
Received December 1, 2019, accepted December 17, 2019, date of publication December 20, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961174

An Efficient Hardware Implementation of
Reinforcement Learning: The Q-Learning
Algorithm
SERGIO SPANÒ 1, GIAN CARLO CARDARILLI1, (Member, IEEE), LUCA DI NUNZIO 1,
ROCCO FAZZOLARI 1, DANIELE GIARDINO1, MARCO MATTA 1,
ALBERTO NANNARELLI 2, (Senior Member, IEEE),
AND MARCO RE 1, (Member, IEEE)
1Department of Electronic Engineering, University of Rome ‘‘Tor Vergata,’’ 00133 Rome, Italy
2Department of Applied Mathematics and Computer Science, Danmarks Tekniske Universitet, 2800 Kgs. Lyngby, Denmark

Corresponding author: Sergio Spanò (spano@ing.uniroma2.it)

ABSTRACT In this paper we propose an efficient hardware architecture that implements the Q-Learning
algorithm, suitable for real-time applications. Its main features are low-power, high throughput and
limited hardware resources. We also propose a technique based on approximated multipliers to reduce
the hardware complexity of the algorithm. We implemented the design on a Xilinx Zynq Ultrascale+
MPSoC ZCU106 Evaluation Kit. The implementation results are evaluated in terms of hardware resources,
throughput and power consumption. The architecture is compared to the state of the art of Q-Learning
hardware accelerators presented in the literature obtaining better results in speed, power and hardware
resources. Experiments using different sizes for the Q-Matrix and different wordlengths for the fixed point
arithmetic are presented. With a Q-Matrix of size 8 × 4 (8 bit data) we achieved a throughput of 222 MSPS
(Mega Samples Per Second) and a dynamic power consumption of 37 mW, while with a Q-Matrix of size
256× 16 (32 bit data) we achieved a throughput of 93 MSPS and a power consumption 611 mW. Due to the
small amount of hardware resources required by the accelerator, our system is suitable for multi-agent IoT
applications. Moreover, the architecture can be used to implement the SARSA (State-Action-Reward-State-
Action) Reinforcement Learning algorithm with minor modifications.

INDEX TERMS Artificial intelligence, hardware accelerator, machine learning, Q-learning, reinforcement
learning, SARSA, FPGA, ASIC, IoT, multi-agent.

I. INTRODUCTION
Reinforcement Learning (RL) is a Machine Learning (ML)
approach used to train an entity, called agent, to accomplish
a certain task [1]. Unlike the classic supervised and unsu-
pervised ML techniques [2], RL does not require two sep-
arated training and inference phases being based on a trial &
error approach. This concept is very close to the human
learning.

As depicted in Fig. 1, the agent ‘‘lives’’ in an environment
where it performs some actions. These actions may affect
the environment which is time-variant and can be modelled
as a Markovian Decision Process (MDP) [1]. An interpreter
observes the scenario returning to the agent the state of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed M. Elmisery .

environment and a reward. The reward (or reinforcement) is
a quality figure for the last action performed by the agent and
it is represented as a positive or negative number. Through
this iterative process, the agent learns an optimal action-
selection policy to accomplish its task. This policy indicates
which is the best action the agent should perform when the
environment is in a certain state. Eventually, the interpreter
may be integrated into the agent that becomes self-critic.

Thanks to this approach, RL represents a very power-
ful tool to solve problems where the operating scenario is
unknown or changes over time.

Recently, the applications of RL have become increasingly
popular in various fields such as robotics [3]–[5], Internet of
Things (IoT) [6], powermanagement [7], financial trading [8]
and telecommunications [9], [10]. Another research area in
RL is multi-agent and swarm systems [11]–[14].

186340 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8230-7211
https://orcid.org/0000-0002-4312-7939
https://orcid.org/0000-0002-7383-2663
https://orcid.org/0000-0002-2415-1386
https://orcid.org/0000-0002-8303-6329
https://orcid.org/0000-0001-9046-1318
https://orcid.org/0000-0003-1077-4790

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

FIGURE 1. Reinforcement learning framework.

This kind of applications require powerful computing plat-
forms able to process very large amount of data as fast as pos-
sible and with limited power consumption. For these reasons,
software-based implementations performance is now the
main limitation in further development of such systems and
the use of hardware accelerators based on FPGAs or ASICs
can represent an efficient solution for implementing
RL algorithms.

The main contribution of this work is a flexible and effi-
cient hardware accelerator for the Q-Learning algorithm. The
system is not constrained to any specific application, RL pol-
icy or environment. Moreover, for IoT target devices, a low-
power version of the architecture based on approximated
multipliers is presented.

The paper is organized as follows.
• Section I is a brief survey on Reinforcement Learn-
ing and its applications. Q-Learning algorithm, and the
related work in the literature are presented.

• Section II describes the proposed hardware architecture,
detailing its functional blocks. A technique to reduce the
hardware complexity of the arithmetic operations is also
proposed.

• Section III presents the implementation results and the
comparisons with the state of the art.

• In sec. IV final considerations and future developments
are given.

• Appendix shows how the architecture can be exploited
to implement the SARSA (State-Action-Reward-State-
Action) RL algorithm [15] with minor modifications.

A. Q-LEARNING ALGORITHM
Q-Learning [16] is one of the most known and employed RL
algorithms [17] and belongs to the class of off-policymethods
since its convergence is guaranteed for any agent’s policy.
It is based on the concept of Quality Matrix, also known as
Q-Matrix. The size of this matrix is N × Z where N is the
number of the possible agent’s states to sense the environment
and Z is the number of possible actions that the agent can per-
form. This means that Q-Learning operates in a discrete state-
action space S × A. Considering a row of the Q-Matrix that
represents a particular state, the best action to be performed
is selected by computing the maximum value in the row.

At the beginning of the training process, the Q-Matrix is
initialized with random or zero values, and it is updated by
using (1).

Qnew(st , at) = (1− α)Q(st , at)+ α
(
rt+γ max

a
Q(st+1, a)

)
(1)

The variables in (1) refer to:
• st and st+1: current and next state of the environment.
• at and at+1: current and next action chosen by the agent
(according to its policy).

• γ : discount factor, γ ∈ [0, 1]. It defines how much the
agent has to take into account long-run rewards instead
of immediate ones.

• α: learning rate, α ∈ [0, 1]. It determines how much the
newest piece of knowledge has to replace the older one.

• rt : current reward value.
In [16] it is proved that the knowledge of the Q-Matrix

suffices to extract the optimal action-selection policy for a
RL agent.

B. RELATED WORK
Despite the growing interest for RL and the need for systems
capable to process large amount of data in very short time, just
a few works can be found in the literature about the hardware
implementation of RL algorithms. Moreover, the compari-
son is hard due to the lack of implementation details and
homogeneous benchmarks. In this section we show the most
prominent researches in this field.

In 2005, Hwang et al. [18] proposed a hardware accel-
erator for the ‘‘Flexible Adaptable Size Topology’’ (FAST)
algorithm [19]. The system was implemented on a Xilinx
XCV800 FPGA and was validated using the cart-pole prob-
lem [20]. The architecture is well described but few details
about the implementation are given.

In 2007, Shao et al. [21] proposed a smart power man-
agement application for embedded systems based on the
SARSA algorithm [15]. The systems was implemented on
a Xilinx Spartan-II FPGA. Although the authors proved its
functionality, neither the architecture nor the implementation
details are given.

One of the most relevant work in the field is [22] by
Gankidi et al. that, in 2017, proposed a RL accerelerator for
space rovers. The authors implemented the Deep Q-Learning
technique [23] on a Xilinx Virtex-7 FPGA. They obtained a
throughput of 2.34 MSPS (Mega Samples Per Second) for a
4 × 2 state-action space.
Also in 2017, Su et al. [24] proposed another Deep

Q-Learning hardware implementation based on an Intel
Arria-10 FPGA. The architecture was compared to a
Intel i7-930 CPU and a Nvidia GTX-760 GPU implemen-
tation. They achieved a throughput of 25 KSPS with 32 bit
fixed point representation for a 27 × 5 state-action space.

In 2018, Shao et al. [21] proposed a hardware accelerator
for robotic applications based on ‘‘Trust Region Policy Opti-
mization’’ (TRPO) [25]. The architecture was implemented

VOLUME 7, 2019 186341

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

on different devices: FPGA (Intel Stratix-V), CPU (Intel
i7-5930K) and GPU (Nvidia Tesla-C2070). With respect to
the CPU, the authors obtained a speed-up factor of 4.14×
and 19.29× for the GPU and the FPGA implementation,
respectively.

The most recent works (published in 2019) include
Cho et al. [26]. They propose a hardware accelerator
for the ‘‘Asynchronous Advantage Actor-Critic’’ (AC3)
algorithm [27], describing an implementation based on a
Xilinx VCU1525 FPGA. The system was validated using
6 Atari-2600 videogames.

In the work by Li et al. [28] another Deep Q-Learning
network was implemented on a Digilent Pynq development
board for the cart-pole problem. The system is meant only for
inference mode and, consequently, cannot be used for real-
time learning.

One of the most advanced hardware accelerator for
Q-Learning was proposed by Da Silva et al. [29]. The
authors presented an implementation based on a Xilinx
Virtex-6 FPGA.Moreover, they performed a fixed-point anal-
ysis to confirm the convergence of the algorithm. Different
comparisons with state of the art implementations weremade.
Since this is one of of best performing Q-Learning accelera-
tors at today, we provide an extensive comparison with our
architecture (sec. III-B).

II. PROPOSED ARCHITECTURE
The Q-Learning agent shown in Fig. 2 is composed by two
main blocks: the Policy Generator (PG) and the Q-Learning
accelerator.

FIGURE 2. High level harchitecture of the Q-Learning agent.

The agent receives the state st+1 and the reward rt+1
from the observer, while the next action is generated by the
PG according to the values of the Q-Matrix stored into the
Q-Learning accelerator.

Note that st , at and rt are obtained by delaying st+1,
at+1 and rt+1 by means of registers. st and at represent the
indices of the rows and columns of theQ-Matrix, respectively.
These delays do not affect the convergence of the Q-Learning
algorithm, as proved in [30].

With the aim to design a general purpose hardware accel-
erator, we do not provide a particular implementation for the
PG since it is application-defined. The PG has been included

only in the experiments for the comparison with the state of
the art (sec. III-B).

Figure 3 shows the Q-Learning accelerator.
The Q-Matrix is stored into Z Dual-Port RAMs, named

Action RAMs. Consequently, we have one memory block per
action. Each RAM contains an entire column of the Q-Matrix
and the number of memory locations corresponds to the num-
ber of states N . The read address is the next state st+1, while
the write address is the current state st . The enable signals
for the Action RAMs, generated by a decoder driven by the
current action at , select the valueQ(st , at) to be updated. The
Action RAMs outputs correspond to a row of the Q-Matrix
Q(st+1,A).
The signal Q(st , at) is obtained by delaying the output

of the memory blocks and then selecting the Action RAM
through a multiplexer driven by at . A MAX block fed by the
output of the Action RAMs generates max

a
Q(st+1,A).

The Q-Updater (Q-Upd) block implements the Q-Matrix
update equation (1) generating Qnew(st , at) to be stored into
the corresponding Action RAM.

The accelerator can be also used for Deep Q-Learning [23]
applications if the Action RAMs are replaced with Neural
Network-based approximators.

A. MAX BLOCK
An extensive study about this block has been proposed
in [30]. In the paper, the authors proved that the propaga-
tion delay of this block is the main limitation for the speed
of Q-Learning accelerators when a large number of actions
is required. Consequently, they propose an implementation
based on a tree of binary comparators (M -stages) that is a
good trade-off in area and speed [31].

This architecture is employed by the Q-Learning acceler-
ators presented in [22], [29] and has also been used in our
architecture (Fig. 4).
Moreover, in [30] it is proved that, when pipelining is used

to speed up the MAX block, the latency does not affect the
convergence of the Q-Learning algorithm. This means that,
when an application requires a very high throughput, it is
possible to use pipelining.

B. Q-UPDATER BLOCK
Equation (1) can be rearranged as

Qnew(st , at)=Q(st , at)+α
(
rt+γ max

a
Q(st+1, a)−Q(st , at)

)
(2)

to obtain an efficient implementation. Equation (2) is com-
puted by using 2 multipliers, while (1) requires 3 multipliers.

The Q-Updater block in Fig. 5 is used to compute (2),
generating Qnew(st , at).

The critical path consists in 2 multipliers and 2 adders.
In the next section (II-B1) a method to reduce the hardware
complexity for the multipliers is illustrated.

186342 VOLUME 7, 2019

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

FIGURE 3. Q-Learning accelerator architecture.

FIGURE 4. MAX block tree architecture for Z = 6.

FIGURE 5. Q-matrix updater block architecture.

1) APPROXIMATED MULTIPLIERS
Themain speed limitation in the updater block is the propaga-
tion delay of the multipliers. Using a similar approach to [32],
it is possible to replace the full multipliers shown in Fig. 5
with approximated multipliers based on barrel shifters [33].
In this way, we are approximating α and γ with a number
equal to their nearest power of two (single shifter), or to the
nearest sum of powers of two (two or more shifters). Due to
the fact that α, γ ∈ [0, 1], only right shifts have been used.

Considering a number x ≤ 1, its binary representation
using M bits for the fractional part is:

x = x020 + x−12−1 + x−22−2 + . . .+ x−M2−M (3)

where x0, . . . , x−M are the binary digits. Let i, j, k be the
positions of the first, second and third ‘1’ in the binary
representation of x starting from the most significant bit.
Moreover, we define < x >OPn the approximation of x
with the n most significant powers of two in the M + 1 bits
representation. That is

< x >OP1 = 2−i

< x >OP2 = 2−i + 2−j

< x >OP3 = 2−i + 2−j + 2−k (4)

for the approximation with one, two and three powers of two.
The concept can be extended to more power of two terms.

For example, x = 0.101101(2) = 0.703125 can be approx-
imated as:

< 0.101101(2) >OP1 = 2−1 = 0.5

< 0.101101(2) >OP2 = 2−1 + 2−3 = 0.625

< 0.101101(2) >OP3 = 2−1 + 2−3 + 2−4 = 0.6875. (5)

Some examples of the approximated values for different
powers of two are presented in Fig. 6 (x ≤ 1).
Consequently, the product z = x · y can be approximated

as:

< z >OP1 = 2−i · y

< z >OP2 = 2−i · y+ 2−j · y

< z >OP3 = 2−i · y+ 2−j · y+ ·2−k · y. (6)

The approximated multipliers are implemented by
one or more barrel shifters in the Q-Updater block, depending
on the approximation, as shown in Fig. 7 and 8.

The position of the leading ones i and j in the repre-
sentation of α and γ can be given as input if constant
for the whole computation, or determined by Leading-One-
Detectors (LOD) [34] if the values are modified at run time.

VOLUME 7, 2019 186343

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

FIGURE 6. Approximated values for a 6-bit number using M = 5 bits for
the fractional part. (a) 1 power of two, (b) 2 powers of two, (c) 3 powers
of two.

FIGURE 7. Q-Matrix updater block with multipliers implemented by a
single barrel shifter.

FIGURE 8. Q-Matrix updater block with multipliers implemented by two
barrel shifters.

The error introduced by this approximation does not effect
the convergence of the Q-Learning algorithm [16] and, as a
side effect, we obtain a shorter critical path and lower power
consumption (sec. III-A). Moreover, we tested the system in
different applications which proved to be almost insensitive
to the approximation error since the convergence conditions
of Q-Learning are still satisfied (α,γ ≤ 1).

By using approximated multipliers, we avoid to use
FPGAs with DSP blocks and we can implement the accel-
erator in small ultra low power FPGAs suitable for IoT
applications [35], [36].

III. IMPLEMENTATION EXPERIMENTS
In order to validate the proposed architecture, we imple-
mented different versions of the Q-Learning accelerator.

In the experiments, we used a Xilinx Zynq UltraScale+
MPSoC ZCU106 Evaluation Kit featuring the XCZU7EV-
2FFVC1156 FPGA. All the results in this section were
obtained using the Vivado 2019.1 EDA tool with default
implementation parameters and setting a timing constraint
of 2 ns. The system was coded in VHDL.

The design exploration was implemented for the following
range of parameters:
• Number of bits for the Q-Matrix values : 8, 16 and 32 bit.
• Number of states N : 8, 16, 32, 64, 128 and 256.
• Number of actions Z : 4, 8 and 16.

We focused the implementation analysis on the following
resources [37]:
• Look Up Tables (LUT);
• Look Up Tables used as RAM (LUTRAM);
• Flip-Flops (FF);
• Digital Signal Processing slices (DSP);

For every resource of the device, we also provide the percent
usage respect to the total available.

The performances were measured in terms of maximum
clock frequency (CLK) and dynamic power consumption
(PWR). The latter was evaluated using Vivado after the
Place&Route considering the maximum clock frequency and
a worst case scenario with a 0.5 activity factor on the circuit
nodes [38].

All the implementation examples in this section do not
make use of pipelining in the MAX block (sec. II-A). Unless
otherwise stated, no approximated multipliers are used.

Tables 1 to 9 show the implementation results for different
number of states, actions and data-width for the Q-Matrix
values (tables header color: blue 8-bit, red 16-bit, green 32-bit
data-widths).

TABLE 1. Implementation results for Q-Matrices with 8 bit data and Z = 4.

The first consideration is related to the number of DSPs.
Since only one Q-Matrix element is updated per clock cycle,
the only parameter that affects the number of required DSPs
is the bit-width. For a Q-Matrix with 8-bit data, we obtain
the fastest implementations that do not require any DSP slice.
For 16-bit and 32-bit data, 3 DSPs and 5 DSPs are required
respectively.

Another consideration comes with the maximum clock
frequency (that corresponds exactly to the throughput of the

186344 VOLUME 7, 2019

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

TABLE 2. Implementation results for Q-Matrices with 8 bit data and Z = 8.

TABLE 3. Implementation results for Q-Matrices with 8 bit data and Z = 16.

TABLE 4. Implementation results for Q-Matrices with 16 bit data and Z = 4.

system). Given a certain data-path bit-width and number of
actions, the clock frequency remains almost unaltered. This
can be ascribed to the different solutions found by routing
tool. For this reason, in Fig. 9 we use the average clock
frequencies. The frequency drop, when the number of actions
increases, is greater for 8 bit data-paths with respect to the
16 and 32 bit cases. This behaviour can be justified by taking
into account the major role of FPGA interconnections when
a large number of bits is used.

For what concerns the hardware resources, the number of
required LUT RAMs is related to the size of the Q-Matrix
N×Z . FromN = 8 toN = 32 the resources remain the same,
from N = 64 a higher number of LUT RAMs is required.

TABLE 5. Implementation results for Q-Matrices with 16 bit data and Z = 8.

TABLE 6. Implementation results for Q-Matrices with 16 bit data
and Z = 16.

TABLE 7. Implementation results for Q-Matrices with 32 bit data and Z = 4.

As expected, the power consumption is proportional to
the number of required LUTs (considering architectures
with the same parameters). The trend can be observed
in Figs. 10 and 11.

Even for the largest implementation considered (N = 256,
Z = 16, 32-bit Q-Matrix values), the required FPGA
resources are moderate. This suggests that the architecture
can be easily employed in applications requiring a large
number of states or actions and applications where multiple
agents must be implemented on the same device.

Themain result of the design exploration shows that we can
implement fast Q-Learning accelerators with small amount of
resources and low power consumption.

VOLUME 7, 2019 186345

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

TABLE 8. Implementation results for Q-Matrices with 32 bit data and Z = 8.

TABLE 9. Implementation results for Q-Matrices with 32 bit data
and Z = 16.

FIGURE 9. Average clock frequency for different Q-Matrix data bit-width
vs number of actions.

A. Q-UPDATER BASED ON APPROXIMATED MULTIPLIERS
As discussed in sec. II-B1, to allow the use of IoT devices,
the hardware complexity of the Q-Updater block can be
reduced by replacing the full multipliers with approximated
multipliers based on barrel shifters.

In order to evaluate the benefits of such approach,
we implemented the multipliers by using the single power-
of-two approach (1 barrel shifter per multiplier) and the more
precise approach based on the linear combination of two
powers-of-two (two barrel shifters per multiplier), as depicted
in Figs. 7 and 8. We considered 8, 16 and 32 bit operands.

FIGURE 10. Number of LUTs for different implementations.

FIGURE 11. Dynamic power consumption for different implementations.

Since the dynamic power consumption is directly propor-
tional to the clock frequency [38], for a fair comparison we
provide the energy required to update one Q-Matrix element
and the percentage of energy saved respect to the traditional
implementation. Tables 10, 11 and 12 show the compari-
son between the implementations of approximated and full
multipliers. Note that for the 8 bit architectures the power
dissipation was too low to be accurately estimated. In the
traditional implementation, we forced the Vivado synthesizer
not to use any DSP block.

TABLE 10. Implementation comparisons: approximated and full
multipliers with 8 bit operands.

186346 VOLUME 7, 2019

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

TABLE 11. Implementation comparisons: approximated and full
multipliers with 16 bit operands.

TABLE 12. Implementation comparisons: approximated and full
multipliers with 32 bit operands.

The barrel shifter-based architectures do not require any
DSP slice, they use less hardware resources, they are faster
and more power-efficient than their full multiplier-based
counterparts, especially for the 16 and 32 bit implementa-
tions. For these reasons, they are suitable for Q-Learning
applications on very small and low-power IoT devices at the
cost of a reduced set of possible α and γ values.

B. STATE OF THE ART ARCHITECTURE COMPARISON
The architecture proposed in this paper has been compared
with one of best performing Q-Learning hardware accereler-
ators at today [29].

In their paper, Da Silva et al. proposed a parallel implemen-
tation based on the number of states N , while in our work the
parallelization is based on the number of actions Z . Since in
most of the RL applications Z � N (see examples in sec. I),
our approach results in a smaller architecture.

Another important difference consists in the earlier selec-
tion of the Q-matrix value to be updated. This allows to
implement a single block for the computations of Qnew =
(st , at), while in [29] N × Z blocks are required. Moreover,
in case of FPGA implementations, our architecture allows
to employ distributed RAM or embedded block-RAM. This
gives an additional degree of freedom compared to [29] where
only registers are considered for storing the Q-Matrix values.

To obtain a fair comparison:
• We implemented the same RL environment of [29] and
stored the reward values in a Look-Up Table.

• We implemented a random PG as described in [29].
• We considered 16-bit Q-Matrix values.
• We implemented the architectures on the same Virtex-6
FPGAML605 Evaluation Kit (using the ISE 14.7 Xilinx
suite).

The experimental results are shown in Tables 13, 14, 15
and 16. We can only make comparisons with Z = 4 and
Z = 8 since they are the only values implemented in [29].
The implementation results are given in terms of [39]:

• DSP blocks (DSP)
• Slice Registers (REG)
• Slice LUT (LUT)
• Maximum clock frequency (CLK)
• Power consumption (PWR)
• Energy required to update one Q-Matrix element
(Energy)

As expected, our architecture employs a constant number
of DSP slices, while in [29] this number is proportional

TABLE 13. Da Silva et al. [29] implementation results for 16 bit Q-Matrix
values and Z = 4.

TABLE 14. Proposed implementation results for 16 bit Q-Matrix values
and Z = 4.

TABLE 15. Da Silva et al. [29] implementation results for 16 bit Q-Matrix
values and Z = 8.

VOLUME 7, 2019 186347

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

TABLE 16. Proposed implementation results for 16 bit Q-Matrix values
and Z = 8.

to N × Z . The number of Slice Registers required by our
implementations remains almost unaltered when the number
of states increases, while in [29] it grows with N .

Figure 12 compares the maximum clock frequency for
different number of states and actions. Our system is more
than 3 times faster and the speed is almost independent to the
Q-Matrix number of states.

FIGURE 12. Clock frequency comparison between Da Silva et al. [29] and
proposed architecture, 16 bit Q-Matrix values.

Figure 13 compares the energy required to update a single
Q-Matrix element for different number of states and actions.
Also in this case, our architecture, except for the N = 6

FIGURE 13. Energy required to update one Q-Matrix element comparison
between Da Silva et al. [29] and proposed architecture, 16 bit values.

Z = 4 case, presents a better energy efficiency which remains
almost unaltered increasing the number of states.

It is important to highlight that the most evident difference
between the proposed architecture and [29] is its indepen-
dence from the environment and agent’s policy. This happens
because the system in [29] cannot be used as a general-
purpose hardware accelerator since the RL environment is
mapped on the FPGA. Our system does not have such
limitation.

IV. CONCLUSION
In this paper we proposed an efficient hardware imple-
mentation for the Reinforcement Learning algorithm called
Q-Learning. Our architecture exploits the learning formula
by a-priori selecting the required element of the Q-Matrix
to be updated. This approach made possible to minimize the
hardware resources.

We also presented an alternative method for reducing the
computational complexity of the algorithm by employing
approximated multipliers instead of full multipliers. This
technique is an effective solution to implement the accelerator
on small ultra low-power FPGAs for IoT applications.

Our architecture has been compared to the state of the
art in the literature, showing that our solution requires a
smaller amount of hardware resources, is faster and dissipates
less power. Moreover, our system can be used as a general-
purpose hardware accelerator for the Q-Learning algorithm,
not being related to a particular RL environment or agent’s
policy.

With little effort, the proposed approach can be also
exploited to implement the on-policy version of the
Q-Learning algorithm: SARSA. This aspect is further
explored in Appendix.

For the above reasons, our architecture is suitable for high-
throughput and low-power applications. Due to the small
amount of required resources, it also allows the implementa-
tion of multiple Q-Learning agents on the same device, both
on FPGA or ASIC.

APPENDIX
SARSA ACCELERATOR ARCHITECTURE
The proposed architecture for the acceleration of the
Q-Learning algorithm can be easily exploited to implement
the SARSA (State-Action-Reward-State-Action) [15] algo-
rithm. Equation (7) shows the SARSA update formula for the
Q-Matrix.

Qnew(st , at)=Q(st , at)+α (rt+γQ(st+1, at+1)−Q(st , at))

(7)

Comparing (2) to (7), it is straightforward to note the sim-
ilarities between the two equations. Since the update of the
Q-Matrix depends on the agent’s next action at+1, SARSA
algorithm is the on-policy version of the Q-Learning algo-
rithm (which is off-policy).

The resulting architecture is presented in Fig. 14. The main
difference between the Q-Learning implementation in Fig. 3

186348 VOLUME 7, 2019

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

FIGURE 14. SARSA accelerator architecture.

consists in the replacement of the MAX block with a multi-
plexer driven by the next action at+1.

The analysis about the Q-Learning architecture can also be
extended to the SARSA accelerator.

ACKNOWLEDGMENT
The authors would like to thank Xilinx Inc., for providing
FPGA hardware and software tools by Xilinx University
Program.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[2] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From

Data, vol. 4. New York, NY, USA: AMLBook, 2012.
[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, ‘‘End-to-end training of deep

visuomotor policies,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373,
2016.

[4] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar,
‘‘A deterministic improved Q-learning for path planning of a mobile
robot,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 5,
pp. 1141–1153, Sep. 2013.

[5] J.-L. Lin, K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, ‘‘Gait balance and
acceleration of a biped robot based on Q-learning,’’ IEEE Access, vol. 4,
pp. 2439–2449, 2016.

[6] J. Zhu, Y. Song, D. Jiang, and H. Song, ‘‘A new deep-Q-learning-based
transmission scheduling mechanism for the cognitive Internet of Things,’’
IEEE Internet Things J., vol. 5, no. 4, pp. 2375–2385, Aug. 2017.

[7] C. Wei, Z. Zhang, W. Qiao, and L. Qu, ‘‘Reinforcement-learning-based
intelligent maximum power point tracking control for wind energy conver-
sion systems,’’ IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6360–6370,
Oct. 2015.

[8] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement
learning for financial signal representation and trading,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[9] M. Matta, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
A. Nannarelli, M. Re, and S. Spanò, ‘‘A reinforcement learning-
based QAM/PSK symbol synchronizer,’’ IEEE Access, vol. 7,
pp. 124147–124157, 2019.

[10] A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon,
L. Morales-Tirado, and J. J. Neel, ‘‘A survey of artificial intelligence for
cognitive radios,’’ IEEETrans. Veh. Technol., vol. 59, no. 4, pp. 1578–1592,
May 2010.

[11] Q. Wang, H. Liu, K. Gao, and L. Zhang, ‘‘Improved multi-agent reinforce-
ment learning for path planning-based crowd simulation,’’ IEEE Access,
vol. 7, pp. 73841–73855, 2019.

[12] M. Jiang, T. Hai, Z. Pan, H. Wang, Y. Jia, and C. Deng, ‘‘Multi-agent
deep reinforcement learning for multi-object tracker,’’ IEEE Access, vol. 7,
pp. 32400–32407, 2019.

[13] M.Matta, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re,
F. Silvestri, and S. Spanò, ‘‘Q-RTS: A real-time swarm intelligence based
on multi-agent Q-learning,’’ Electron. Lett., vol. 55, no. 10, pp. 589–591,
2019.

[14] X. Gan, H. Guo, and Z. Li, ‘‘A new multi-agent reinforcement learning
method based on evolving dynamic correlation matrix,’’ IEEE Access,
vol. 7, pp. 162127–162138, 2019.

[15] G. A. Rummery and M. Niranjan, ‘‘On-line Q-learning using con-
nectionist systems,’’ Dept. Eng., Univ. Cambridge, Cambridge, U.K.,
Tech. Rep. CUED/F-INFENG/TR 166, 1994.

[16] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[17] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, ‘‘Q-learning algorithms:
A comprehensive classification and applications,’’ IEEE Access, vol. 7,
pp. 133653–133667, 2019.

[18] K.-S. Hwang, Y.-P. Hsu, H.-W. Hsieh, and H.-Y. Lin, ‘‘Hardware imple-
mentation of FAST-based reinforcement learning algorithm,’’ in Proc.
IEEE Int. Workshop VLSI Design Video Technol., May 2005, pp. 435–438.

[19] A. Pérez and E. Sanchez, ‘‘The FAST architecture: A neural network with
flexible adaptable-size topology,’’ in Proc. 5th Int. Conf. Microelectron.
Neural Netw., 1996, pp. 337–340.

[20] S. Geva and J. Sitte, ‘‘A cartpole experiment benchmark for trainable
controllers,’’ IEEE Control Syst., vol. 13, no. 5, pp. 40–51, Oct. 1993.

[21] S. Shao, J. Tsai, M. Mysior, W. Luk, T. Chau, A. Warren, and B. Jeppesen,
‘‘Towards hardware accelerated reinforcement learning for application-
specific robotic control,’’ inProc. IEEE 29th Int. Conf. Appl.-Specific Syst.,
Archit. Processors (ASAP), Jul. 2018, pp. 1–8.

[22] P. R. Gankidi and J. Thangavelautham, ‘‘FPGA architecture for deep
learning and its application to planetary robotics,’’ in Proc. IEEE Aerosp.
Conf., Mar. 2017, pp. 1–9.

[23] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, ‘‘An introduction to deep reinforcement learning,’’ Found.
Trends Mach. Learn., vol. 11, nos. 3–4, pp. 219–354, 2018.

[24] J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, ‘‘Neural network based
reinforcement learning acceleration on FPGA platforms,’’ ACM SIGARCH
Comput. Archit. News, vol. 44, no. 4, pp. 68–73, 2017.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust
region policy otimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

VOLUME 7, 2019 186349

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

[26] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, ‘‘FA3C: FPGA-accelerated
deep reinforcement learning,’’ in Proc. 24th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2019, pp. 499–513.

[27] A. K. Mackworth, ‘‘Consistency in networks of relations,’’ Artif. Intell.,
vol. 8, no. 1, pp. 99–118, 1977.

[28] M.-J. Li, A.-H. Li, Y.-J. Huang, and S.-I. Chu, ‘‘Implementation of deep
reinforcement learning,’’ in Proc. 2nd Int. Conf. Inf. Sci. Syst., 2019,
pp. 232–236.

[29] L. M. D. Da Silva, M. F. Torquato, and M. A. C. Fernandes, ‘‘Paral-
lel implementation of reinforcement learning Q-learning technique for
FPGA,’’ IEEE Access, vol. 7, pp. 2782–2798, 2018.

[30] Z. Liu and I. Elhanany, ‘‘Large-scale tabular-form hardware architecture
for Q-Learning with delays,’’ in Proc. 50th Midwest Symp. Circuits Syst.,
Aug. 2007, pp. 827–830.

[31] B. Yuce, H. F. Ugurdag, S. Gören, and G. Dündar, ‘‘Fast and efficient
circuit topologies for finding the maximum of n k-bit numbers,’’ IEEE
Trans. Comput., vol. 63, no. 8, pp. 1868–1881, Aug. 2014.

[32] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re, and S. Spanò, ‘‘AW-
SOM, an algorithm for high-speed learning in hardware self-organizing
maps,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, to be published.

[33] M. R. Pillmeier, M. J. Schulte, and E. G. Walters, III, ‘‘Design alternatives
for barrel shifters,’’ Proc. SPIE, vol. 4791, pp. 436–447, Jul. 2002.

[34] K. H. Abed and R. E. Siferd, ‘‘VLSI implementations of low-
power leading-one detector circuits,’’ in Proc. IEEE SoutheastCon,
Mar./Apr. 2006, pp. 279–284.

[35] H. Qi, O. Ayorinde, and B. H. Calhoun, ‘‘An ultra-low-power FPGA for
IoT applications,’’ in Proc. IEEE SOI-3D-Subthreshold Microelectron.
Technol. Unified Conf. (S3S), Oct. 2017, pp. 1–3. s

[36] Microsemi. FPGAs. [Online]. Available: https://www.microsemi.com/
product-directory/fpga-soc/1638-fpgas

[37] Xilinx. Vivado Design Suite User Guide—Synthesis. Accessed:
Jun. 12, 2019. [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf

[38] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, ‘‘Low-power CMOS
digital design,’’ IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[39] Xilinx. Synthesis and Simulation Design Guide. Accessed: Dec. 18, 2012.
[Online]. Available: https://www.xilinx.com/support/documentation/sw
_manuals/xilinx14_7/sim.pdf

SERGIO SPANÒ received the B.S. degree in elec-
tronic engineering and the M.S. degree (summa
cum laude) in electronic engineering from the Uni-
versity of ‘‘Tor Vergata’’, Rome, Italy, in 2015 and
2018, respectively, where he is currently pursuing
the Ph.D. degree in electronic engineering, as a
member of the DSPVLSI research group. He had
industrial experiences in the space and telecom-
munications field. His interests include digital
signal processing, machine learning, telecommu-

nications, and ASIC/FPGA hardware design. His current research topics
related to machine learning hardware implementations for embedded and
low-power systems.

GIAN CARLO CARDARILLI (S’79–M’81) was
born in Rome, Italy. He received the Laurea degree
(summa cum laude) from the University of Rome
‘‘La Sapienza,’’ in 1981. From 1992 to 1994, he
was with the University of L’Aquila. From 1987 to
1988, he was with the Circuits and Systems team,
EPFL, Lausanne, Switzerland. He has been with
the University of Rome ‘‘Tor Vergata,’’ since 1984.
He is currently a Full Professor of digital elec-
tronics and electronics for communication systems

with the University of Rome ‘‘Tor Vergata’’. He has regular cooperation
with companies, such as Alcatel Alenia Space, Italy, STM, Agrate Brianza,
Italy, Micron, Italy, and Selex S.I., Italy. He works in the field of computer
arithmetic and its application to the design of fast signal digital processor.
His interests are in the area of VLSI architectures for signal processing and
IC design. In this field, he published over than 160 articles in international
journals and conferences. His scientific interest concerns the design of
special architectures for signal processing.

LUCA DI NUNZIO received the master’s degree
(summa cum laude) in electronics engineering
and the Ph.D. degree in systems and technolo-
gies for the space from the University of Rome
‘‘Tor Vergata,’’ in 2006 and 2010, respectively.
He has a working history with several companies
in the fields of electronics and communications.
He is currently an Adjunct Professor with the Dig-
ital Electronics Laboratory, University of Rome
‘‘Tor Vergata’’ and an Adjunct Professor of digital

electronics with University Guglielmo Marconi. His research activities are
in the fields of reconfigurable computing, communication circuits, digital
signal processing, and machine learning.

ROCCO FAZZOLARI received themaster’s degree
in electronic engineering and the Ph.D. degree in
space systems and technologies from the Univer-
sity of Rome Tor Vergata, Italy, inMay 2009 and in
June 2013, respectively. He is currently a Postdoc-
toral Fellow and an Assistant Professor with the
Department of Electronic Engineering, University
of Rome ‘‘Tor Vergata’’. He works on hardware
implementation of high-speed systems for digi-
tal signals processing, machine learning, array of

wireless sensor networks, and systems for data analysis of acoustic emission
(AE) sensors (based on ultrasonic waves).

DANIELE GIARDINO received the B.S. and M.S.
degrees in electronic engineering from the Univer-
sity of Rome ‘‘Tor Vergata,’’ Italy, in 2015 and
2017, respectively, where he is currently pursuing
the Ph.D. degree in electronic engineering and is
a member of the DSPVLSI research group. He
works on digital development for wideband signals
architectures, telecommunications, digital signal
processing, and machine learning. In specific, he
is focused on the digital implementation of MIMO
systems for wideband signals.

MARCO MATTA was born in Cagliari, Italy,
in 1989. He received the B.S. and M.S. degrees
in electronic engineering from the University of
Rome ‘‘Tor Vergata’’, Italy, in 2014 and 2017,
respectively. He is currently pursuing the Ph.D.
degree in electronic engineering. Since 2017,
he has been a member of the DSPVLSI research
group, University of Rome ‘‘Tor Vergata’’. His
research interests include the development of hard-
ware platforms, and low-power accelerators aimed

machine learning algorithms and telecommunications. In particular, he is
currently focused on the implementation of reinforcement learning models
on FPGA.

186350 VOLUME 7, 2019

S. Spanò et al.: Efficient Hardware Implementation of RL: The Q-Learning Algorithm

ALBERTO NANNARELLI (S’94–M’99–SM’13)
graduated in electrical engineering from the Uni-
versity of Roma ‘‘La Sapienza,’’ Roma, Italy,
in 1988, and received the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of California at Irvine, CA, USA,
in 1995 and 1999, respectively. He worked
for SGS-Thomson Microelectronics and Ericsson
Telecom as a Design Engineer and for Rockwell
Semiconductor Systems as a summer Intern. From

1999 to 2003, he was with the Department of Electrical Engineering, Uni-
versity of Roma ‘‘Tor Vergata,’’ Italy, as a Postdoctoral Researcher. He is
currently an Associate Professor with the Technical University of Denmark,
Lyngby, Denmark. His research interests include computer arithmetic, com-
puter architecture, and VLSI design. He is a Senior Member of the IEEE
Computer Society.

MARCO RE (M’92) received the Ph.D. degree
in microelectronics from the University of Rome
‘‘Tor Vergata.’’ He is currently an Associate Pro-
fessor with the University of Rome ‘‘Tor Vergata,’’
where he teaches digital electronics and hardware
architectures for DSP. He is the Director of a
master in audio engineering with the Department
of Electronic Engineering, University of Rome Tor
Vergata. He was awarded with two NATO fellow-
ships at the University of California at Berkeley,

working as a Visiting Scientist with Cadence Berkeley Laboratories. He has
been awarded with the Otto Moensted fellowship as a Visiting Professor
with the Technical University of Denmark. He collaborates in many research
projects with different companies in the field of DSP architectures and
algorithms. He is author of about 200 articles on international journals
and conferences. His main scientific interests are in the field of low power
DSP algorithms’ architectures, hardware-software codesign, fuzzy logic and
neural hardware architectures, low power digital implementations based on
non-traditional number systems, computer arithmetic, and CAD tools for
DSP. He is member of Audio Engineering Society (AES).

VOLUME 7, 2019 186351

