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ABSTRACT This study presents an automatic sleep-stage classification system based on utilizing com-
pressive sensing (CS) for data reduction. The amount of electroencephalogram (EEG) signal data required
for sleep-stage classification can be significantly reduced by applying CS at the cost of distortion in the
reconstructed EEG signal. A neural network trained on features extracted from the reconstructed EEG
signal was implemented as a classifier to avoid compromising the accuracy of classification in the presence
of distortion in the reconstructed EEG signal. A radial basis function (RBF) neural network that uses a
simple Manhattan distance function instead of complicated computation, such as vector multiplication matrix
(VMM), was selected to reduce the hardware complexity. A classification method that utilizes information
from the previous sleep stage based on the unique nature of human sleep was also presented and implemented
on the proposed RBF classifier for further improvement of the classification accuracy. The classification
system has been evaluated using EEG data from eight subjects in the Cyclic Alternating Pattern (CAP) sleep
dataset. The measurement results showed that the classification system achieved high classification accuracy
comparable to the previously reported sleep-stage classifiers that do not utilize signal compression.

INDEX TERMS Compressive sensing, electroencephalogram, neural networks, radial basis function, sleep-

stage classification.

I. INTRODUCTION

Presently, many people are suffering from various kinds of
sleep disturbances attributed to mental stress, insomnia, and
extreme work. The diagnosis and treatment of sleep distur-
bance require measurement of sleep stages [1], [2]. In gen-
eral, polysomnography (PSG) is considered the gold standard
for the classification of sleep stages. PSG is a subjective
and time-consuming process because it is performed man-
ually by experts [3], [4]. Recently, various automatic sleep-
stage classification (ASSC) systems have been reported to
address the subjectivity and time constraints of PSG [5]-[18].
However, ASSC systems need to acquire and process a
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significant amount of sleep data, including electroencephalo-
grams (EEGs), electrooculograms (EOGs), and electromyo-
grams (EMGs). In designing an ASSC system, the acquired
data size needs to be reduced without compromising the
classification accuracy.

Compressive sensing (CS) is an effective method to reduce
the size of the acquired data because the original signals can
be reconstructed from fewer samples than the Nyquist-rate
samples by applying CS [19]-[22]. Bio-signals such as ECGs
and EOGs, which are known as sparse signals, have been
successfully reconstructed by CS [23], [24]. However, CS
cannot be directly applied to ASSC systems, which mostly
process EEG signals because of the significant difference
between the original and reconstructed EEG signals owing
to the lack of sparsity [25]-[27].
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FIGURE 1. Block diagram of CS-based sleep-stage classification system.
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FIGURE 2. Data processing in CS-based sleep-stage classification system.

This paper presents a CS-based automatic sleep-stage clas-
sification system that utilizes a radial basis function (RBF)
neural network. The proposed classification system reduces
the size of the acquired EEG signals through CS and main-
tains the classification accuracy by employing an RBF neu-
ral network trained on features extracted from reconstructed
EEG signals. To further improve the classification accuracy,
a classification method that utilizes information from previ-
ously classified sleep stage is presented and its effectiveness
is demonstrated through measurements.

The classification system was tested on a Cyclic Alter-
nating Pattern (CAP) sleep dataset [28]. The test results
show that the classification system achieved a classification
accuracy comparable to that of the state-of-the-art classi-
fiers [9], [11]-[13], [18], [29], [30] using only 40% of data
in the dataset.

The rest of the paper is organized as follows. The proposed
classification system is presented in Section II. Results are
presented in Section III, and Discussion and Conclusions are
presented in Section I'V.

Il. PROPOSED CLASSIFICATION SYSTEM

Fig. 1 shows the overall block diagram of the proposed
CS-based automatic sleep-stage classification system. The
system consists of two units: bio-signal acquisition and
ASSC. A CS encoding block is included in the bio-signal
acquisition unit. Depending on the compression ratio, this
block allows reduction of EEG data transmitted to the ASSC
unit. A simplified classification process implemented in this
study is depicted in Fig. 2. The process involved the fol-
lowing steps. First, the CS encoding was performed on
selected subjects from the sleep dataset. Given that CS per-
formed signal acquisition and compression simultaneously,
it reduced the number of the bio-signals transmitted from
the bio-signal acquisition unit to the ASSC for classifica-
tion. Next, the ASSC reconstructed the compressed bio-
signals and extracted the energy features of the reconstructed
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FIGURE 3. Electrode placements in ten to twenty systems for five EEG
signals selected from the insomnia dataset.

bio-signals. Finally, the neural network was used for the
sleep-stage classification of the subjects.

A. SLEEP DATASET AND DATA PREPARATION

The CAP sleep dataset [28], which includes sleep data from
people with and without diseases such as bruxism, insomnia,
and narcolepsy was used to evaluate the proposed classifica-
tion method. The data in the dataset, including bio-signals
such as EEGs, EOGs, and EMGs, were divided into 30-s
epochs. Each epoch was directly sampled from the dataset
without any preprocessing and labeled as one of the seven
stages (W, S1, S2, S3, S4, REM, and MT) based on the
Rechtschaffen and Kales (R&K) rules.

The network for classification was trained and evaluated
using data obtained from eight insomnia subjects, whose ages
ranged from 47 to 82. Half of the subjects were male, and the
other half were female. As shown in Fig. 3, data captured by
five bipolar EEG channels (Fp2-F4, F4-C4, C4-P4, P4-02,
and C4-A1) were selected because those channels were used
for all subjects. Seven sleep stages were sorted into five stages
based on the American Academy of Sleep Medicine (AASM)
rules. MT was excluded and S3 and S4 were merged to form
slow wave sleep (SWS). Fig. 4 shows a hypnogram of the
sleep cycle for the five sleep stages.

B. COMPRESSIVE SENSING: ENCODING AND DECODING
By applying CS, a sparse signal can be reconstructed from
fewer signal samples than required by the Shannon-Nyquist
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TABLE 1. Extracted time and frequency features.

Type

Features

Time domain

Mean, Minimum, Maximum, Variation, Standard deviation, Root mean square, Kurtosis, Skewness, Percentiles (75%)

Frequency domain

Slow delta (0.5-2Hz), Theta (3—7Hz), Alpha (7.5-12Hz), Betal (12-20Hz), Beta2 (20-50Hz), Sleep spindle (11.5-15Hz)

Wake(W) Cycle1 Cycle2 Cycle3 Cycle4 Cycle5

REM

Stage1(s1)

L[
[ P

Stage2(S2)

leep stages

“ Stage3(s3)

Stage4(S4)
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FIGURE 4. Hypnogram of sleep cycle for five stages.
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FIGURE 5. Compressive sensing encoding and decoding process.

sampling theorem. Most nonsparse signals are known to
be transformed into sparse signals through various signal
transformations, such as discrete wavelet transform (DWT)
and discrete cosine transform (DCT). Therefore, CS can
be applied to nonsparse signals provided that the spar-
sity of the transformed signal is guaranteed. However,
owing to the lack of sparsity, a noticeable difference is
reported between the original and reconstructed EEG sig-
nals [25], [27]. Although the reconstructed EEG signals
cannot be directly used for signal processing, this study
found that the erroneous reconstructed signal can be used
for neural networks without compromising the accuracy
of classification. This will be explained in the following
subsections.

The CS encoding and decoding process is illustrated
in Fig. 5. If the sizes of the input sample (X') and measurement
matrix (R) are N and M x N, respectively, the encoded output
(Y) can be obtained as follows:

Y=R-X (1

In general, the size of ¥ (M) is smaller than that of the
input (N). The compression ratio is determined as M/N. The
reconstruction of Y can be performed using a reconstruction

VOLUME 7, 2019

algorithm, such as orthogonal matching pursuit (OMP), L-1
norm minimization, or convex algorithms.

In this study, five-channel EEG signals (E1, E, E3, E4, Es)
were processed by CS. Each EEG was divided into L sube-
pochs, which were sampled at 256 Hz for 30 s. Fig. 6 illus-
trates the CS encoding process of one subepoch. First, a 1 x
7680 (30 x 256) subepoch (Xj) was transformed to an N x
7680/N matrix. Then, an M x N random measurement matrix
(R) with binary entries (either O or 1) for reduction of com-
putational load was determined. Finally, the encoded output
(Yx) was obtained by multiplying R with Xj. The size of Y}
becomes M x 7680/N. Given that input X; with size N x
7680/N was encoded to output Y; with size M x 7680/N,
the compression ratio (CR) was determined as M/N. In this
study, M and N were set to 51 and 128, respectively. Accord-
ingly, CR was equal to 0.39.

C. FEATURE EXTRACTION AND SELECTION

Time and frequency domain features have been generally
used for sleep-stage classification [31], [32]. Table 1 sum-
marizes the time and frequency features that were initially
extracted for this study. In the time domain, statistic fea-
tures such as mean, minimum, maximum, variance, standard
deviation, kurtosis, skewness, and percentile were extracted
from each channel. In the frequency domain, the spec-
tral power density (SPD) of each frequency band, such
as delta (0.5-2 Hz), theta (3—7 Hz), alpha (7.5-12 Hz),
betal (12-20 Hz), beta2 (20-50 Hz), and sleep spin-
dle (11.5-15 Hz), was extracted using the Welch spectral
estimation [6].

After feature extraction, the effective features for classi-
fication were identified and selected to reduce the compu-
tational burden of the classifier [33]. Sequential backward
selection (SBS) [32] was used to select the features through
network simulations. Based on simulation results for sleep-
stage classification, 30 most effective features that are abso-
lute and relative power spectrums for each frequency band
were selected and used for classification.

D. CLASSIFICATION METHODOLOGY

Various types of neural networks, such as the Bayesian, hid-
den Markov model, and deep convolution, have been used
for sleep-stage classification owing to their high classification
accuracies. Among them, the RBF neural network [34], [35]
was selected for this study because its hardware implemen-
tation is relatively simpler than that of other neural net-
works. Unlike most neural networks that require complicated
computation, such as vector matrix multiplication (VMM),
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FIGURE 7. Example of simplified learning procedure of RBF neural network.

the Manhattan distance function requires only addition [36]. The sleep-stage classification system was implemented
Hence, a significantly simplified hardware was used to deter- with CM1K, which is similar to a field programmable gate
mine a firing neuron in the RBF neural network. array (FPGA) platform but only dedicated to the realization of
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the RBF neural network [37]. After CS encoding and decod-
ing of EEG signals with a selected CR, one subepoch EEG
was processed into 30 features through feature extraction and
selection. The 30 features became an input vector for the RBF
neural network, and supervised training of the network was
performed using the classified sleep dataset.

The training of the RBF classifier can be explained using
the example shown in Fig. 7. For simplicity, only two sleep
stages (Wake and REM) are classified in the example. First,
input vectors consisting of the 30 selected features were
sequentially applied to the classifier and hidden neurons,
which have an initial decision field, were generated. It is
assumed that only 3 hidden neurons (denoted as 1, 2, and 3)
were generated by the first 3 input vectors, and the 4th and
5th input vectors did not generate hidden neurons because
their hidden neurons were placed inside the existing decision
fields. When the 6th input vector was used to train the classi-
fier for the other stage (REM), a hidden neuron was generated
with the decision field (colored in red). A case existed where
the decision fields for Wake and REM overlapped. In the
example, the decision field for REM generated by the 7th
input vector was overlapped by the decision fields for the
3rd and 4th input vectors. In this case, connections between
the input vectors and the hidden neuron were reformed by
disconnecting the 3rd and 4th input vectors and reconnecting
the 7th input vector to the corresponding neuron. The training
process proceeded until the final decision fields and connec-
tions were all determined by iterating the above process.

The training detail of each training iteration is illustrated
in the flow chart shown in Fig. 8. Each input vector consists
of 30 input neurons, clustering distance (1;), and sleep stage
information. The value of A; determines the size of the deci-
sion field of a hidden neuron, and a diamond-shaped decision
field is formed by using a Manhattan distance function for the
sake of hardware simplicity. Initially, the first input vector
generates a new hidden neuron and, starting from the second
input vector, Manhattan distances (D;) between the input vec-
tor and hidden neurons are calculated and compared with A;.
When Dj is smaller than A; and the sleep stage from which the
input vector is extracted is different from that of the hidden
neuron, a new hidden neuron is generated, and the current
hidden neuron is excluded from the hidden layer. On the
contrary, a new hidden neuron is not generated when the input
vector and hidden neuron belong to the same category of sleep
stages. If D; is equal to A; and the input vector and hidden
neuron do not belong to the same sleep stage, a new hidden
neuron is generated and }; is adjusted to be a smaller value.
If D; is larger than A;, a new hidden neuron is generated
and the sleep stage for the new hidden neuron is specified
as the sleep stage to which the input vector belongs. During
network training, the number of hidden neurons continuously
increased before becoming saturated, at which point the train-
ing process stopped. Fig. 9 shows a network of the classifier
with its decision fields.

Notice that decision fields can be modified by being
excluded and later reassigned as new ones. The centroids of

VOLUME 7, 2019

Initializing
(Input neuron: 30,output neuron:5,
clustering distance (A) range)

|

4’| Training i-th input vector |

Compare the Manhattan
distance(D)) between
input vector and hidden neurons

Compare Dy
with A

Dj> N Dj <k
Dj = Ai

* An input vector consists
of 30 input neurons, clustering
distance and sleep stage
information

Input vector
(X1,X2, .. X30, A, sleep stage)

Generate a new hidden
neuron and adjust Ai

Generate a new

hidden neuron Belong to

the same
sleep stage ?

Do not generate

a new hidden hidden neuron
neuron and exclude the

current hidden
neuron

Generate a new

Hidden
neurons

Bad training
: Good training

k

The number of
hidden neurons
saturated ?

FIGURE 8. Flow chart of training process for the classifier.

the decision fields can be adjusted through this process during
training iterations, as shown in Fig. 7. Once the centroids and
sizes of decision fields were determined, the weights between
the output and hidden neurons were calculated by the simple
pseudo-inverse-matrix method [35], [36].

After the network was trained on training datasets, the deci-
sion field was formed. Next, the distance between the input
vector and the center of each decision field was calculated
as per the definition of the Manhattan distance. When the
distance between the input vector and the trained vector was
smaller than the reference distance, the corresponding neuron
was fired and the sleep stage was determined based on the
category of a specific neuron that had the smallest distance
among the firing neurons.

To improve the accuracy of classification without increas-
ing computational complexity, the following distinct feature
of human sleep was exploited. In general, the sleep stage does
not go through abrupt transition, which means that if a subject
just entered the sleep stage, SWS, the subject stayed in SWS
for a certain time and went up or down by one step, i.e., S2.
As shown in Table 2, all subjects experienced abrupt sleep-
stage transition less than 3% of the time duration while sleep-
ing. Therefore, when the classifier calculates the distance
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TABLE 2. Summary of sleep stage with abrupt transition.

Subjectl | Subject2 | Subject3 | Subject4 | Subject5 | Subject6 | Subject7 | Subject8
Number of epochs 1673 1673 1673 1719 1719 1719 1719 1719
Number of epoc;hs with abrupt 25 33 39 29 3] 1 43 25
transition
Abrupt transition rate (%) 1.49 1.97 2.33 1.69 1.80 1.22 2.79 1.45
Abrupt t i o= Number of all epochs x 100(%
rupt fransition rate = Number of epochs with abrupt transition o)
1 epoch of subject1
" b T T T T
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FIGURE 10. Original and reconstructed EEG signal with various CR values.

current neuron does not fire, i.e., it does not belong to any of
the decision fields, it is considered to belong to the same stage
as the previous neuron’s stage. As a result, the classification

between neurons, it selects the next stage based on the current
stage and calculates the distance only between the neurons
belonging to the current and next stages. Furthermore, if a
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TABLE 3. Confusion matrix for the RBF classifier without using the
proposed classification method.

Wake | REM | st | s2 | sws CIZS;_ﬁE;S"“
Wake 5429 43 3 13 1 98.91
REM 53 1407 45 10 0 92.87
S1 26 35 101 69 1 43.53
S2 5 21 74 2803 194 90.51
SWS 0 0 0 181 1182 86.72
Overall classification accuracy (%) : 79.33

TABLE 4. Confusion matrix for the RBF classifier with using the proposed
classification method.

Wake | REM | S1 | s2 | sws Clj‘f;_ﬁf,;so“
Wake 5813 50 19 58 10 97.70
REM 56 1729 43 45 1 92.26
S1 58 47 211 79 2 53.15
S2 36 34 102 | 3511 213 90.12
SWS 0 0 0 179 1318 88.04
Overall classification accuracy (%) : 92.42

accuracy of the classifier improved by almost 13% without
increasing computational complexity.

In this study, the evaluation of the RBF classifier was
performed using the CAP sleep dataset. Datasets of each
subject were divided into 10 groups to apply ten-fold cross-
validation (CV). While one group was used to train the net-
work, the other groups were used as test datasets, and the
evaluation proceeded until all 10 groups changed their roles.
The whole evaluation process was repeated multiple times
with and without CS encoding and decoding of datasets. The
evaluation results were presented in the Section III.

Ill. RESULTS

To evaluate the proposed classification method, which
improves the classification accuracy by utilizing the previous
sleep-stage information, the RBF classifier was tested with
and without applying the proposed method. Tables 3 and 4
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summarize the measurement results without and with using
the proposed method, respectively. The tables show that clas-
sification accuracy improved by approximately 13% with the
classification method.

In this study, a binary measurement matrix [38] and the
OMP reconstruction method [39] were used for CS encoding
and decoding, respectively. Fig. 10 shows the CS encoded
and reconstructed EEG samples of subject 1. The distortion
of the reconstructed signal becomes larger as CR decreases.
To measure the quality of the reconstructed signal, the per-
centage root-mean-square difference (PRD) was calculated
as follows:

I1X — X|12
PRD = ——— x 100 2)
X112

where X and X’ denote original and reconstructed signals,
respectively. According to previous studies [24], [40], the
quality of a reconstructed signal is often categorized based
on PRD values. For example, reconstructed signals whose
PRD values are less than 15, 15-35, 35-50, and greater than
50 can be considered as very good (VG), good (G), not
good (NG), and bad (B), respectively [40]. Fig. 11 shows
a comparison of the PRD of an EEG signal in the dataset
depending on the CR. As the CR becomes smaller beyond 0.4,
the reconstructed signal changes its state from G to B. Fig. 12
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TABLE 5. Confusion matrix for the CS-based RBF classifier with a CR
of 0.4.

Wake | REM | s1 | s2 | sws Clj\szé_ﬁf;;;‘m
Wake 5584 66 257 42 1 93.85
REM 34 1659 106 74 1 88.53
Sl 46 38 297 16 0 74.81
S2 95 234 218 3059 290 78.52
SWS 6 0 5 105 1381 92.25
Overall classification accuracy (%) : 88

TABLE 6. Comparison of the proposed system with previously published
sleep-stage classification systems.

TABLE 7. Comparison of performance parameters for various ASSC
implementations.

Software-based Hafdware—based implementation
Specificati implementation | Without data
pecitications (GPU/CPU) compression or With CS
([81, [18]) CS (This study)
([43], (44D
Energy efficiency Low Medium High
Accuracy High Medium Medium
Cost High Low Low
Flexibility High Low Low
Speed Low High High

Ref. Signal | Stage [Feature| Subject N

Year Type No. | No. Method No. Acc.(%)
EEG + .

2010 Genetic fuzzy

[29] EE(i/?g a1 classifier 4| 846
EEG + . .

2010 Discrete hidden

[12] EF?MGG+ 3 13 Markov model 20 853

2013 Elman recurrent

[11] 1 EEG 3 6 neural classifier 8 872

2016 Complex-valued

[30] I EEG 6 8 neural networks 8 2338

EEG .

2018 Bayesian neural

[13] +fé“1\(/1)§] 3 12 network classifier 184 89.6

2[(1)5; 1 EEG 5 30 HyCLASSS 198 | 85.6

2E)91]9 1 EEG 5 - State-space model - 92.3

CS based
Proposed| 5 EEG 5 30 RBF neural network 8 88

shows the averaged output PRD for all subjects depending on
a CR. Based on network simulations, a CR of 0.4 was selected
for the evaluation of the classifier because even when the
classification accuracy dropped to less than 5% the classifier
still achieved an overall classification accuracy comparable
to those of the previous works [9], [11]-[13], [18], [29], [30].

Unlike bio-signals such as ECG and EOG, which maintain
a small PRD after CS reconstruction, the PRD of an EEG
signal is relatively large owing to the lack of signal spar-
sity. As discussed in the preceding section, the RBF classi-
fier achieved a high classification accuracy through network
training even with a high PRD signal. Tables 4 and 5 present
the measured confusion matrix with and without CS decoding
and encoding of EEG signals. The data in the tables show
that the overall classification accuracy of the RBF classifier
with a CR of 0.4 dropped from 92.42% to 88% only by
approximately 4.42%. This accuracy is comparable to that
of the previously published sleep-stage classifiers that do not
utilize signal compression. Table 6 summarizes the previous
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works and compares their results with the results of this
study.

It is worth discussing that the degradation of the classi-
fication accuracy with CS is mainly caused by misclassifi-
cation of S2. The main reason can be explained as follow.
The distinct features of S2 are low-frequency activities
and sigma oscillation whose frequency band ranges from
11.5 to 15 Hz, which are, respectively, known as sleep spindle
and K-complex [41]. Although low-frequency components
are well reconstructed from the original EEG signals, fre-
quency components generated from the sleep spindle activ-
ity are severely distorted after CS reconstruction, as shown
in Fig. 10. As aresult, S2 is often misclassified as other sleep
stages, which causes degradation of the overall classification
accuracy.

Another noticeable difference between Tables 4 and 5 is an
approximately 20% improvement in S1 classification accu-
racy. This can be partly explained by the fact that relatively
low-frequency featured activities such as theta, slow-eye
movement, and vertex sharp-wave of S1 are well maintained
after CS reconstruction. However, the accuracy of S1 has little
impact on the overall classification accuracy [42], because
the total number of data epochs for S1 is approximately 5-10
times smaller than that of other stages.

IV. DISCUSSION AND CONCLUSION

An ASSC system utilizing CS encoding and decoding
has been presented in this study. In the proposed sys-
tem, the acquired EEG signals are reduced by applying
CS encoding and later reconstructed for classification. The
reconstructed EEG signal was shown to exhibit significant
distortion, which depended on the CR. To avoid compromis-
ing the accuracy of classification in the presence of signal
distortion, a neural network trained on features extracted from
the reconstructed EEG signal was implemented as a classifier.
An RBF neural network, which utilized a simple Manhattan
distance function for firing neurons instead of complicated
computation such as VMM, was used to reduce hardware

VOLUME 7, 2019
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complexity. To improve the classification accuracy further,
a classification method that utilizes information from the
previous sleep stage based on distinct features of human sleep
has been proposed and implemented on the RBF classifier.

The classification system was tested with five-channel
EEG signal data of eight subjects from the CAP sleep
dataset. The measurement results show that the proposed
classification system achieved high classification accuracy
despite having a CR of 0.4, which is comparable to the state-
of-the-art sleep-stage classifiers that do not utilize signal
compression.

Table 7 shows a comparison of the existing ASSC imple-
mentations with that in this study in terms of performance
specifications such as energy efficiency, accuracy, cost, flex-
ibility, and speed. Although software-based implementations
utilizing a graphic processing unit (GPU) or central pro-
cessing unit (CPU) [8], [18] can achieve high classifica-
tion accuracy and flexibility to be adapted to a variety of
applications at the cost of classification speed and energy
efficiency, the FPGA or application-specific integrated circuit
(ASIC) implementations [43], [44] in this study are appro-
priate for high-speed and energy-efficient applications that
require moderate classification accuracy. Furthermore, addi-
tional energy efficiency can be achieved by data compression
used in this study.

The previous studies on CS implementations have mainly
focused on how to increase the reconstruction rate. The
studies on ASSC systems have tried to improve the classi-
fication accuracy by utilizing neural networks without con-
sidering the increased hardware complexity. The proposed
method uses data reduction. Furthermore, the complexity of
the system minimized by applying CS. It was proven that,
instead of using system resources to improve the quality of
reconstructed EEG signals, the classification accuracy can be
maintained by training an RBF network on distorted EEG
signals. The ASSC system can be used for basic science
researches or an early examination of sleep disorder patients.
Further improvement in the accuracy of classification, partic-
ularly for the S2 sleep stage, is required for the clinical use of
the proposed method by experts. Because only the CAP sleep
dataset was used for the evaluation of the ASSC, additional
evaluation by other datasets might be helpful for improving
the reliability of the test results [45], [46].

The hardware implementation of the ASSC system will
need to be optimized so that system can be embedded in
a handheld portable device. The feature extraction method
needs to be further simplified, and the number of channels
for EEG acquisition needs to be minimized without com-
promising the accuracy of classification [47]-[50]. Various
feature-extraction methods together with CS reconstruction
algorithms should be studied, including developing new ones,
for this purpose.
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