· x j

i

)2). Among them, x j
i
is

mean and cvj
i
is variance. Furthermore, we take the expecta-

tion on both sides of X =
∑
i,j
X j
i
and get x =

∑
i,j
x j
i
. Then, it is

reasonable to satisfy the condition
(
cvj

A
· x j

A

)2
+
(
cvj

T
· x j

T

)2
=

(cvx · x)2. If cvj
A
= cvj

T
, we also can get cvj

A
= cvj

T
=

cvx·x√(
xjA

)2
+

(
xjT

)2 [22], [23], [44], [45]. Meanwhile, the other

symbols associated with this model and their interpretations
are shown in TABLE 3 of Appendix B. Additionally, the fol-
lowing basic assumptions are made:

A1. All the travelers are assumed to be homogeneous,
implying that their travel budget level, risk attitude, and travel
utility are identical. The objective of travelers is to maximize
its own travel utility by choosing a travel mode under the
transit subsidy policy or the discount policy within their travel
budget (see, e.g. [46]–[50]).

A2. There are only two transportation modes and not affect
each other. The capacity of the bus is large enough and the
passenger crowding discomfort in buses is considered. The
crowding effect in buses is modeled using a discomfort cost
function [22], [23], [37], [45], [51]–[54].

B. BENCHMARK MODEL BASED ON RDT IN DIFFERENT
TRAFFIC POLICIES
The discount policy is that households who choose to travel
by bus every time will definitely receive travel discounts,
otherwise they will not. And the travel budget does not
change. In turn, the subsidy policy is that households who
choose to travel by bus have already received a one-time
travel subsidy, and the travel budget will be reduced by δSPT
[55], [56]. The travel concessions received for each bus travel
are only a prorated share of the one-time travel subsidy.
For example, we compare the discount policy to the bank’s
demand deposits and compare the discount proportion to the
interest rate of the current deposit. As long as you choose to
travel by bus, you will get an interest in the current deposit.
Otherwise, there will be no interest. Similarly, we compare
the subsidy policy to a bank’s time deposit and the subsidy
proportion as the interest rate of the time deposit. The ‘gain’
for bus travel is calculated as the interest of time deposits
( 1
1+δS

). The former has the characteristics of high flexibility
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but low-interest rates, and the latter has the advantage of
high-interest rates, but the flexibility is poor. In general,
households will choose the higher interest rates and ignore
those that can bring benefits in the short term. Based on
this, the proportion of subsidy policy will be higher than
the discount policy. It can be expressed as δS ≥ δD ≥ 0.
Behavioral financiers use the myopia loss aversion (MLA) to
explain the phenomenon of such different benefits [56]–[58].
At this point, it is good to explain the travel behavior of
travelers affected by different policies. Next, the paper will
explain one by one.

1) TRAVEL COST IN DIFFERENT TRAFFIC POLICIES
Travel costs for choosing a bus include 3 parts: time cost,
monetary cost (only bus fares are considered), and congestion
costs. The time cost mainly includes bus travel time and
average waiting time. Congestion costs are presented in a
congestion cost function and are a quadratic functional form
of the number of bus travelers. A congestion cost function can
be given by equation (1). The travel cost of the bus under the
discount policy can be indicated by equation (2). Equation (3)
expresses the travel cost of the bus under subsidy policy.

C j
T

(
X jT
)
= a

(
X jT
)2
+ bX jT (1)

gDT
(
XDT
)
= (1− δD)PT + TT

= (1− δD)PT + α1
(
tT + CT + tWT

)
= (1−δD)PT+α1

(
tT+a

(
XDT
)2
+bXDT +

1
2f

)
(2)

gST
(
XST
)
=

1
1+ δS

PT + TT

=
1

1+ δS
PT + α1

(
tT + CT + tWT

)
=

1
1+δS

PT+α1

(
tT+a

(
XST
)2
+bXST+

1
2f

)
(3)

According to assumptions, the mean and variance of the
bus travel cost under the discount policy can be expressed
using equations (4) and (5), respectively. Similarly, the mean
and variance of the bus travel cost under the subsidy policy
can be expressed using equations (6) and (7) respectively.
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Then, the travel cost of choosing a private car to travel
includes time cost and monetary cost. The monetary cost
mainly includes fixed costs such as fuel consumption and
depreciation of private car travel. The time cost is represented
by the classical BPR function. Therefore, the travel cost of
choosing a private car to travel can be expressed using equa-
tion (8). Furthermore, the mean and variance of the related
car travel cost can be respectively expressed using the form
of equations (9) and (10).

gjA
(
X jA
)
= PA + T

j
A = PA + α2T jA

(
X jA
)

= PA + α2t0A

[
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(8)
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(
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(
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(
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(
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))
= α22Var

(
T j
A

(
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))

(10)

The mean and variance of the car travel cost can be
expressed in the form equations (11) to (12).

E
(
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(
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))
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0
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(
n
l

) (
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A
· x j

A

)l(x j
A

)n−l(l−1)!!)2

 (12)

We know that the travel cost of the two modes is also in
accordance with the normal distribution, thus, the following
relationship can be expressed equations (13) and (14). The
calculation process is described in Appendix A. Therefore,
the probability density can be obtained from the normal dis-
tribution probability density function, as shown in equations
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(15) and (16).
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2) TRAVEL UTILITY IN DIFFERENT TRAFFIC POLICIES
Travel utility is a comprehensive evaluation indicator that
describes the household’s choice behavior. It can not only
distinguish the travel costs but more importantly, it can also
reflect the satisfaction of the traveler. So, we can use equa-
tions (17) and (18) to describe the travel utility of different
modes under different policies. While we introduced the
‘reference point’ to explain how travelers distinguish between
different modes of travel. The ‘reference point’ changes the
selection criteria are based on the maximum travel utility.
The choice of travel mode is based on the reference point,
and the ‘loss’ and ‘gain’ of the travelers are also for the
reference point. This approach highlights the traveler’s pref-
erences while avoiding the errors caused by the estimated
probabilities. This paper selects the expected travel utility
of the alternative travel model as a reference point, and
more researchers cited this [37], [45], [59]–[61]. In reality,
the choice of travel mode should consider the influence of
external ‘risk’. So, we have added the concept of ‘loss avoid-
ance’ which describes the traveler’s attitude towards risk. The
gain-loss utility function reflects the choice of mode that is
influenced by both a reference point, risk, and loss avoidance,
representing the equation (19).

UD
i
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XDi
)
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(
XDi
)∫
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(
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(
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In summary, we use equations (20) and (21) to present
travel utility based on a reference point, risk and loss avoid-
ance under different travel policies.
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3) TRAVEL MODE CHOICE IN DIFFERENT TRAFFIC POLICIES
Travelers have different cognitions of understanding of road
conditions and are affected by uncertainties such as weather,
policies, and congestion. Moreover, there are errors in esti-
mating. Therefore, the utility of each mode of transport is
shown by equation (22), which ε is the cognitive bias. It is
assumed that ε obeys the same and independent Gumbel
distribution. The sharing rate of travel mode is the classic
Logit discrete selection model, such as equation (23).

Ũ j
i = U

j
i + ε i = T or A j = D or S (22)

pj
i
=

exp Ũ j
i∑

i,j
exp Ũ j

i

i = T or A j = D or S (23)

III. OPTIMAL BUS FARE PROPORTIONS CONSIDERED
TRANSPORTATION POLICIES
A. A BI-LEVEL PLANNING FOR THE OPTIMAL BUS FARE
PROPORTIONS
As managers who advocate bus travel, they are more con-
cerned with finding effective public transport policies (dis-
count policies or subsidy policies). However, managers often
ignore traveler travel preferences. Then, travelers only pay
attention to the modes which are suit for them and do not
care about the effectiveness of the policy. Therefore, this
paper establishes a bi-level program model to resolve the gap
between managers and travelers. The manager minimizes the
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TABLE 3. Symbols employed in the model.

mean of total cost by adjusting the optimal bus fare proportion
in the upper-level planning. We can express it with equations
(24) and (25). The bus sharing rate of the traveler changes due
to the variety in bus fare proportion in the low-level planning.
It can be portrayed as a reference dependence choice model
from the equation (26).

min
δj

Z j (24)

s.t δj ≤ δj < δj j = D or S (25)

While, δj and δj respectively indicate the minimum
and maximum value of the bus fare proportion when the
j (D or S) type policy is implemented.

X ji = pjiX i = T or A j = D or S (26)

While X indicates the total travel demand and X ji respects
for the travel demand for travel mode i under j traffic policy.
Expecting both sides of equation (26) simultaneously, there

is

x ji = pjix i = T or A j = D or S (27)

Then, pji (i = T or A j = D or S) in the equation (27)
can be calculated by the equation (22).

Furthermore, the mean of total system cost in different
policy implementations can be expressed as follows.

Z j = E
(
X jT g

j
T

(
X jT
)
+ X jAg

j
A

(
X jA
))

j = D or S (28)

Substituting the equations (4) to (7), (11), (12), (15), and
(16) into the above equation (28), the expression of the total
social utility under the j-type policy can be obtained.

Z j=x jTE
(
gjT
(
X jT
))
+ x jAE

(
gjA
(
X jA
))

j=D or S (29)

Therefore, this optimization model can be expressed as
follows:

U min
δj

j
Z=x

j
TE

(
gjT
(
X jT
))
+ x jAE

(
gjA
(
X jA
))

j=D or S
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s.t δj ≤ δj < δj j = D or S

L x ji = pjix i = T or A j = D or S (30)

B. CALCULATION PROCESS
Generally speaking, the bi-level programming problem is an
NP-hard problem (Non-deterministic Polynomial), and there
is no polynomial solving algorithm. Therefore, the solution
to the bi-level programming problem is complex and the
global optimal solution cannot be obtained. Then, heuristic
algorithms are often used to solve such problems. This paper
uses the integrated method of successive average (MSA)
genetic algorithm (GA) to solve the problem [22], [23], [37].
Solving the underlying plan to use the MSAmethod to obtain
the number of households who choose to travel by bus. The
specific steps are as follows:

Step 1, Initialize. Let N = 1 and set the initial flow XNi .
Making use of equations (2) and (3) to calculate the initial
cost of selecting a bus under the discount policy and subsidy
policy, and use equation (8) to calculate the initial travel cost
of the private car. Utilize gj,Ni to indicate.
Step 2, Calculate travel utility. Use the above equations

(17) to (22) to calculate the travel utility of different modes
under the discount or subsidy policy Ũ j,N

i .
Step 3, Look for the iteration direction. According to the

reference-dependent utility calculated in step 2, the additional
flow yni is obtained by the all-all allocation method.

Step 4, XN+1i =

(
1− 1

M

)
XNi +

1
M y

N
i Where the iteration

step is 1
M . Set N = N + 1 and return to step 2.

Step 5, Convergence judgment. If
∣∣∣U j,N+1

i − U
j,N
i

∣∣∣ ≤
10−3 or M ≤ Mmax is satisfied, the algorithm is terminated.
M is the maximum number of iterations.

Based on the genetic algorithm to calculate the optimal
proportion of policy implementation of the upper layer plan-
ning, the calculation steps are as follows:

Step 1, Initialize. Determine crossover probability yc and
mutation probability ye, the number of chromosomes S in
the population and the largest evolutionary algebra Y . At the
same time, set the evolution algebra to 0, i.e. L = 0.
Step 2, The fitness function is determined according to

equation (24), and the form of the fitness function selected
here is F

(
δj
)
= −

(
x jTE

(
gjT
(
X jT
))
+ x jAE

(
gjA
(
X jA
)))

.
Where δj is the decision variable and is actually encoded. It is
possible to obtain a set δj that satisfies the equation (25) and
set L = 1.
Step 3, Fitness matching. The set δj obtained in step 2 is

substituted into themodel with the above, and the correspond-
ing travel demand x jT and x jA is obtained by the lower layer
plan solved by the MSA. This requirement is substituted into
the fitness function and the chromosomes are sorted from
good to bad according to their corresponding fitness. If L =
Y , get the optimal solution δ∗j , otherwise return to step 4.

Step 4, Population update. The next round of populations
is updated based on the elite model and the betting round
selection model.

TABLE 4. Parameters in case.

Step 5, Cross. The updated chromosomes are re-randomly
assigned to the S

2 pair. Suppose there are pairs of chromo-
somes yv1 and yv2, and there is any random number κ between
[0, 1]. If the condition ismet κ < pc, the rules of equation (31)
are cross-operated for yv1 and yv2, otherwise, no intersection
is performed. Where ττ ∈ [0, 1] represents the degree of
intersection between chromosomes.{

y′v1 = τyv1 + (1− τ) yv2
y′v2 = τyv2 + (1− τ) yv1

(31)

Step 6, Variation. Same as the rule of the intersection, if
the condition κ < pe is satisfied, it will be mutated according
to rule yv = yv + e · K , otherwise it will not be mutated.
While e represents a small positive number and K represents
a random disturbance term. However, it should be noted that
each mutation operation must ensure that it is a feasible
solution, otherwise, it needs to be re-mutated.

Step 7, Go back to step 3.

IV. CASE STUDY
In this subsection, an example is provided to illustrate the
properties of the proposed model and its applications. Con-
sidering the combination of risk aversion and loss avoidance,
the trends of the total system cost, bus travel, optimal pro-
portion, and travel utility of the two policies are compared.
The relevant parameters in case are shown in Table 4 [22],
[23], [37], [45]. In the following analysis, unless specifically
stated otherwise, the input data are identical to those of the
base case.
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FIGURE 1. The number of travelers considered one of the attributes in
RDT.

A. THE IMPACT ON BUS TRAVEL
We assume a fixed bus fare proportion (δj = 0.3) and analyze
the changes in the number of bus travel. FIGURE 1. indicates
the changes in bus travel only considering one of the attributes
in RDT [23], [45]. The increase in the number of bus travel
as the risk increases is due to the traveler’s pursuit of risk
in Figure 1-a. However, in Figure 1-b, the decrease in the
number of bus travel as the loss increases is due to the fact that
travelers treat ‘losses’ more sensitively than ‘gains’. It can be
seen that if we only consider one of the attributes in RDT,
it will lead to an increase or decrease in the single trend of bus
travel. Furthermore, the agglomeration or dispersion of bus
travel is also generated. In order to avoid this phenomenon,
we need to consider both attributes at the same time. FIGURE
2. shows the changes in the number of bus travel considered
risk aversion and loss avoidance. The number of travelers
decreases first and then increases. The risk aversion range is
between 0 and 0.45, and the number of travelers will continue
to decrease affected by the increase in loss avoidance. The
risk aversion range is between 0.45 and 1, and the number
of travelers will continue to increase affected by the increase
in loss avoidance. While the number of travelers under the
discount policy (Figure 2-a) is lower than the number of trav-
elers under the subsidy policy (Figure 2-b). This is because
the congestion factor in the bus and both the two attributes are
considered in the model. Travelers are more willing to accept
the form of subsidy policy.

FIGURE 2. The number of travelers varies under different policies.

B. THE IMPACT ON TOTAL SYSTEM COST
The total system cost can also reflect the effectiveness of
the policy from the perspective of cost. If there is the same
bus travel, then we can conclude that the lower the total
system cost, the better the policy. The total system cost
changes the same as the number of bus travel in FIGURE
1. FIGURE 3 shows that the total cost of the system tends
to decrease first and then increase. This is because when the
risk aversion is relatively low, the ‘gain’ of the traveler is
much higher than the ‘loss’, which also reveals the cause
of Figure 3-a. Although there is a ‘loss’ within the accept-
able range for travelers, the total system cost will increase.
However, increasing risks will increase the ‘loss’ of travelers,
and travelers’ self-interest will lead to a decrease in travel,
resulting in a reduction in the total cost of the system (see
Figure 3-b). The risk aversion is in the interval 0-0.6, and the
total system cost of the discount policy (Figure 4-a) is faster
than the total system cost of the subsidy policy (Figure 4-b).
However, when the risk aversion factor is in the interval 0.6-1,
the situation is reversed. Through Figure 4, we can easily
find out that when the bus fare proportion is certain, the total
cost of the subsidy policy is lower than the discount policy.
Furthermore, the total system cost considering two attributes
is lower than considering one attribute by comparing Figures
3 and Figures 4. The risk aversion effectively avoids the
occurrence of ‘high losses’ for travelers, while the loss avoid-
ance controls the possibility of ‘high gains’. As the factors of
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FIGURE 3. The total system cost considered one of the attributes in RDT.

travel decisions increase, the total system cost will become
smaller. So, the subsidy policy can reduce the total cost of
the system and reduce some unnecessary travel.

C. THE IMPACT ON OPTIMAL BUS FARE PROPORTIONS
If we take the number of bus travel is the same, we can
discover the disciplines which considered two attributes.
Through the observation of FIGURE 5., it can be easily seen
that as the risk continues to increase, the optimal bus fare
proportionwill first decrease and then increase.When the risk
is determined, the optimal bus fare proportion also shows a
trend of increasing first and then decreasing with the increase
of loss avoidance. In order to achieve the two policies to guide
the same traveler to choose a bus, the discount rate under the
discount policy (Figure 5-a) is higher than the discount rate
under the subsidy policy (Figure 5-b). This is because, under
the discount policy, travelers can only enjoy preferential poli-
cies if they travel, otherwise they will not receive preferential
treatment. However, the subsidy policy is to guide the traveler
to reduce unnecessary travel, so the proportion of incentives
will be lower than the discount policy. It can also be obtained
that the total system cost of the subsidy policy will be lower
than the discount policy when guiding the traveler to select
the same number of bus travel.

D. THE IMPACT ON TRAVEL UTILITIES
How does the travel utility change when the bus fare pro-
portion changes? FIGURE 6. shows the results of different

FIGURE 4. Total system cost varies under different policies.

FIGURE 5. The optimal bus fare proportions vary under different policies.

scenarios after the change in the bus fare proportion under
the two policies. With the increasing proportion of conces-
sions, the travel utility of travelers under the two policies
also showed a trend of increasing first and then decreasing.
In particular, the discount policy is significantly slower than
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FIGURE 6. The bus fare proportions vary on travel utilities under different
policies.

the subsidy policy in the range of 0.5 to 1. The high discount
rate under the discount policy has attracted a large number of
travelers to choose bus travel. Although the fare concessions
are very attractive, the congestion inside the train is hard to
ignore. Another reason for this phenomenon is that a suffi-
ciently high percentage of benefits under the subsidy policy
will reduce unnecessary travel or convert to a car. In short,
the travel effect of travelers under the implementation of the
subsidy policy is always higher than the implementation of
the discount policy.

V. CONCLUSION
The paper attempts to respond to the call for green trans-
portation by examining the mechanism which will motivate
the traveler to choose to travel by buses instead of cars.
In the simple dual-mode selection, we assume that the travel
demand is uncertain, and the traveler has the characteristics of
loss avoidance and reference dependence when choosing the
travel mode. This paper uses the reference dependence theory
to explain the two basic attributes and sets up the model. The
uncertainty of travel costs makes it necessary for travelers to
consider the mean and variance of travel costs. At the same
time, we also consider using the bus fare concession strategy
to guide the traveler to reasonably choose the bus travel,
and establish a bi-level programming model to optimize the
bus fare proportions. The upper-level planning is aimed at
minimizing the average total system cost, and the lower-level
planning is the transportation mode selection model, which
is solved by a heuristic algorithm. By comparing the effects
of travel modes and total travel costs under different policies,

the traveler is considering one attribute and considering two
attributes. The results of the study show that the subsidy
policy is more favorable than the discount policy to guide bus
travel by analyzing the number of bus trips affected by two
attributes. Similarly, the total social cost will also decrease.
While the paper highlights that the subsidy policy plays an
important role in guiding the traveler to choose to travel
by bus. In order to better illustrate this conclusion, we also
analyzed the changes in the optimal fare proportions and
travel utilities in considering the impact of two attributes.
The model is indispensable for the implementation of future
traffic demand management strategies.

In this paper, we clearly know that subsidy policies are of
great significance in bus travel. Then, in future research, we
will study its impact on urban structure, social welfare, and
other urban economies.

APPEDIXES
APPENDIX A
DERIVATION OF MEAN AND VARIANCE
The calculation of the mean and variance of equation (1) is as
follows.
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In the equation (A-2), there is a mean calculation of nth
power, and the calculation process based on the nth power of
the normal distribution is as follows.

E
(
X2
T

)
= x2T + (cvT · xT )

2 (A-3)

E
(
X3
T

)
= x3T + 3xT (cvT · xT )2 (A-4)

E
(
X4
T

)
= x4T + 6x2T (cvT · xT )

2
+ 3 (cvT · xT )4 (A-5)

Substituting the equations (A-3) to (A-5) into the equation
(A-2), and simplification can be obtained.

Var (CT (XT )) = (cvT × xT )2
(
4ax2T + 2a2 (cvT × xT )2

+ 4abxT + b2
)

(A-6)

Substituting the equation (A-1) into the equation (3), and
finishing the simplification, the equation (8) is obtained. Sub-
stituting the equation (A-6) into the equation (4), and sorting
out the form of the equation (9).
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The calculation of the mean and variance TA (XA) is as
follows.

Substituting the equations (A-7) and (A-8), as shown at the
top of this page, into the equations (6) and (7), respectively,
and sorting out the forms of the equations (10) and (11).

APPENDIX B
TABLE 3
See the Table 3.
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