
Received November 27, 2019, accepted December 14, 2019, date of publication December 20, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961106

A Hybrid Algorithm for Scheduling Scientific
Workflows in Cloud Computing
MUHAMMAD SARDARAZ AND MUHAMMAD TAHIR
Department of Computer Science, COMSATS University Islamabad at Attock Campus, Attock 43600, Pakistan

Corresponding author: Muhammad Tahir (m_tahir@cuiatk.edu.pk)

ABSTRACT Cloud computing has become the main source for executing scientific experiments. It is
an effective technique for distributing and processing tasks on virtual machines. Scientific workflows
are complex and demand efficient utilization of cloud resources. Scheduling of scientific workflows is
considered as NP-complete. The problem is constrained by some parameters such as Quality of Ser-
vice (QoS), dependencies between tasks and users’ deadlines, etc. There exists a strong literature on
scheduling scientific workflows in cloud environments. Solutions include standard schedulers, evolutionary
optimization techniques, etc. This article presents a hybrid algorithm for scheduling scientific workflows in
cloud environments. In the first phase, the algorithm prepares tasks lists for PSO algorithm. Bottleneck tasks
are processed on high priority to reduce execution time. In the next phase, tasks are scheduled with the PSO
algorithm to reduce both execution time and monetary cost. The algorithm also monitors the load balance
to efficiently utilize cloud resources. Benchmark scientific workflows are used to evaluate the proposed
algorithm. The proposed algorithm is compared with standard PSO and specialized schedulers to validate
the performance. The results show improvement in execution time, monetary cost without affecting the load
balance as compared to other techniques.

INDEX TERMS Cloud computing, PSO, scheduling, scientific workflows.

I. INTRODUCTION
Cloudcomputing has shifted computing from traditional way
to a fascinating and impressive era of computing. As opposed
to traditional computing, where users need to maintain
in-house infrastructure, cloud computing avoids this require-
ment and provides services as per user demand and use.
The users do not need to purchase and maintain hardware,
storage and processing, etc. The data are stored and accessed
via the Internet [1], [2]. Cloud users can access their data
anytime from anywhere. Cloud systems usually deliver three
deployment models i.e. Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service
(SaaS) [3]. Cloud computing environment is flexible and
scalable that facilitates the users to lease or release services as
per need. Users can lease services with long term reservation
plans or short term dynamic plans [4]. Many cloud services
providers provide similar services such as computing, stor-
age and network services. The services are influenced by
non-functional Quality of Service (QoS) parameters such

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiao Liu.

as availability, time, cost and energy consumption, etc., [5].
Cloud computing is deployed in three models i.e. public,
private or hybrid mode [6]. In public mode, cloud services
are accessible to anyone. In private mode, services can be
accessed only by authorized users. Hybrid cloud provides
services as mixture of public and private clouds [7].

Growth in data generated in different scientific disci-
plines demands huge processing power and storage space.
Next Generation Sequencing (NGS) machines have pro-
duced a huge amount of data in the last two decades that
has outpaced the progress in the development of computer
hardware [8], [9]. Other scientific fields such as Astronomy,
Environmental Sciences, Meteorology, Geological Sciences
also produce a large amount of data [10]. To reduce the
complexities in the execution of such applications, Workflow
Management Systems (WMS) are used to handle large scale
data and experiments [11].

Workflows are represented as Directed Acyclic Graphs
(DAGs) consisting of n tasks, where vertices represent tasks
and edges show the dependencies between the tasks. The
number of tasks in scientific workflows is very large. In addi-
tion, these jobs have dependencies that make it difficult for

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 186137

https://orcid.org/0000-0002-7169-8683
https://orcid.org/0000-0002-7750-8959

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

the scheduler to efficiently schedule tasks and utilize cloud
resources. Scheduler acts as an intermediary between cloud
resources and workflow tasks. Workflow scheduling in cloud
environment is considered as NP-complete. Many factors
such as QoS, user deadlines, monetary cost, execution time,
data privacy and security, etc. influence the performance of
scheduling algorithms.Workflow scheduling algorithms need
massive computational resources that make it suitable for
cloud computing environments. Cloud computing is econom-
ical and scalable infrastructure to execute workflow tasks.
Tasks in workflows have different execution times with dif-
ferent computational demands [12]. Someworkflows demand
high processing power whereas others need large memory
and high bandwidth.

Workflow scheduling has been widely studied in the
literature. Some researchers have used traditional schedul-
ing algorithms, whereas others have focused on optimiza-
tion techniques to solve the problem. Solutions include
single objective, bi-objective or multi-objective. Most of the
researchers have targeted makespan, cost and load balance,
etc. Solutions include either heuristics or meta-heuristics.
Heuristics like min-min, max-min, etc. or combinations
of these techniques with meta-heuristics have been used
in literature [5], [13], [14]. Solutions in meta-heuristics
use nature-inspired algorithm such as Genetic Algorithm
(GA) [15]–[18], Ant Colony Optimization (ACO) [19]–[22],
Particle Swarm Optimization (PSO) [23]–[26], etc. Each of
the solutions considers specific aspects of workflow schedul-
ing such as tasks dependencies, heterogeneity of resources,
scalability, etc., [12].

This article presents a hybrid algorithm for scheduling
scientific workflows in cloud computing. The proposed algo-
rithm is based on PSO technique with preprocessing phase
to prepare tasks for PSO algorithm. The contribution of the
article includes the preprocessing phase before applying PSO.
Workflow tasks have dependencies which makes it difficult
for the scheduler to obtain an optimum schedule. The pro-
posed algorithm targets the dependencies to obtain better
scheduling. The article is organized into the following sec-
tions. Related work is presented in section II with discussion
on the strengths and weaknesses of each method. Materials
and methods are presented in section III followed by results
and discussion in section IV. Finally, section V concludes the
article.

II. RELATED WORK
Scheduling of scientific workflows in cloud environments
is a challenging issue and considered as NP-complete prob-
lem [27]. The problem becomes more complicated when
tasks are dependent on each other. The scheduler needs to
execute tasks with the constraints of dependencies. Heuristics
like Max-Min, Min-Min, and Minimum Completion Time,
etc. have been used for this purpose [5], [14]. These solu-
tions suffer from the problems of long waiting times and
inefficient resources utilization. Hybrid versions of heuris-
tics and meta-heuristics are also available in literature.

Kumar and Verma [13] combinedmin-min,max-min andGA
for scheduling. The technique produced better results; how-
ever, the time complexity of the algorithm is high. Solutions
in meta-heuristics have also been used to solve the prob-
lem. These include GA [15]–[18], ACO [19]–[22], [28], and
PSO [23]–[26], etc.

This section presents discussion on some meta-heuristics,
the more related work to the proposed algorithm. For further
details and other methods, readers are referred to review
articles [4], [7], [29]–[33] on workflow scheduling.

The literature of scheduling workflows in cloud computing
mainly consists of solutions considering execution time with
constraints on other parameters i.e. users’ budgets, deadlines,
cost, load balance, energy consumption, and fault recov-
ery, etc. An algorithm based on PSO for workflow scheduling
in cloud computing environment is presented in [24]. The
algorithm reduces makespan or cost or any level in between.
The algorithm defines the tunable objective and PSO is used
to optimally map resources. Authors also proposed heuris-
tics to find bottleneck tasks to reduce makespan in cloud
computing. Different algorithms and parameters are used to
validate the performance of the proposed algorithm. Compar-
atively better results are achieved in terms of targeted param-
eters. The heuristics take long time to select optimal values.
Catfish PSO scheduling algorithm for scientific workflows
is presented in [25]. The algorithm targets to reduce both
makespan and execution cost. The algorithm is simulated
and comparative results on benchmark scientific workflows
are presented to validate the performance. The algorithm
achieved improvements in makespan; however, there is no
significant improvement in cost. Another algorithm based
on discrete PSO for scheduling in cloud computing is pre-
sented in [23]. Authors consider security, completion time,
cost, load balancing as objective parameters. The algorithm
formulates an initial group based on the speed and position
of the particles and finds an optimal solution to adjust the
position of particles. Simulation results are shown to validate
the performance of the algorithm. The technique improves
some parameters on the cost of others. Correlation among
parameters is not validated. Authors in Ref. [26] proposed
a PSO based budget constrained scheduling algorithm for
workflows in cloud computing environment. Authors have
focused to minimize makespan while keeping the constraint
of users’ budgets. The algorithm is evaluated with simulation
results to validate its performance. The algorithm takes long
time to find the best solution. Another algorithm named
as Bi-criteria Priority-based Particle Swarm Optimization is
proposed in [34]. The algorithm targets execution time and
cost in the presence of users’ budget and deadline constraints.
Comparative results are presented to validate the algorithm.
The proposed algorithm achieves significant improvement
in execution time and monetary cost. The algorithm does
not consider load among different resources. Another algo-
rithm based on PSO is presented in [35]. The algorithm
targets efficient distribution of resources. Monetary cost and
makespan are optimization parameters. Experimental results

186138 VOLUME 7, 2019

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

on benchmark workflows are shown to validate the results.
The time complexity of the algorithm is higher as compared
to other tools. Another technique that uses GA and PSO in
hybrid mode for workflow scheduling [36]. The objectives of
the algorithm are execution time, cost and load balance. The
algorithm is designed for heterogeneous cloud environments.
GA is used to generate the initial population which is further
processed with PSO. Experimental results are shown to vali-
date the performance of the algorithm. The technique suffers
from longer execution time due to the use of both GA and
PSO.

Some researchers have focused on cost as the primary
parameter for scheduling workflows in cloud environments.
Other parameters targeted with cost includes users’ budget
and deadlines, etc. A heuristic for workflow scheduling in
cloud computing is proposed in [37]. The heuristic is based on
PSO and considers both computation and transmission costs
while scheduling workflows. Scheduling heuristic and PSO
are merged to optimally schedule workflows and reduce cost.
The heuristic maps all tasks in the workflow regardless of the
dependencies. Ready tasks are then assigned to the resources
according to the mapping specified by PSO. The scheduler
then waits for ready tasks and the process is repeated. Sim-
ulation results are shown to validate the performance of the
proposed heuristics. The algorithm achieved better results in
comparison to other algorithms. The accuracy of the results
cannot be validated due to fast convergence and the problem
of local optima. A scheduling algorithm based on modified
PSO for scheduling tasks in cloud computing environment is
presented in [38]. The algorithm uses fitness function for both
resource usage cost and execution cost. The algorithm selects
particles with the highest fitness value and updates particles
according to previous and global best positions. After opti-
mizing positions and velocity of particles optimization step
takes place. The algorithm is compared with standard PSO
to validate the performance of the algorithm. The algorithm
achieves improvements against standard techniques; how-
ever, comparative results with specialized schedulers are not
presented. Authors in [39] present a discrete PSO algorithm
for scheduling workflows in cloud computing. The algorithm
takes into account both data transmission and computation
cost. The algorithm starts with an initialization step, where
greedy randomized adaptive search procedure is used. In the
next step, the best parameters are selected for particles and
the best position is returned. Authors present comparative
analysis to validate the performance of their algorithm. The
proposed technique is not efficient in large search space.
A chaotic PSO based task scheduling algorithm in cloud
workflows is presented in [40]. The algorithm applies chaotic
sequence and adaptive inertia weight factors for task-level
scheduling. The prior parameter is used to assure global
convergence and the later is used to avoid premature con-
vergence. The main focus has been on the cost. Comparative
simulation results with standard PSO and other algorithms
are presented to evaluate the proposed algorithm. The pro-
posed technique is not suitable for tasks with large number

of dependencies. A multi-objective scheduling algorithm for
multi-cloud environment is presented in [41]. The objective
parameters of the algorithm are makespan and cost in the
presence of reliability constraint. The proposed technique is
based on PSO. Initially, the algorithm generates particles with
random positions and velocities and applies PSO to generate
non-dominated solutions. A coding strategy is applied to
generate schedules. Finally, constraints are enforced to ensure
that positions of the particles do not move beyond the bound-
ary of the constraints. Comparative results are presented to
validate the performance of the proposed technique. Energy
consumption has also been used as objective along with
other parameters in scheduling algorithms. A multi-objective
algorithm for workflow scheduling in cloud computing is
presented in [6]. The algorithm is based on PSO and the
main focus has been on energy consumption as opposed to
other researchers who have focused on makespan, cost or
user deadlines. The algorithm uses Dynamic Voltage and
Frequency Scaling (DVFS) technique i.e. processors operate
at different levels of the voltage supply. Different levels of
voltage establish a correlation between quality of scheduling
and energy consumption. The algorithm is validated with
simulation results and comparative results are presented.
The algorithm shows reductions in energy; however, other
scheduling parameters are affected.

In literature, researchers have focused on some specific
parameters. Some articles have focused on single objectives
whereas others have focused on bi or multi-objective. There
is a correlation between different parameters i.e. improving
one parameter affects other parameters. In most of the cases,
multi-objective optimization algorithms have targeted execu-
tion time and cost. Other parameters such as load balance and
energy consumption, etc. are infew in few studies. In this arti-
cle, we present an algorithm that targets execution time, cost
and load balance as multi-objective optimization parameters.

III. MATERIALS AND METHODS
In this section, we present multi-objective hybrid algorithm
for scheduling workflows. The proposed algorithm includes
preprocessing, and PSO based scheduling. Following subsec-
tions presents details of the algorithm.

A. WORKFLOW AND CLOUD MODEL
Workflows are represented as DAGs. Workflow tasks have
dependencies represented as G = (V, E), where V refers to
the vertices and represents tasks in workflow and E refers to
edges and represents dependencies between tasks. Parent task
should be executed before any child task starts execution [42].
Workflow tasks have different parameters such as execution
time, data to be sent or received and dependencies between
parent-child tasks. Workflow tasks may be computation-
ally intensive, data-intensive or both computation and data
intensive.

The cloud model consists of data centers. Each datacenter
consists of a number of physical machines. The machines
consist of computing and storage resources. Each resource

VOLUME 7, 2019 186139

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

has processing, storage, memory, and bandwidth capacity.
Resources in cloud computing are represented as Virtual
Machines (VMs). VMs have fixed bandwidth, processing
capabilities and storage cost per unit of time, etc. Workflow
tasks can be scheduled for any of the available resources. The
processing capacity of VM is measured as the number of Pro-
cessing Elements (PE) and the processing power of each PE.
Equation 1 is used to calculate the processing capacity of
a VM.

Ci = (PE×MIPSi) (1)

Equation 2 is used to calculate capacity of n VMs.

C =
n∑
i=1

Ci (2)

Load of VM is the ratio of the length of tasks executed by a
VM and capacity of VM. Equation 3 is used to calculate the
load of VM.

Lvmi =
TL
Ci

(3)

Load of all VMs can be calculated with Equation 4.

L =
n∑
i=1

Lvmi (4)

While executing workflows tasks, some parameter needs
to be measured. The proposed algorithm uses makespan,
cost and load balance as multi-objective optimization
parameters.

Completion Time CT of a workflow tasks ti is the time of
getting data and the execution time. The task may need access
to the required data for execution. Completion time of task ti
can be calculated with equation 5.

Time(ti) = Time((Transti , tj)+ TimeE (ti,VMk)) (5)

Where Transti , tj is the time of data transmission from task
ti to tj and TimeE (ti,VM k) is the execution time of task ti
over VMk . Transfer time can be calculated with equation 6
whereas execution time can be calculated with equation 7.

Trans(ti, tj) =
sizeof (ti, tj)
β(VMk ,VMm)

(6)

In above equation, sizeof (ti, tj) is the size of data transferred
from task ti to tj and β(VMk ,VMm) is the bandwidth of data
centers where VMk and VMm are located. In case where
both VMs are in same data center, transmission cost will be
zero.

TE =
li
Cmj

(7)

In equation 7, li is the length of tasks i and Cmj is the process-
ing capacity of VMj calculated with equation 2. Makespan is
the finish time of the last task in the workflow. Equation 8 is
used to calculate the makespan.

MS = FT ni=1[taskitime] (8)

Where MS refers to makespan and FT is the finish time of
a task. Monetary Cost (MC) of a workflow is the execution
cost and data transfer cost between different tasks. Cost is
calculated with Equation 9. Monitory cost consists of Total
Execution Cost (TEC) calculated with equation 10 and Total
Transfer Cost (TTC) calculated with equation 11.

MC = TEC + TTC (9)

TECwi =
n∑
i=1

vmtimei vmcosti (10)

where n is the number of tasks in the workflow, vmtime refers
to the time a VM has executed a particular task. Vmcost is the
cost of VM for executing a task.

TTCwi =
n∑
i=1

size(ti,tj)

βcost
(11)

Size refers to the size of data to be transferred and βcost is the
bandwidth cost. Load balance (σ) is the measurement of the
standard deviation of the load of all nodes as shown in equa-
tion 12. The smaller values mean better load management.

σ=

√∑n
i=1(Lvmi − L)2

n
(12)

Where Lvmi refers to the load of VMi, L is the average load of
all VMs and n is the number of VMs.

B. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is an Evolutionary Algorithm (EA) inspired by the
behavior of the Swarm of birds or School of fishes [30]. In a
problem space each particle swarms and finds a candidate
solution. A particle is represented by two parameters i.e. posi-
tion pi and velocity vi. Position of the particle is influenced by
two parameters i.e. pbest and gbest . The position pbest is the
best position visited by the particle whereas gbest is the best
position of the experience of the neighboring particles. After
each iteration, the algorithm updates position and velocity.
Equation 13 is used to update velocity.

vtid = wvt−1id + c1r1(pbest
t
id − x

t
id)+ c2r2(gbest

t
id − x

t
id)

(13)

where vtid is the velocity for the dth dimension of the ith
particle on iteration t . The position is updated according
to Equation 14. Where ptid is the position of particle iat
time t in dth dimension and vtid is the velocity calculated in
Equation 13.

pt+1id = ptid + v
t
id (14)

Fitness of the solution denoted as F is calculated with
Equation 15.

F = w
maxms − ms

maxms − minms
+ w

maxmc − mc
maxmc − minmc

+w
max lb − lb

max lb − minlb
(15)

186140 VOLUME 7, 2019

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

Maximum and minimum values of makespan, cost and
load balance are used to calculate the fitness with
weightage factor w. In the evaluation of the proposed
algorithm, equal weight i.e. 0.33 was used for all
parameters.

A multi-objective optimization problem can be formulated
with m decision variables and n objectives as shown in
equation 16 [6].

min(y = f (x) = [f1(x),fn(x)]) (16)

where x = (x1,. . .xm) ∈ X is m dimensional decision vector in
search space X and y = (y1,. . .yn) ∈ Y is the objective vector
in objective space Y.

In such problems, no solution can be claimed as optimal
with respect to all objectives. Potential candidate solutions
can be considered optimal for a set of objectives referred to
as Pareto-optimal set. In this work, we target three objec-
tives i.e. makespan, cost and load balance. The target is to
minimize all parameter. Keeping in view the minimization
criterion, we discuss Pareto concepts related to the problem.
Suppose, we have two decision vectors x1 and x2. The deci-
sion vector x1 is said to be dominant over x2 if and only
if x1 is as good as x2 for all objective and x1 is strictly
superior than x2 in at least one objective. The definition
of Pareto dominance can be written mathematically as in
equation 17.

x1 ≺ x2 ⇐⇒ ∀ifi(x1) ≤ fi(x2) ∧ ∃jfj(x1) < fj(x2) (17)

The decision vector x1 is said to be Pareto optimal if and only
if x1 is not dominated by any other decision vector as shown
in equation 18.

@x2 ∈ X : x2 ≺ x1 (18)

A set of all Pareto optimal decision vectors is referred to
Pareto optimal set as shown in equation 19.

PS = {x1 ∈ X , |@x2 ∈ X : x2 ≺ x1} (19)

The image of Pareto optimal set is referred to as the Pareto
optimal front as shown in equation 20.

PF = {f (x) = (f1(x),fn(x))|x ∈ PS} (20)

Standard PSO algorithm follows the following steps. (1) Ini-
tialize the initial population of particles with random passion
and velocity.
(2) Evaluate the objective value of each particle. Update

pbest and gbest equal to the current position and best initial
particle respectively.

(3) Update velocity and position of each particle.
(4) Evaluate fitness of each particle according to fitness

function.
(5) For each particle select pbest . If current value is better

than pbestt , update current value.
(6) From the whole population select gbest value. If the

obtained value is better than gbest , update gbest according to
position and value.

(7) Repeat the process until the stopping criterion
is met.

C. PROPOSED ALGORITHM
The proposed algorithm is based on PSO technique to reduce
monetary cost and execution time (makespan) of workflows
with a balanced load over all nodes. The main advantage
of PSO over other meta-heuristics is speed and faster con-
vergence of the algorithm. The algorithm has been used in
the literature of cloud computing for different purposes such
as scheduling and VMs placement, etc. It is assumed that
the scheduler knows dependencies between various workflow
tasks. The execution time of workflow tasks is also known
in advance. The purpose of the proposed algorithm is to
schedule cloud resources to workflow tasks by optimizing
monetary cost and execution time. The goal of the schedul-
ing algorithm is to assign resource Ri to workflow Wj such
that cloud resources are efficiently utilized. The scheduler
must also consider other parameters while scheduling cloud
resources.

Before applying PSO, the proposed algorithm uses prepro-
cessing steps to prepare tasks and resources for PSO. The
proposed algorithm first sorts tasks according to the number
of descendants i.e. the tasks with large number of descendants
are processed first. These jobs become bottleneck for cloud
resources and thus cause large execution times [24]. The
algorithm also sorts cloud resources according to the process-
ing power i.e. resources with high processing power and low
processing power. Two lists of resources are maintained to
process workflow tasks. Parent tasks that need large process-
ing time are processed with high processing nodes to elimi-
nate the dependencies quickly. After processing parent tasks,
children tasks are processed according to their position in the
graph i.e. leaf tasks are processed with low processing nodes,
parent and intermediate tasks are processed with available
high processing nodes. If at any point in time the resources are
not load balanced the algorithm switches tasks from one list to
the other to make effective and balanced use of resources. The
tasks are moved to dependency list that contains tasks with
dependency and independent list that contains independent
tasks. The algorithm uses PSO for assignment of resources to
tasks for both lists. Tasks start execution with random particle
position and velocity and each particle is evaluated according
to the fitness function. Variables are updated, and the process
is repeated until the stopping criterion does not meet. Fitness
is calculated on the basis of execution time and cost as shown
in equation 15.

Figure 1 shows the flow of the proposed algorithm,
whereas algorithms 1 and 2 show the procedures involved.
Lines 1-4 in algorithm 1 are used to separate root tasks. These
tasks are stored in a separate list. Lines 5-7 check intermedi-
ate tasks and tasks are moved to respective list accordingly.
Line 9 checks the status of the parent tasks in order to start
the execution of dependent tasks. In line 12 leaf tasks are
identified and moved to a separate list.

VOLUME 7, 2019 186141

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

FIGURE 1. Flow of the preprocessing phase of the proposed algorithm.

Designing a successful mapping of tasks and resources
is a challenging task [43]. We use a search space of m
dimensions for m tasks with a set of possible discrete values
in the range of 1 to N , where N is the number of VMs.
We use notations used in previous study [23] to represent
tasks to VMs assignment i.e. xit = (x ti1, x

t
i2,, x

t
ij). Where

x tij represents VMi assigned by the jth place of a particle at
time t . The dimensions of the particle are represented by the
number of tasks in a workflow. The velocity is represented by
vit = (vti1, v

t
i2,, v

t
ij). Where vtij represents the velocity of

VMi to move to jth place of a particle at time t . The proposed
algorithm archives feasible solutions i.e. non-dominated par-
ticles. Initially the archive is empty. As the algorithm finds
a solution, it is stored in the archive. It should be noted that
the archive contains only non-dominated solutions. During
the process, if the current solution is dominated by another
solution, the current solution replaced by the new one in
archive. The decision is made on the basis of the fitness crite-
ria used. At the end of the procedure, the archive only contains
non-dominated solution referred to as feasible solutions.

IV. EXPERIMENTAL EVALUATION
This section presents experimental setup followed by exper-
imental results and discussion. Scientific workflows [44]
from different scientific domains were used for experimental
evaluation of the proposed algorithm. Workflows consist of

Algorithm 1 Preprocessing
Input : workflow w

Output : lists of tasks

1 while w has tasks do

2 if ti is not a child task (root task) then

3 move ti to List1
4 end

5 if ti is parent task (intermediate tasks) then

6 if parent tasks of ti are completed then

7 move ti to List1
8 else

9 wait for parent tasks completion

10 end

11 else

12 move ti to List2 (leaf tasks)

13 end

14 end

15 Process both lists with PSO algorithm

Algorithm 2 PSO Based Scheduling Algorithm
Input : List of tasks from pre-processing phase

Output : Tasks to VMs map

1 N=number of VMs

2 M=number of tasks in workflow

3 P=population size

4 p=ith particle in P

5 calculate fitness of p according to Eq.15

6 calculate velocity of p according to Eq.13

7 gbest=global best position

8 pbest=particles’ best position

9 for each particle p in P do

10 for each task t in workflow do

11 l initialize X tij randomly

12 l initialize velocity v randomly

13 evaluate pi
14 update pbest and gbest

15 end

16 end

different number of tasks, dependency levels and data trans-
fer between different tasks. Structures of the workflows are
shown in Figure 2. Table 1 shows details of the datasets
used for experiments. Algorithms were evaluated in terms
of makespan, cost and load balance. Makespan refers to the

186142 VOLUME 7, 2019

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

FIGURE 2. Structures of the workflows used for experiments (a) Sipht, (b) CyberShake (c) Epigenomics (d) LIGO
(e) Montage.

TABLE 1. Datasets used for experiments.

total execution time of all tasks in a workflow. Cost refers
to execution and data transfer cost of tasks in the workflow
application. Load balance is the matrix that shows whether
the system is well load balanced. Load balance is measured
as the standard deviation of load of all nodes as shown in
equation 12. In case of all parameters, small values are
preferred.

The algorithm is compared with standard PSO, GA and
specialized schedulers based on PSO technique i.e.
PSO-DS [35] and GA-PSO [36]. We have used standard
version of PSO without any pre-processing phase. The values
of parameters, notations and functions used for standard
PSO were same as used for the proposed algorithm. A gen-
erational standard version of GA was used with roulette
wheel selection, multipoint crossover and single point muta-
tion. The values of crossover and mutation probabilities
were set to 0.6 and 0.2 respectively. Fitness function and

tasks to VMs notations used to evaluate the proposed algo-
rithms were also used for GA. GA-PSO and PSO-DS were
simulated with parameters and functions discussed in the
respective articles. CloudSim simulator [45] was used for
experiments. Experiments were performed on a computer
with Intel Core i3 processor and 4 GB memory running
Ubuntu 14.04 operating system. The simulation environment
consists of 8 VMs with different specifications (1000 MBs
memory and MIPS between 1000 and 10000) and 3 dat-
acenters. Costs were set to 0.017, 0.05, 0.01 and 0.01 for
processing, memory, storage and transfer respectively. Each
algorithm was executed 20 times and average results are
shown. Algorithms were evaluated in terms of execution
time, cost and load balance. The value of inertia weight
factor ω was set to 1.2 and learning factors were set to 2 as
recommended in previous studies [35]. Comparative results
of different algorithms are shown in Table 2. The results are
shown in terms of execution time, cost and load balance.
The results show that the proposed algorithm performs better
for execution time, cost and load balance on all datasets.
On Montage dataset, the proposed algorithm achieves 42.8,
40.9 and 32.2 percent improvement for makespan, cost and
load balance respectively over standard PSO algorithm. For
the same dataset, percent improvement over GA is 41.04,
35.5 and 45.4 for makespan, cost, load balance respectively.
In comparison to GA-PSO, the proposed algorithm achieves
18, 23.5 and 17.1 percent improvement for makespan, cost
and load balance respectively. Percent improvement on mon-
tage datasets over PSO-DS for makespan, cost, load balance

VOLUME 7, 2019 186143

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

TABLE 2. Comparative results of proposed algorithm with other
scheduling algorithms. Makespan is shown in seconds, cost is shown in
dollars and Load Balance (LB) is calculated with Equation 12. Average
results of 20 runs are shown.

FIGURE 3. Percent improvement gain of the proposed algorithm over
PSO, GA, GA-PSO, PSO-DS on Montage dataset.

is 11.3, 16.1 and 2.02 respectively as shown in figure 3.
The proposed algorithm achieved 30.0, 52.3 and 24.3 percent
improvement in makespan, cost and load balance respectively
over standard PSO on Sipht dataset. For the same dataset,
the proposed algorithm achieved percent of improvement
of 28.6 in makespan, 51.1 in cost and 34.4 in load balance
over GA. Percent improvement of the proposed algorithm for
Sipht dataset over GA-PSO is 6.8 for makespan, 19.6 for cost
and 22.2 for load balance. For the same dataset, the proposed
algorithm achieved 2.7, 14.5 and 6.5 percent improvement for
makespan, cost and load balance respectively over PSO-DS
as shown in figure 4. Percent improvement of the proposed
algorithm on LIGO dataset, over standard PSO is 29.06,
44.6 and 18.5 for the three parameters. Improvement in

FIGURE 4. Percent improvement gain of the proposed algorithm over
PSO, GA, GA-PSO, PSO-DS on Sipht dataset.

FIGURE 5. Percent improvement gain of the proposed algorithm over
PSO, GA, GA-PSO, PSO-DS on Ligo dataset.

execution time, cost and load balance over GA for the same
dataset is 27.8, 49.2 and 34.4 respectively. In comparison,
GA-PSO, the proposed algorithm achieves 4.5, 26.3 and
15.6 percent improvement for makespan, cost and load bal-
ance respectively. In comparison to PSO-DS, the proposed
algorithm achieved 1.73, 20.2 and 10 percent improvement
for makespan, cost and load balance respectively. Detailed
results of LIGO dataset are shown in Figure 5. In case
of CyberShake dataset, the proposed algorithm achieved
29.7, 46.4 and 20.2 percent improvement in makespan,
cost and load balance respectively over PSO. The improve-
ment gain over GA for the same dataset and parameters is
28.02, 48.9 and 27.4 percent. In comparison to GA-PSO,
the proposed algorithm achieved 12.9, 20.3 and 24.8 percent
improvement for makespan, cost and load balance respec-
tively. Percent improvement over PSO-DS on CyberShake
dataset is 1.3, 11.0 and 7.14 for makespan, cost, load bal-
ance respectively. Figure 6 shows the detailed results of
CyberShake dataset. On Epigenomics dataset, the proposed
algorithm achieved percent improvement of 56.8, 33.4 and
27.3 for makespan, cost and load balance respectively over
PSO. For the same dataset, the improvement over GA is 59.4,
35.7 and 25.8 for the three parameters. In comparison to
GA-PSO, the proposed algorithm achieved 50.6, 35.5 and

186144 VOLUME 7, 2019

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

FIGURE 6. Percent improvement gain of the proposed algorithm over
PSO, GA, GA-PSO, PSO-DS on CyberShake dataset.

FIGURE 7. Percent improvement gain of the proposed algorithm over
PSO, GA, GA-PSO, PSO-DS on Epigenomics dataset.

29.1 percent improvement for makespan, cost and load
balance respectively. PSO-DS performed better in case of
Epigenomics datasets for makespan parameter. In case of cost
and load balance, the proposed algorithm achieved 12.1 and
9.3 percent improvement over PSO-DS. The detailed results
of Epigenomics dataset are shown in Figure 7.

The results are influenced by the characteristics of the
datasets. For CPU intensive datasets, the proposed algorithm
makes efficient utilization of parallelism to reduce execu-
tion time, cost and maintain balanced load among nodes.
For example, in Epigenomics dataset tasks are grouped into
24 pipelines with 4 nodes in each group. The dependencies
are avoided quickly and the execution time and cost are
reduced. Better parallelism also results in better loadmanage-
ment among resources. Similarly, Sipht dataset has bottleneck
tasks i.e. more tasks are dependent on some levels. Avoiding
such dependencies results improvement in targeted param-
eters. In CyberShake dataset, tasks are mainly distributed
on two levels. Number of parallel tasks is also high in this
dataset. Using small number of dependencies and high paral-
lelism reduces execution time, cost with better load balance.
Ligo dataset also has more parallel tasks with few dependen-
cies. Thus, allowing the scheduler to achieve better schedules.

Montage dataset consists of large number of parallel tasks
with low execution times. Due to high parallelism, better
results are achieved.

V. CONCLUSION
This article presents a hybrid scheduling algorithm for sci-
entific workflows in cloud computing environments. The
algorithm targets execution time and monetary cost as well
as load balance among computing nodes. The algorithm pre-
processes the workflow tasks to eliminate bottleneck tasks
and further scheduling is performed with the PSO algorithm.
The proposed algorithm is validatedwith experimental results
on scientific workflows from different domains. The algo-
rithm achieves improvement over the existing algorithms
in targeted parameters. The algorithm is limited to targeted
parameters and we aim to include other parameters in the
future.

REFERENCES
[1] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, ‘‘A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing,’’
J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1230–1242, 2013.

[2] Y. Hao, G. Liu, and J. Lu, ‘‘Three levels load balancing on CloudSim,’’ Int.
J. Grid Distrib. Comput., vol. 7, no. 3, pp. 71–88, 2014.

[3] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, ‘‘GA-ETI:
An enhanced genetic algorithm for the scheduling of scientific workflows
in cloud environments,’’ J. Comput. Sci., vol. 26, pp. 318–331, May 2018.

[4] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, ‘‘A survey of pso-
based scheduling algorithms in cloud computing,’’ J. Netw. Syst. Manage.,
vol. 25, no. 1, pp. 122–158, Jan. 2017.

[5] A. Verma and S. Kaushal, ‘‘A hybrid multi-objective particle swarm opti-
mization for scientific workflow scheduling,’’ Parallel Comput., vol. 62,
pp. 1–19, Feb. 2017.

[6] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, ‘‘Multi-objective
approach for energy-aware workflow scheduling in cloud computing envi-
ronments,’’ Sci. World J., vol. 2013, Sep. 2013, Art. no. 350934.

[7] K. Maryam, M. Sardaraz, andM. Tahir, ‘‘Evolutionary algorithms in cloud
computing from the perspective of energy consumption: A review,’’ in
Proc. 14th Int. Conf. Emerg. Technol. (ICET), 2018, pp. 1–6.

[8] S. D. Kahn, ‘‘On the future of genomic data,’’ Science, vol. 331, no. 6018,
pp. 728–729, 2011.

[9] M. Sardaraz, M. Tahir, and A. A. Ikram, ‘‘Advances in high throughput dna
sequence data compression,’’ J. Bioinf. Comput. Biol., vol. 14, no. 3, 2016,
Art. no. 1630002.

[10] S. G. Ahmad, C. S. Liew, E. U.Munir, T. F. Ang, and S. U. Khan, ‘‘A hybrid
genetic algorithm for optimization of scheduling workflow applications in
heterogeneous computing systems,’’ J. Parallel Distrib. Comput., vol. 87,
pp. 80–90, Jan. 2016.

[11] J. Yu and R. Buyya, ‘‘A taxonomy of scientific workflow systems for grid
computing,’’ ACM Sigmod Rec., vol. 34, no. 3, pp. 44–49, 2005.

[12] N. Anwar and H. Deng, ‘‘Elastic scheduling of scientific workflows under
deadline constraints in cloud computing environments,’’ Future Internet,
vol. 10, no. 1, p. 5, 2018.

[13] P. Kumar and A. Verma, ‘‘Scheduling using improved genetic algorithm in
cloud computing for independent tasks,’’ in Proc. Int. Conf. Adv. Comput.,
Commun. Informat., 2012, pp. 137–142.

[14] H. Xu, B. Yang, W. Qi, and E. Ahene, ‘‘A multi-objective optimization
approach to workflow scheduling in clouds considering fault recovery,’’
KSII Trans. Internet Inf. Syst., vol. 10, no. 3, pp. 976–995, Mar. 2016.

[15] E. Barrett, E. Howley, and J. Duggan, ‘‘A learning architecture for schedul-
ing workflow applications in the cloud,’’ in Proc. IEEE 9th Eur. Conf. Web
Services (ECOWS), Sep. 2011, pp. 83–90.

[16] C. Chen, J. Liu, Y. Wen, J. Chen, and D. Zhou, ‘‘A hybrid genetic algo-
rithm for privacy and cost aware scheduling of data intensive workflow
in cloud,’’ in Proc. Int. Conf. Algorithms Architectures Parallel Process.
Cham, Switzerland: Springer, 2015, pp. 216–222.

VOLUME 7, 2019 186145

M. Sardaraz, M. Tahir: Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing

[17] A. Verma and S. Kaushal, ‘‘Budget constrained priority based genetic
algorithm for workflow scheduling in cloud,’’ in Proc. 5th Int. Conf. Adv.
Recent Technol. Commun. Comput. (ARTCom), 2013, pp. 578–591.

[18] Y. Aryan andA. G. Delavar, ‘‘A bi-objective workflow application schedul-
ing in cloud computing systems,’’ Int. J. Integr. Technol. Educ., vol. 3, no. 2,
pp. 51–62, 2014.

[19] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, ‘‘Cloud task
scheduling based on ant colony optimization,’’ in Proc. 8th Int. Conf.
Comput. Eng. Syst. (ICCES), 2013, pp. 64–69.

[20] Y. Zhaofeng and F. Aiwan, ‘‘Application of ant colony algorithm in cloud
resource scheduling based on three constraint conditions,’’ in Proc. 5th Int.
Conf. Comput. Sci. Technol., Apr. 2016, pp. 22–23.

[21] Y. Zhou and X. Huang, ‘‘Scheduling workflow in cloud computing based
on ant colony optimization algorithm,’’ in Proc. 6th Int. Conf. Bus. Intell.
Financial Eng. (BIFE), 2013, pp. 57–61.

[22] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, ‘‘A multi-objective opti-
mization scheduling method based on the ant colony algorithm in cloud
computing,’’ IEEE Access, vol. 3, pp. 2687–2699, 2015.

[23] C. Jianfang, C. Junjie, and Z. Qingshan, ‘‘An optimized scheduling algo-
rithm on a cloud workflow using a discrete particle swarm,’’ Cybern. Inf.
Technol., vol. 14, no. 1, pp. 25–39, 2014.

[24] K.Wu, ‘‘A tunableworkflow scheduling algorithm based on particle swarm
optimization for cloud computing,’’ San Jose State Univ., San Jose, CA,
USA, Tech. Rep. 358, 2014.

[25] S. J. Nirmala and S. M. S. Bhanu, ‘‘Catfish-PSO based scheduling
of scientific workflows in IaaS cloud,’’ Computing, vol. 98, no. 11,
pp. 1091–1109, 2016.

[26] X. Wang, B. Cao, C. Hou, L. Xiong, and J. Fan, ‘‘Scheduling bud-
get constrained cloud workflows with particle swarm optimization,’’ in
Proc. IEEE Conf. Collaboration Internet Comput. (CIC), Oct. 2015,
pp. 219–226.

[27] J. Yu, R. Buyya, and K. Ramamohanarao, ‘‘Workflow scheduling algo-
rithms for grid computing,’’ in Metaheuristics for Scheduling in Dis-
tributed Computing Environments. Berlin, Germany: Springer, 2008,
pp. 173–214.

[28] Y. Zhaofeng and F. Aiwan, ‘‘Application of ant colony algorithm in cloud
resource scheduling based on three constraint conditions,’’ Adv. Sci. Tech-
nol. Lett., vol. 123, no. 7, pp. 215–219, 2016.

[29] L. Liu, M. Zhang, Y. Lin, and L. Qin, ‘‘A survey on workflowmanagement
and scheduling in cloud computing,’’ in Proc. 14th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., May 2014, pp. 837–846.

[30] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, ‘‘Towards workflow
scheduling in cloud computing: A comprehensive analysis,’’ J. Netw. Com-
put. Appl., vol. 66, pp. 64–82, May 2016.

[31] M. A. Rodriguez and R. Buyya, ‘‘A taxonomy and survey on scheduling
algorithms for scientific workflows in iaas cloud computing environ-
ments,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 8, p. e4041,
2017.

[32] C.-W. Tsai and J. J. P. C. Rodrigues, ‘‘Metaheuristic scheduling for cloud:
A survey,’’ IEEE Syst. J., vol. 8, no. 1, pp. 279–291, Mar. 2014.

[33] Q. Zhang, L. Cheng, and R. Boutaba, ‘‘Cloud computing: State-of-the-art
and research challenges,’’ J. Internet Services Appl., vol. 1, no. 1, pp. 7–18,
May 2010.

[34] A. Verma and S. Kaushal, ‘‘Cost-time efficient scheduling plan for execut-
ing workflows in the cloud,’’ J. Grid Comput., vol. 13, no. 4, pp. 495–506,
Dec. 2015.

[35] I. Casas, J. Taheri, R. Ranjan, and A. Y. Zomaya, ‘‘PSO-DS: A scheduling
engine for scientific workflow managers,’’ J. Supercomput., vol. 73, no. 9,
pp. 3924–3947, 2017.

[36] A. M. Manasrah and H. B. Ali, ‘‘Workflow scheduling using hybrid GA-
PSO algorithm in cloud computing,’’ Wireless Commun. Mobile Comput.,
vol. 2018, Jan. 2018, Art. no. 1934784.

[37] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, ‘‘A particle swarm
optimization-based heuristic for schedulingworkflow applications in cloud
computing environments,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., Apr. 2010, pp. 400–407.

[38] G. Zhao, ‘‘Cost-aware scheduling algorithm based on pso in cloud comput-
ing environment,’’ Int. J. Grid Distrib. Comput., vol. 7, no. 1, pp. 33–42,
2014.

[39] Z. Wu, Z. Ni, L. Gu, and X. Liu, ‘‘A revised discrete particle swarm
optimization for cloud workflow scheduling,’’ in Proc. Int. Conf. Comput.
Intell. Secur. (CIS), 2010, pp. 184–188.

[40] X. Li, J. Xu, and Y. Yang, ‘‘A chaotic particle swarm optimization-based
heuristic for market-oriented task-level scheduling in cloud workflow sys-
tems,’’ Comput. Intell. Neurosci., vol. 2015, Jan. 2015, Art. no. 81.

[41] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, ‘‘Multi-objective
scheduling for scientific workflow in multicloud environment,’’ J. Netw.
Comput. Appl., vol. 114, pp. 108–122, Jul. 2018.

[42] L. Liu, M. Zhang, R. Buyya, and Q. Fan, ‘‘Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud
computing,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 5, p. e3942,
2017.

[43] A. Salman, I. Ahmad, and S. Al-Madani, ‘‘Particle swarm optimization
for task assignment problem,’’ Microprocess. Microsyst., vol. 26, no. 8,
pp. 363–371, 2002.

[44] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
‘‘Characterization of scientific workflows,’’ in Proc. 3rd Workshop Work-
flows Support Large-Scale Sci., 2008, pp. 1–10.

[45] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

MUHAMMAD SARDARAZ received the mas-
ter’s degree in computer science from Founda-
tion University Islamabad and the Ph.D. degree in
computer science from Iqra University Islamabad,
Pakistan, in 2016. He worked as a Lecturer with
the Department of Computer Science, University
of Wah, Wah Cantt. He is currently working as an
Assistant Professor with the Department of Com-
puter Science, COMSATS University Islamabad,
Attock, Pakistan. His research interests are cloud

computing, cluster and grid computing, and bioinformatics.

MUHAMMAD TAHIR received the Ph.D. degree
in computer science from the Department of Com-
puting and Technology, Iqra University, in 2016.
He worked as a Lecturer with the Department of
Computer Science, University of Wah, Wah Cantt.
He is currently working as an Assistant Pro-
fessor with the Department of Computer Sci-
ence, COMSATS University Islamabad, Attock
Campus. His research interests include parallel
and distributed computing, Hadoop MapReduce

framework, bioinformatics algorithms design and analysis and sequence
alignment, and cloud computing.

186146 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	MATERIALS AND METHODS
	WORKFLOW AND CLOUD MODEL
	PARTICLE SWARM OPTIMIZATION (PSO)
	PROPOSED ALGORITHM

	EXPERIMENTAL EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	MUHAMMAD SARDARAZ
	MUHAMMAD TAHIR

