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ABSTRACT When mobile robots are working in indoor unknown environments, the surrounding scenes
are mainly low texture or repeating texture. This means that image features are easily lost when tracking the
robots, and poses are difficult to estimate as the robot moves back and forth in a narrow area. In order
to improve such tracking problems, we propose a one-circle feature-matching method, which refers to
a sequence of the circle matching for the time after space (STCM), and an STCM-based visual-inertial
simultaneous localization and mapping (STCM-SLAM) technique. This strategy tightly couples the stereo
camera and the inertial measurement unit (IMU) in order to better estimate poses of the mobile robot when
working indoors. Forward backward optical flow is used to track image features. The absolute accuracy
and relative accuracy of STCM increase by 37.869% and 129.167%, respectively, when compared with
correlation flow. In addition, we compare our proposed method with other state-of-the-art methods. In terms
of relative pose error, the accuracy of STCM-SLAM is an order of magnitude greater than ORB-SLAM2,
and two orders of magnitude greater than OKVIS. Our experiments show that STCM-SLAM has obvious
advantages over the OKVIS method, specifically in terms of scale error, running frequency, and CPU load.
STCM-SLAMalso performs the best under real-time conditions. In the indoor experiments, STCM-SLAM is
able to accurately estimate the trajectory of themobile robot. Based on the root mean square error, mean error,
and standard deviation, the accuracy of STCM-SLAM is ultimately superior to that of either ORB-SLAM2
or OKVIS.

INDEX TERMS Indoor mobile robots, multi-sensor fusion, nonlinear optimization, SLAM.

I. INTRODUCTION
The recent development of artificial intelligence and com-
puter vision has led to unprecedented growth in the robotics
industries. Amongmany kinds of robots that have been devel-
oped, the autonomous mobile robot has become increasingly
popular. In order to achieve autonomous walking, however,
one of the most important features to perfect is real-time
localization with mapping. When a mobile robot is perform-
ing in an unknown environment, it needs to sense its poses
in real time, make control decisions based on these poses in
the global map, and walk autonomously in order to fulfill the
tasks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuping He .

The aim of simultaneous localization and mapping
(SLAM) technology is to allow a robot to sense its sur-
rounding environmental information in real time in an
unknown environment, based on data obtained by sen-
sors such as cameras, lidars, and ultrasonic range finders.
Using this information, the robot constructs a map, within
which it can locate itself [1], [2]. Over a development period
of 30 years, SLAM technology has achieved brilliant results
and has been widely used in mobile robots [3], micro air
vehicles (MAV) [4], unmanned aerial vehicles (UAV) [5],
unmanned vehicles [6], virtual reality and augmented real-
ity [7], and other areas. Applying SLAM technology to the
mobile robot enables it to sense the surrounding environment,
locate itself, and construct a 3D map, all of which greatly
enhance its autonomy. However, in low-texture, and repetitive
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texture indoor scenes, where the mobile robot is required to
climb, accelerate, decelerate, and emergency stop, image fea-
tures can be hard to track, and the scale estimation currently
has errors. To solve this issue, robust real-time localization
and mapping systems are essential. In addition, achieving an
estimation of a robot’s pose in real time on the application
platform while continuously building a 3D environment map
remains difficult.

In recent years, visual-inertial SLAM (VI-SLAM) [8]–[10]
technology has emerged as a result of improved comput-
ing ability. Compared with other sensors or combinations,
the combination of the stereo camera and the inertial mea-
surement unit (IMU) has resulted in an overall superior
performance, and comes with a range of advantages. First,
VI-SLAM is able to obtain precise poses in situations where
the global navigation satellite system signal fails. In this
scenario, the robot is still able to construct a 3D environment
map in either an unknown environment or an indoor envi-
ronment. Second, the stereo camera is able to provide useful
information and construct 3D environment scenes; it can
be used for place recognition and loop closure. In addition,
the stereo camera also offers information that enables the
robot to sense scale and localization within an environment.
Third, the IMU provides motion information that allows for
the recovery of scale from the monocular. IMU can also
estimate the direction of gravity and determine the precise
pitch and roll of the sensor. Fourth, even when the robot is
stationary or moving at a constant speed, the stereo camera
can obtain scale information and suppress the drift caused
by the IMU. Finally, compared with other sensor fusion
methods, the stereo visual-inertial fusionmethod is less costly
and consumes less energy than other methods, as it can utilize
consumer-grade sensors to obtain accurate poses.

However, the combination of stereo camera and IMU still
comes with its disadvantages. In scenarios that include severe
motion, camera images are blurred and contain undesirable
amounts of noise. Furthermore, the image obtained by this
method is easily influenced by the texture information and
the level of illumination in its environment. Moreover, owing
to the biases of the IMU’s accelerometer and gyroscope,
data reliability is low during initialization, leading to the
accumulation of errors over time.

In this paper we propose a novel stereo visual-
inertial simultaneous localization and mapping method
(STCM-SLAM) for use in mobile robots. Our approach
is illustrated in Fig. 1. In addition, our implementation is
available at https://github.com /cumtxz/STCM-SLAM.

Our method uses image tiling to extract image features
and carry out forward backward optical flow in order to
track features. We also propose one circle feature match-
ing method to manage features. This marginalization strat-
egy is designed to improve the system’s overall robustness.
Our experiments reveal that STCM-SLAM performs better
than ORB-SLAM2 and OKVIS under real-time conditions.
In addition, in the indoor experiments, STCM-SLAM can

FIGURE 1. Structural architecture of our STCM-SLAM.

estimate the trajectory of themobile robot withmore accuracy
than either ORB-SLAM2 or OKVIS.

II. RELATED WORK
Visual SLAM technologies have achieved a range of valuable
research results in the last few decades. Davison et al. [11]
proposed a filtering-based SLAM system that was success-
fully used for monocular cameras in 2007, projecting scene
points onto a probability ellipse, extracting Shi-Tomasi cor-
ners on the image, and using an extended Kalman filter (EKF)
for optimization. PTAM (parallel tracking and mapping)
[12] treated tracking and mapping as two separate threads,
whereas tracking results did not depend on a specific proba-
bility’s mapping process. By using a highly robust tracking
algorithm, data association between tracking and mapping
did not need to be shared, thus solving the computational
burden when updating the map per frame. However, this
method cannot provide scale estimation. Collaborative Visual
SLAM (CoSLAM) [13] maintained the uncertainty of the
location of each map point, and collaboratively constructed
a global map using cameras on different platforms, which
incorporated the static background and the trajectory of the
pre-movement attraction. Mur-Artal and Tardós [14] pro-
posed a sparse-featured ORB-SLAM system. This algorithm
includes tracking, mapping, and loop closure threads. With
ORB-SLAM, tracking loss could be recovered, and the real-
time relocation has rotation invariance. Lin [15] proposed
an automatic method for key-frame selection based on the
motion state of a vehicle.

The above methods all follow a similar procedure: first,
they extract features from images and then match image
features in order to obtain matching points. The camera pose
can then be estimated based on these points. In contrast,
direct methods do not rely on the extraction and matching
of features; rather they take samples from an image’s pixels
(including edges and pixels whose smooth intensity changes)
to generate a more complete environmental model. This
process minimizes photometric error and allows the camera
motion to be estimated, improving the strength of weak tex-
ture features. Engel et al. [16] proposed LSD-SLAM, which
is able to construct dense or semi-dense maps with photo-
metric errors and geometric prior information. This method
performs direct matching on the Sim3 lie group and uses
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point clouds as representation, allowing it to construct a semi-
dense 3D environment map in real time. Semi-direct visual
odometry (SVO) [17] makes use of the direct method to
calculate the initial estimation of camera motion and feature
matching. This method also optimizes the feature-based non-
linear re-projection error, and adopts optical flow to solve the
localization problem. In addition, the relocalization residual
is converted to a bundle adjustment (BA) problem, which is
solved by an iterative nonlinear least square method. Dense
tracking and mapping (DTAM) [18], LSD-SLAM, and SVO
not only make use of geometric prior information, but also
minimize photometric errors as they reconstruct dense envi-
ronmental models. However, direct sparse odometry (DSO)
[19] is able to directly optimize the photometric error without
needing to consider the prior geometric information. In addi-
tion to perfecting the error model of direct pose estima-
tion, DSO also includes additional features such as affine
brightness transformation, photometric calibration and depth
optimization.

RGB-D cameras not only provide environmental informa-
tion, but also generate depth information for building dense
3D maps. SLAM methods that make use of RGB-D cam-
eras have also been very successful. Dense visual SLAM
(DVO-SLAM) [20] minimizes the photometric error and the
depth error of pixels, as well as making better use of envi-
ronmental information when compared with sparse meth-
ods or feature-based methods. Furthering this technology,
an entropy-based keyframe selection and loop closuremethod
was proposed. Dynamicfusion [21] established amodel under
a canonical frame, allowing changes of scene to be mapped to
the model by geometric transformation. Each new depth map
is merged into the model by way of geometric transformation.
This method can be applied to a variety of moving objects and
scenes without temporary or a priori scene models. Further-
more, ElasticFusion [22] fused the RGB-D camera, enabling
it to estimate poses through the color consistency constraint.
In addition, the localization of point clouds was estimated
by the iterative closest points (ICP) algorithm. The surface
element (surfel) model is used to detect the constraint opti-
mization using global and local loop closure, and a dense map
is constructed for AR platforms. Zhang et al. [23] proposed a
semantic SLAM system that built semantic maps with object-
level entities, which was integrated into the RGB-D SLAM
framework. However, this system requires GPU acceleration.

SLAM methods combined with AprilTag [24] or artificial
square markers [25] have also obtained rich results. Munoz-
Salinas et al. [26] solved the problems of mapping and local-
ization from a set of squared planar markers. However, this
method is not incremental and needs to repeat the whole pro-
cess from start in case of requiring the expansion of the map.
DeGol et al. [27] presented an incremental structure from
motion algorithm using fiducial markers matching, but this
system cannot run real time. Sarmadi et al. [28] estimated the
camera poses, the three-dimensional structure of planarmark-
ers and the relative pose between them. TagSLAM [29] lever-
aged AprilTags and the GTSAM factor graph optimizer [30]

to obtain vision based ground truth poses and extrinsic cali-
bration non-overlapping views. SPM-SLAM [31] initialized
the map from a set of ambiguously detected markers seen
from at least two different locations and proposed a method
for loop closure detection and correction using squared pla-
nar markers. UcoSLAM [32] fused keypoints with squared
fiducial markers in the SLAM system. However, these meth-
ods require a large number of artificial square markers to
be placed in the scene. These methods can only be used
in known environments and cannot be applied to unknown
environments or large outdoor environments.

Currently, multi sensor fusion has become a popular form
of SLAM technology, with VI-SLAM methods the focus of
contemporary research. Multi-state constraint Kalman filter
(MSCKF) [33] is a classic VI-SLAM system, consisting of
a multi-state constrained visual-inertial navigation system
based on an EKF filter. This method obtains a measure-
ment model for expressing the geometric constraints pro-
duced when a static feature is observed by multiple cameras.
This measurement model does not require the inclusion of
a 3D feature position in the EKF filter’s state vector and
is able to obtain optimal linear error. In addition, Li and
Mourikis [34], [35] demonstrated that the standard method
of calculating the filter’s Jacobian matrix would inevitably
leads to inconsistency and a loss of precision. MSCKF has
been improved in order to ensure it possesses the correct
observation properties without incurring additional compu-
tational costs. However, this method does not provide loop
closure. Tanskanen et al. [36] combined MSCKF with the
advantages of an EKF filter, minimizing the photometric
error and presenting a direct visual-inertial odometry that can
run in real time on the CPU. Bloesch et al. [37] proposed
a visual-inertial odometry based on the monocular named
ROVIO. This made use of image-matched pixel photometric
errors, allowing it to achieve accurate, robust tracking results.
In addition, the FAST corner [38] was employed to identify
a large number of candidate features. A multi-layer image
pyramid extracts multi-layer features or pixel blocks, and
edge features are also added. However, despite such advances
in SLAM technologies, achieving robust and accurate visual-
inertial estimations still remains a challenge in the robotics
field.

The above VI-SLAM methods are all filter-based meth-
ods. As computer technology has advanced, however,
optimization-based VI-SLAM methods (which adopt non-
linear optimization for pose estimation and map construc-
tion) have also begun to attract attention. OKVIS [39] is an
optimization-based VI-SLAM method based on keyframes.
Thismethod constructs a loss function, fuses the re-projection
error term and the IMU error term, and maintains a sliding
window by marginalizing old keyframes. SOFT-SLAM [40]
is a stereo SLAM system that relies on special features; it
uses SOFT visual odometry instead of BA for pose esti-
mation, selects high quality features using circle matching,
and loosely couples the visual and gyroscope data. More-
over, VINS-Mono [41] is also considered to be an excellent
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VI-SLAMmethod; with the system’s front-end tracking Har-
ris corners [42] based on optical flow, and the back-end using
sliding window and loop closure for nonlinear optimization.
The spherical camera model is employed at the front-end,
and outliers of the fundamental matrix are removed by the
random sample consensus (RANSAC) method. ICE-BA [43]
offers a relative marginalization method to improve global
consistency. Techniques for fusing IMU data in classic visual
SLAM frameworks have also been highly successful. Mur-
Artal et al. [44] proposed a novel IMU initialization method
based on the original ORB-SLAM2 framework [14], which
calculated the scale, gravity direction, velocity, and devia-
tion of the gyroscope and accelerometer. VI-DSO [45] is a
direct sparse visual-inertial odometry system based on DSO,
where a dynamic marginalization strategy is used to partially
marginalize old variables, which can then be calculated in
a reasonable amount of time. The initial scale estimation is
far from optimal but satisfactory results are still obtained.
Liu et al. [46] used both points and lines to increase the
robustness of their visual–inertial SLAM system.

Progress has also been made in applying deep learning
to parts of the SLAM system. Gomez-Ojeda et al. [47]
proposed two different deep neural networks that enhanced
monocular images to more informative representations for
visual odometry. In addition, Li et al. [48] used deep neural
networks to estimate the 6-DoF pose of a monocular camera
and the depth of its view, and proposed a novel monocular
VO system based on unsupervised deep learning scheme.
DeTone et al. [49] presented a self-supervised framework to
train interest point detectors and descriptors suitable for a
large number of multiple-view geometry problems named
SuperPoint. However, these methods impose a large com-
putational burden, especially for low-power devices such as
mobile robots or MAVs.

III. POSE ESTIMATION
This section establishes the error function of the stereo cam-
era and IMU according to motion states of the mobile robot.
In addition, visual and IMU constraints are also discussed.

A. ERROR FUNCTION
The mobile robot mainly performs translation in the direction
of the x-axis during motion, and the amount of rotational
change is small. If pose estimation is performed using only
the robot’s vision, the pose changes would not be fully per-
ceived on the road’s surface due to the presence of repeated
textures or variations in gradient. To counter this problem,
we propose a strategy of tightly coupling the camera and
IMU data, allowing more accurate estimation of the pose and
velocity of the camera, as well as the IMU bias. Because the
acceleration calculated by the consumer-grade IMU is prone
to errors, the rotation of the IMU is not as a state variable of
the system. The 15-dimensional state variables of the system
in time i are defined as:

µi = [Ri, pi, vi, bai, bgi] ∈ R15 (1)

FIGURE 2. The schematic diagram of the sliding window.

where R, p and v are the rotation, translation and speed of
the camera, respectively, and ba and bg are the bias of the
accelerometer and gyroscope, respectively. The pose (R, p)
belong to SE (3), v, ba, bg ∈ R3.
Optimization-based SLAM systems are generally incre-

mental motion estimation systems, where the rotation and
translation errors are continuously accumulated. Therefore
the loop closure mechanism is used in accordance with [14].
When a robot is running within the same scene, all poses
are optimized using loop closure, and sliding window opti-
mization is constructed to optimize the keyframe pose. Loop
closure and keyframe selection are based on our previous
work [3]. We present the factor graph [50] of the sliding
window in Fig. 2.

To construct the optimization equation for the sliding win-
dow, we integrate visual measurements, IMU measurements,
and the a priori marginalization. The optimization objective
equation is as follows:

µ̂=argmin
µ

(
∑

(l,j)∈C

||ec(µ)||2Pjl
+

∑
k∈B

||eIMU (µ)||2Pkk+1

+ ||emarg(µ)||22) (2)

where ec(µ), eIMU (µ) and emarg(µ) are the error (residual) of
visual measurements, IMU measurements, and the a priori
marginalization, respectively. Pjl and Pkk+1 are the covariance
of visual measurements and IMU measurements, respec-
tively. It should be noted that the errors are determined using
the Mahalanobis distance, which are weighted error terms.
The surge of a single error term can be effectively suppressed.
Equation 2 is solved using the Gauss-Netwon algorithm.

B. VISUAL CONSTRAINT
The classic pinhole camera model [51] is used to transform
the 3D space point, Xi

∈ R3, under the camera frame into
the 2D point, xi, under the image frame. The coordinates in
the left and right images are ul = (ul , vl) and ur = (ur , vr ),
respectively. In addition, images are rectified. Assuming that
vl is equal to vr , we define the three coordinates as xs = (ul ,
vl , ur ). We build projection function πs(·) according to [14]:

xs = πs (X) =


fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X − b
Z
+ cx

 (3)
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FIGURE 3. The frequency of the IMU and stereo camera.

where X = (X , Y , Z ), (fx , fy) is the focal length, and b is the
baseline of the stereo camera. (cx , cy) is the principal point
of the camera. In this investigation, we use the re-projection
error [51] to represent the visual error term.

ec(µ) = xi − πs(RiXi
+ pi) (4)

C. IMU CONSTRAINT
The measurements of the gyroscope and accelerometer for
the body coordinate system at the k-time can be expressed
as:

w̃bk = wbk + b
g
bk + η

g
bk (5)

ãbk = RTwb(abk − g)+ b
a
bk + η

a
bk (6)

where bgbk and η
g
bk are the bias and white noise of the

gyroscope; babk and ηabk are the bias and white noise of the
accelerometer; and wbk and abk represent the truth value of
gyroscope and accelerometer, respectively.

ḃgbk = η
bg
bk (7)

ḃabk = η
ba
bk (8)

where ηbgbk and η
ba
bk obey zero-mean Gaussian distribution.

The stereo camera provides low-frequency data, while the
IMU provides high-frequency data, as shown in Fig. 3. Since
the previous frame’s state changes during the optimization
process, the integration must be recalculated when the initial
state of integration changes. To avoid repeatedly calculat-
ing the IMU integral after each optimization adjustment,
we constrain the relative motion using pre-integration, then
parameterized according to the relevant literature [52], [53].
Themedian discrete form of rotation, velocity, and translation
of the IMU at the k + 1 time are defined as follows:

Rbk+1 = Rbk Exp((w̃bk − b
g
bk − η

bg
bk )1t) (9-1)

vbk+1 = vbk + g1t + Rbk+1 (ãbk − b
a
bk
− ηba

bk
)1t (9-2)

pbk+1=pbk+vbk1t+
1
2
g1t2+

1
2
Rbk (ãbk−b

a
bk−η

ba
bk )1t

2

(9-3)

where 1t is the time instant difference between the previous
and current IMU data. The increments of the rotation, veloc-
ity, and translation of IMU from k + 1 to k are defined as:

1Rbkbk+1=̇
j−1∏
k=i

Exp((w̃bk − b
g
bk − η

bg
bk )1t) (10-1)

vbkbk+1=̇
j−1∑
k=i

Rbkbi (ãbk − b
a
bk
− ηba

bk
)1t (10-2)

1p=̇
j−1∑
k=i

3
2
1Rbkbi (ãbk − b

a
bk − η

ba
bk )1t

2 (10-3)

This study defines the IMU error as:

eIMU (µ)=


δα

bk
bk+1

δθ
bk
bk+1

δβ
bk
bk+1
δba
δbg



×


Rbk (pbk+1 − pbk − vbk1t+

1
2g1t

2)− αbkbk+1
2]γ bk −1bk+1

⊗ q−1bk ⊗ qbk+1 ]xyz
Rbk (vbk+1 − vbk+g1t)− β

bk
bk+1

bgbk+1−b
g
bk

babk+1−b
a
bk


(11)

where δαbkbk+1 , δθ
bk
bk+1

, and δβbkbk+1 represent the residual of
rotation, translation, and velocity, respectively. δba, and
δbg are the bias residual of accelerometer and gyroscope,
respectively.

IV. FEATURE TRACKING
This section focuses on feature tracking of our STCM-SLAM.
Forward backward optical flow and circle feature matching
are used to improve the accuracy of system.

A. FORWARD BACKWARD OPTICAL FLOW
For this investigation, we use image tiling to extract features,
such as dividing an image into 25×25 image blocks, extract-
ing a FAST feature for each image block in order to make
the feature distribution more uniform, and then using optical
flow to track features between the two frames. The classic
tracking algorithm, optical flow is a classic optical flow
tracking algorithm and has been used in a number of SLAM
methods [17], [41], This algorithm assumes three things: first,
the target image has uniform brightness; second, the image
space is continuous; and third, the image is continuous in
time. I (u, v, t) represents the grayscale value of the image
pixel at time t . Based on the above assumptions, the bright-
ness conservation equation of pixels can be obtained:

Ix u̇+ Iyv̇+ It (x, y) = 0 (12)

The three assumptions of optical flow are easy to satisfy when
a robot is performing small motions. However, the mobile
robot oftenmoves quickly with strong rotations, whichmeans
that optical flow tracking is easy to lose. To counter this
difficulty, we implement themore accurate forward backward
bidirectional optical flow tracking (FB-LK). For two images,
Ik and Ik+1 on the time constraint, we first extract feature
set A for the image Ik . Next, we obtain feature set B based
on the corresponding feature set A in image, Ik . Then, we
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FIGURE 4. Forward backward bidirectional optical tracking diagram.

TABLE 1. Comparing the forward backward optical flow and correlation
flow.

obtain feature set B based on the corresponding feature set A
in image, Ik+1. This is done by using optical flow, which is
referred to as forward tracking. Next, feature set B returns to
track the corresponding feature set C in the image, Ik ,; this
is referred to as backward tracking. The forward backward
bidirectional optical flow tracking diagram is shown in Fig. 4,
with the square representing the feature position, and the dot
arrow indicating the tracking direction.

Due to the influence of image noise, the features tracked
by the forward backward method are occasionally inconsis-
tent. Therefore, matching points are filtered according to the
distance threshold. We set the distance threshold to 0.5 pixel.
In addition, we adopt a higher frame rate of 20Hz, as well
a multiple-level optical flow in order to improve the robust-
ness of the tracking technology. The effect of image feature
tracking in this method is shown in Fig. 5.

In this investigation we use the absolute trajectory
error (ATE) and the relative pose error (RPE) to compare the
accuracy of frame poses inspired by [54], [55]. Table 1 com-
pares correlation flow [56] and forward backward optical
flow onMachine Hall 01 of EuRoC dataset [57].We calculate
the root mean square error (RMSE) of the ATE and RPE of
frame poses, as well as the mean inter-frame processing time.

ATERMSE =

√√√√1
n

n∑
i=1

||Pi − P
gt
i ||

2 (13)

RPERMSE =

√√√√ 1
n− 1

n−1∑
i=1

(||Pi+1 − Pi|| − ||P
gt
i+1 − P

gt
i ||)

2

(14)

where Pi, and PgtI represent the estimated pose and the
ground-truth pose, respectively. The ATE and RPE of frame
poses increase 7.373% and 6.498%, respectively. Despite
the mean of the inter-frame processing time increasing by
6.688 ms, the system is still able to achieve superior real-time
performance.

The complete accuracy curve of frame poses’ ATE and
RPE across forward backward optical flow and correlation

FIGURE 5. Forward backward bidirectional optical tracking result.
(a) Uniform distribution of image features. (b) Optical flow tracking
image.

flow are shown in Fig. 6. As shown in Fig. 6(a), the ATE of
forward backward optical flow is a priori to correlation flow.
Besides, the RPE of forward backward optical flow is more
stable than that achieved using correlation flow, as can be seen
in Fig. 6(b).

B. CIRCLE FEATURE MATCHING
Motion can often contribute to a loss of feature tracking.
To counteract this problem, we use the circle feature match-
ing method. This allows us to both manage and improve
the quality of features, thereby improving the robustness of
textureless and repeated texture scenes. Inspired by previous
investigations [40], we use continuous image tracking to
increase the circle constraint. After the FAST features are
extracted using blocks, the features are determined using
circle matching and outliers are removed. For the images
produced by the stereo camera in continuous time, we imple-
ment time and space constraints. The constraint between the
front and back image on the same camera is a temporal
constraint, and the constraint between the left and right image
of the stereo camera is a spatial constraint. Forward backward
optical flow is used to track the adjacent time frames, and
Lucas Kanade optical flow is used to track the left and right
images simultaneously. For the k-th image, the sequence of
the circle matching for the time after space (STCM) is I lk →
I rk → I rk+1 → I lk+1 → I lk . Both sequences are displayed
in Fig. 7. The circle feature matching method we used is able
to extract features and track them with optical flow without
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FIGURE 6. ATE and RPE comparison between forward backward optical
flow and correlation flow. (a) ATE of frame poses. (b) RPE of frame poses.

FIGURE 7. The schematic diagram of the STCM method for the stereo
camera image features.

any additional computation. After circle matching, the high-
quality features are filtered to improve the tracking accuracy
of features.

TABLE 2. Comparing parameters across the STCM and correlation flow.

FIGURE 8. System marginalization process.

The parameter comparison between STCM and correlation
flowmethods is shown in Table 2. The inter-frame processing
time of STCM is higher than that achieved with correlation
flow, but is lower than the processing times achieved using the
forward backward technique. In Table 2, the absolute accu-
racy and relative accuracy of STCM can be seen to increase
by 37.869% and 129.167% respectively, when comparedwith
correlation flow. After this comparison, we select the STCM
method to use for feature tracking.

V. MARGINALIZATION
For this investigation, we adopt one marginalization strategy
in the sliding window, as shown in Fig. 8. The number of
keyframes in the sliding window is set to 9 to balance accu-
racy and calculation according to [3].

The entire marginalization process is distributed across
three steps. As shown in Step 1, keyframes in the slid-
ing window are numbered from Xn to Xn+8. When a new
keyframe Xn+9 is inserted into the sliding window, the oldest
keyframe Xn is marginalized. The 3D point, optical flow
factor, IMU state, and pre-integration constraints of Xn are
converted into the marginalization factor, which does not lose
any constraints. Themarginalization process of error function
can be shown as follows:[

3rr 3rm
3T
rm 3mm

] [
δxr
δxm

]
=

[
−gr
−gm

]
(15)

where δxr is the portion that needs to be preserved from
marginalization and δxm is the portion that needs to be
marginalized, respectively. Next, we use Shure to eliminate
the element:[

I −3rm3
−1
mm

0 I

] [
3rr 3rm
3T
rm 3mm

] [
δxr
δxm

]
=

[
I −3rm3

−1
mm

0 I

] [
−gr
−gm

]
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⇒

[
3rr −3rm3

−1
mm3

T
rm 0

3T
rm 3mm

] [
δxr
δxm

]
=

[
−gr +3rm3

−1
mmgm

−gm

]
(16)

where 3rm3
−1
mm3

T
rm are the Shure complement of 3mm in

3rm. Thus, the prior information equation of δxr is:

(3rr −3rm3
−1
mm3

T
rm)δxr = −gr +3rm3

−1
mmgm (17)

The prior marginalization error is emarg(µ) = δxr . In the opti-
mization objective, represented in equation 2, the minimum
value must first be calculated, and then further converted
to the minimum value of the objective function, where the
optimization variable has an increment, and the incremental
equation is obtained.

(
∑

H
cj T
l Pc−1l H

cj
l +

∑
Hbk T
bk+1

Pbk −1bk+1
Hbk
bk+1
+3p)δµ

=

∑
H
cj T
l Pc−1l ec(µ)+

∑
Hbk T
bk+1

Pbk −1bk+1
eIMU (µ)+bp

(18)

The marginalization factor generated in the third step
becomes the prior factor in the next marginalization. Only
keyframes fromXn+1 to Xn+9 are exist in the sliding window,
waiting for the next keyframe.

VI. EXPERIMENTS
This section documents experiments comparing our
STCM-SLAM method with state-of-the-art methods on
EuRoC datasets and on the mobile robot in an indoor
environment.

A. LOCALIZATION ACCURACY
ORB-SLAM2 and OKVIS are state-of-the-art methods used
in visual SLAM and VI-SLAM, respectively. In order to
effectively assess the performance of our proposed method,
we compare STCM-SLAM with ORB-SLAM2 and OKVIS.
The EuRoC dataset is a well-known SLAM dataset that
has been used to test the localization accuracy of visual
SLAM or visual-inertial SLAM methods. We determine that
this dataset is the best choice for comparing STCM-SLAM,
ORB-SLAM2, and OKVIS, although it is acquired by
a micro-aerial vehicle. In addition, the dataset provides
stereo camera images, IMU data, and the ground-truth of
the robot’s motion. The image resolution is 752 × 480,
the frequency is 20 Hz, and the IMU frequency is 200 Hz.
Especially, the first batch of the dataset is recorded in the
ETH machine hall, which is a largely unknown environment
for the robots. For our comparative experiment, we adopt
ORB-SLAM2’s stereo mode, and set default parameters of
ORB-SLAM2 (https://github.com/raulmur/ORB_SLAM2)
and OKVIS (https://github.com/ethz-asl/okvis). Experiments
are performed on an Intel Core i7-6700 × 8 computer
equipped with 16 Gb RAM, with an Ubuntu 18.04 LTS
operating system. Because the system uses a multi-threaded
design, calculation results are susceptible to the allocation of

FIGURE 9. The comparison of absolute trajectory error using the EuRoC
datasets.

computing resources. To counter this, each dataset repeatedly
ran 5 times and got the intermediate value of results.

We use ATE and RPE to evaluate the trajectory accu-
racy. In addition, the mean error, median error, mini-
mum value, RMSE, and standard deviation (STD) of the
pose error are calculated according to evo (https://github.
com/MichaelGrupp/evo). Table 3 and Table 4 show the
ATE and RPE of STCM-SLAM, ORB-SLAM2 and OKVIS,
respectively. It should be noted that the subscript of the
data indicates the order, and that OKVIS fails to run under
the V2_03 dataset. ORB-SLAM2 performs best in terms of
absolute trajectory error. In addition, the mean error, median
error, minimum value, RMSE, and STD of ORB-SLAM2 are
the smallest onMH_01,MH_02,MH_03, andMH_05, as can
be seen in Table 3. The overall accuracy of STCM-SLAM is
less than that of ORB-SLAM2, but the STCM-SLAMmethod
generates the fewest errors on the V2_03 dataset and has good
accuracy on the V1_01, V2_01, and V2_02 datasets. Fur-
thermore, STCM-SLAM’s range of error distribution is the
smallest on V2_01 and V2_03. This shows that our method
can achieve great localization accuracy when the robot moves
vigorously.

STCM-SLAM also achieves the best results in terms of
relative pose error, with the lowest values for mean error,
median error, minimum value, RMSE, and STD across a total
of 11 datasets, as shown in Table 4. The average RMSE
of absolute trajectory error is only 0.008m. Furthermore,
the accuracy of STCM-SLAM is an order of magnitude
greater than that of ORB-SLAM2 and two orders of magni-
tude greater than OKVIS. This is due to our proposed circle
feature matching method, achieving the smallest relative pose
error and tracking more robust.

The absolute trajectory error and relative pose error of
these three methods are shown in Fig. 9 and Fig. 10, respec-
tively. As shown in Fig. 9, ORB-SLAM has a wide range
of error distribution on V1_01 and V2_03, and our method
achieves best results on these two sequences. Fig. 10 shows
that STCM-SLAM achieves the best results with the smallest
range of values. OKVIS had the widest error range and the
largest error value. The maximum error of OKVIS exceeds
0.6m on many sequences. Based on the above analysis, one
may reasonably conclude that the proposed method has good
localization accuracy and minimal drift.
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TABLE 3. Absolute trajectory error of STCM-SLAM, ORB-SLAM2 and OKVIS (m).

TABLE 4. Relative pose error of STCM-SLAM, ORB-SLAM2 and OKVIS (m).

FIGURE 10. The comparison of relative pose error using the EuRoC
datasets.

B. PARAMETERS EVALUATION
To assess the effectiveness of these methods, we compare the
performances of STCM-SLAM, ORB-SLAM2, and OKVIS
in a number of areas, such as scale error (SE), running frame
frequency, CPU load (CL), andmemory load (ML).We found
that the CPU andmemory resources are 100% occupied when
fully used. We also remove the influence of the computer
system from offline experiment results. The original image
rate of datasets is 20 Hz, and we make use of a multi-speed
mode in order to examine the real-time performance of these
methods. When the frame rate is less than 20 Hz, the runtime
algorithm experiences data delay. The performance results of

the three methods, scale error (%), operating frequency (Hz),
CPU load (%), and memory load (%), are shown in Table 5.
Unfortunately, OKVIS is unable to provide the scale error for
the V2_03 dataset, so the average scale error for OKVIS is an
average of the data from the MH_01 to the V2_02 datasets.

In this study we analyze the scale error, running fre-
quency, CPU load, and memory load of STCM-SLAM,
ORB-SLAM2, and OKVIS, as presented in Table 5 and
Fig. 11. In terms of scale error, ORB-SLAM2 has the best
scale accuracy and achieves excellent performances on most
of the datasets. STCM-SLAM also possesses good scale
estimation and performs better than OKVIS. In terms of
running frequency, STCM-SLAM runs at the highest fre-
quency, averaging 36.070 Hz. OKVIS is also able to run
in real time, except when applied to the V1_02 dataset.
However, ORB-SLAM2 is unable to run in real time for any
of datasets in the experiment, and the average frequency it
achieved is only 10.165 Hz. As can be seen in Fig. 11(c),
STCM-SLAM is inferior to ORB-SLAM2 but better than
OKVIS in terms of CPU load. In terms of memory load,
STCM-SLAMandORB-SLAM2 perform similarly, and both
require more memory than OKVIS.

Based on the above analyses, it is clear that STCM-SLAM
achieves excellent relative pose estimation with the least
amount of inter-frame drift, a result significantly better than
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TABLE 5. Performance results of STCM-SLAM, ORB-SLAM, and OKVIS.

FIGURE 11. Performance comparisons between STCM-SLAM, ORB-SLAM2, and OKVIS. (a) The comparison of scale error. (b) The comparison of
running frequency. (c) The comparison of CPU load. (d) The comparison of memory load.

TABLE 6. Trajectory analysis of the mobile robot trajectory.

ORB-SLAM and OKVIS. Although ORB-SLAM obtains
the best absolute trajectory estimation and scale estimation,
it cannot meet the real-time requirement of experiments.
In contrast, STCM-SLAM and OKVIS are able to meet the
real-time requirement but STCM-SLAM has obvious advan-
tages over the OKVIS in terms of scale error, running fre-
quency, and CPU load.

In this investigation, we compare the inter-frame process-
ing times of STCM-SLAM, ORB-SLAM2, and OKVIS in
order to better assess the real-time performance of SLAM
systems. These results are presented in Fig. 12. The time
variation for the inter-frame calculations across ORB-SLAM,
OKVIS, and STCM-SLAM are indicated by blue, yellow,
and green lines, respectively. As shown across Fig. 12(a) to
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FIGURE 12. Inter-frame processing time comparisons between STCM-SLAM, ORB-SLAM2, and OKVIS. (a) MH_02 dataset. (b) MH_04 dataset.
(c) V1_02 dataset. (d) V2_02 dataset.

FIGURE 13. The layout of the mobile robot motion capture system.

Fig. 12(d), the inter-frame processing time of STCM-SLAM
is minimal and relatively stable. Overall, the inter-frame
processing time for OKVIS is superior to ORB-SLAM2,
but OKVIS also produces some extremely long inter-frame
processing times, due to the effect of global optimization,
which affects the system’s robustness.

C. INDOOR EXPERIMENT
When the mobile robot is working in an environment similar
to a roadway or promenade, the robot’s movement is mainly
dominated by straight actions. Consequently, this paper sim-
ulates a laboratory environment as the mobile robot’s oper-
ation environment, and uses the 3D motion capture system

to evaluate the localization accuracy of the STCM-SLAM
system. The arrangement of the equipment used in the mobile
robot motion capture system is shown in Fig. 13.

In this experiment, we use a rocker wheel-track robot [3]
equipped with a MYNT stereo camera. This stereo camera
consists of two global shutters and a 6-axis IMU. The robot’s
comprehensive test bench serves as the platform for the
mobile robot’s movements. The bench surface is both convex
and concave, thus simulating a road surface. In addition,
the inclination angle is set to 10◦, and baffles are placed at
the start and end positions of the bench, serving as obstacles
to increase the running collision effect.

During the experiment, the stereo camera’s frequency is
set to 20 Hz and the IMU is set to 200 Hz, which allows for
time synchronization. The stereo camera and IMU have been
previously rectified. The comparison between the trajectories
calculated by STCM-SLAM, ORB-SLAM2 and OKVIS, and
the ground-truth at different velocities is shown in Fig. 14.

As can be seen in Fig. 14, the trajectories of STCM-SLAM
most closely match ground-truth trajectories. Furthermore,
the localization accuracy of STCM-SLAM is better than
either ORB-SLAM2 or OKVIS. As ORB-SLAM2 uses a
pure visual method for localization and does not use IMU
data, it is not able to effectively estimate poses during the
pure translation of the mobile robot. The scale accuracy of
ORB-SLAM2 has a large deviation, and the trajectories of the
three methods are more deviated than ground truth. OKVIS
performs better than ORB-SLAM2; however, the localization
accuracy OKVIS achieved is lower than STCM-SLAM’s.
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FIGURE 14. Comparison of the trajectories for ground-truth, STCM-SLAM,
ORB-SLAM2, and OKVIS. (a) The trajectories at 0.45 m/s. (b) The
trajectories at 0.60 m/s. (c) The trajectories at 0.80 m/s.

The trajectory of the y-axis and z-axis of the mobile
robot is far less than the x-axis. To this end, we mainly
evaluate the trajectory of the x-axis. Table 6 presents
the mean error, RMSE, and STD of the x-axis trajecto-
ries for these three methods, with the mobile robot run-
ning at a range of different velocities. In terms of RMSE,
the accuracy of STCM-SLAM is 980.702% and 475.439%
over ORB-SLAM2 and OKVIS, respectively. In terms of
mean error, the accuracy of STCM-SLAM is an increase
of 795.652% and 136.957% over ORB-SLAM2 and OKVIS.
In terms of mean error, the accuracy of STCM-SLAM
represents an increase of 691.525% and 62.712% over
ORB-SLAM2 and OKVIS. Based on RMSE, mean error, and
STD, the accuracy of STCM-SLAM is superior to that of
either ORB-SLAM2 or OKVIS.

VII. CONCLUSION AND FUTURE WORK
This paper investigates the effect of tightly coupling the stereo
camera and IMU in order to better estimate the position of
mobile robots in unknown environments without occlusions.
Forward backward optical flow is used to track features, and
STCM is proposed to manage features. In terms of relative
pose error, the STCM-SLAM results are an order of mag-
nitude greater than ORB-SLAM2 and two orders of mag-
nitude greater than OKVIS. Our experiments indicate that
STCM-SLAM has obvious advantages over OKVIS in terms
of scale error, running frequency, and CPU load. In the indoor
experiments, STCM-SLAM is able to accurately estimate the
trajectory of the mobile robot, and it outperforms OKVIS and
ORB-SLAM2 in terms of RMSE, mean error, and STD.

In future work, it would be useful to fuse light sources into
the SLAM system, allowing us to solve problems related to
the localization and mapping of robots in dark and narrow
environments. In addition, using upward and forward cam-
eras, or panoramic cameras, would further improve localiza-
tion accuracy.
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