
Received November 29, 2019, accepted December 17, 2019, date of publication December 20, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2961129

DeepCPDP: Deep Learning Based
Cross-Project Defect Prediction
DEYU CHEN 1, XIANG CHEN 1, (Member, IEEE), HAO LI 2,
JUNFENG XIE 3, AND YANZHOU MU 2
1School of Information Science and Technology, Nantong University, Nantong 226019, China
2College of Intelligence and Computing, Tianjin University, Tianjing 300072, China
3School of Computer Science, Fudan University, Shanghai 200433, China

Corresponding author: Xiang Chen (xchencs@ntu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702041, Grant 61872263, and
Grant 61202006, and in part by the Nantong Application Research Plan under Grant JC2018134 and Grant JC2019106.

ABSTRACT Cross-project defect prediction (CPDP) is an active research topic in the domain of software
defect prediction, since CPDP can be applied to the following scenarios: the target project for software
defect prediction is a new project or the target project does not have enough labeled modules. Most of the
previous work tried to utilize the labeled dataset gathered from other projects (i.e., the source projects)
and then proposed transfer learning based methods to reduce the data distribution difference between
different projects. In this article, we propose a deep learning based CPDP method DeepCPDP. For this
method, we represent source code of each extracted program module by using simplified abstract syntax
tree (SimAST). For a node of SimAST, we only keep its node type, since this is project-independent,
while we ignore the name of method and variable, since these information are project-specific. Therefore,
SimAST is project-independent and especially suitable for the task of CPDP. Then, we extract the token
vector from each module after it is modeled via SimAST. Moreover, we design a new unsupervised based
embedding method SimASTToken2Vec to learn meaningful representation for these extracted token vectors.
Later, we employ Bi-directional Long Short-TermMemory (BiLSTM) neural network to automatically learn
semantic features from embedded token vectors. In addition, we use attention mechanism over the BiLSTM
layer to learn the weight of the vectors from the learned semantic features. Finally, we construct CPDP
models via Logistic regression classifier. To show the effectiveness of DeepCPDP, ten large-scale projects
from different application domains are used and AUCmeasure is used to measure the prediction performance
of trainedmodels. By using Scott-Knott test, we can findDeepCPDP can significantly outperform eight state-
of-the-art baselines. Moreover, we also verify that the usage of SimASTToken2Vec, BiLSTM and attention
mechanism is competitive in our proposed method.

INDEX TERMS Software defect prediction, cross-project defect prediction, bi-directional long short-term
memory, embedding method, attention mechanism.

I. INTRODUCTION
Software defect prediction (SDP) [15], [16] can assist devel-
opers to predict defective program modules in advance.
Therefore, the limited testing resources can be more ratio-
nal allocated to effectively testing these identified mod-
ules. In particular, SDP can train models after mining and
analyzing software repositories, and then these trained mod-

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuiguang Deng .

els can be assisted to distinguish defective modules from non-
defective modules in the project. The granularity of modules
for extracting can be set to file, method, or even code change
based on developer usage scenario. Most of previous work
focus on the scenario of within-in project defect prediction
(WPDP) scenario. In this scenario, developers train SDP
models on labeled modules and then perform predict on
the remaining unlabeled modules within the same project.
However, in some cases, a target project may be a new project
without any labeled modules or has a few labeled modules,

184832 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-4862-1450
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0001-6861-9430
https://orcid.org/0000-0003-2428-1495
https://orcid.org/0000-0003-1816-2246
https://orcid.org/0000-0001-5015-6095


D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

which is not enough to train a high-quality SDP model.
However, if we directly use gathered labeled data from other
projects (i.e., the source projects) and do not perform any
data preprocessing, the performance of trained models may
unsatisfactory, since the data distribution between different
projects can not satisfy the similar distribution assumption
in most cases. Therefore, researchers have designed different
transfer learning based methods to alleviate this kind of data
distribution difference in the scenario of cross-project defect
prediction (CPDP) [21].

Source code, which is a specific kind of formal languages,
can contain rich syntax and semantic information. How-
ever, previously proposed software metrics are designed in
the manual manner. These metrics mainly focus on code
complexity or characteristics of development process. There-
fore, these metrics can not fully capture such complicated
syntax information and semantic information in the source
code [30], [55]. Recently, researchers resorted to deep learn-
ing (a powerful representation learning method) to learn
meaningful semantic metrics from the extracted token vec-
tors. These token vectors are extracted from the abstract
syntax tree (AST) of the source code, therefore, these learned
semantic features have a higher correlation with defects and
their proposed methods are more promising. Wang et al. [55]
leveraged DBN (deep belief network) to automatically learn
semantic metrics from token vectors extracted from program
modules’ ASTs and then used these metrics to construct SDP
models. Then, Li et al. [30] proposed CNN (convolutional
neural network) based framework. In this framework, they
encoded extracted token vectors as numerical vectors via
word embedding and then used CNN to automatically learn
semantic features. Finally they used both semantic features
and traditional hand-craftedmetrics to construct SDPmodels.
Experimental results [30], [55] of these two studies showed
that the semantic metrics learned by deep neural network
(DNN) can significantly outperform the hand-crafted soft-
ware metrics.

Motivated by these two deep learning based SDP stud-
ies [30], [55], we propose a newmethod DeepCPDP, which is
a customization method for CPDP problem via deep learning.
The process of DeepCPDP can be summarized as follows,
we represent source code of each extracted program module
via simplified abstract syntax tree (SimAST). For a node
of SimAST, we only keep its node type, since this kind of
information is project-independent. If we use full AST to
model the source code of extracted programmodules, some of
gathered information (e.g., names of methods and variables)
are project-specific. This will result in large distribution dif-
ference between the source project and the target project.
It is not hard to find the SimAST is project-independent
and especially suitable for the task of cross-project defect
prediction. Then we extract token vectors from programmod-
ules’ SimAST. In addition, since more meaningful repre-
sentations of token vectors might be helpful to improve the
prediction performance of trained SDP models, we propose

a new unsupervised based embedding algorithm SimASTTo-
ken2Vec and use SimASTToken2Vec to automatically learn
meaningful representation for token vectors. Finally, we use
BiLSTM (Bi-directional Long Short-Term Memory) neu-
ral network [49] to learn contextual semantic features from
vectorized token vectors. Compared to other deep learning
models (such as CNN and RNN), BiLSTM has the advantage
in capturing the long context relationships in the source code,
where dependent code elements (such as try and catch in
Java) are scattered with a long distance. Moreover, we use
attention mechanism over the BiLSTM layer to learn the
weight of the vectors from the learned semantic features.
Finally, we construct CPDP models via Logistic regression
classifier.

To show the competitiveness of the method DeepCPDP,
we fist select ten large-scale projects in different application
domains as experimental subjects. Then we adopt AUC
measure to evaluate the performance of the trained models.
The main findings of our empirical studies can be briefly
summarized as follows: (1) Our proposed unsupervised
based embedding method SimASTToken2Vec is helpful
to improve the prediction performance of DeepCPDP.
(2) Using BiLSTM neural network can significantly out-
perform CNN model in DeepCPDP. (3) Using attention
mechanism can improve the prediction performance of Deep-
CPDP. (4) Our proposedmethodDeepCPDP can significantly
outperform eight state-of-the-art baselines in CPDP (i.e.,
Li17-CNN [30], CamargoCruz09-DT [5], Turhan09-DT [54],
Menzies11-RF [37], Watanabe08-DT [56], Ma12-DT [36],
Panichella14-LR [43] and Amaski15-DT [1]). The aver-
age of the performance improvement is 6.18%, 21.17%,
12.13%, 18.30%, 12.34%, 5.07%, 4.52% and 5.62%
respectively.

The main contributions can be summarized as follows:
• To our best knowledge, we are the first to propose a
newCPDPmethodDeepCPDP, which can automatically
learn project-independent semantic features by using
deep learning. DeepCPDP first models source code of
each extracted module via SimAST. Then it utilizes
SimASTToken2Vec to learn meaningful representations
for token vectors, since our method assumes that tokens
appearing in the similar context should have the simi-
lar semantic information. Then it uses BiLSTM neural
network to learn contextual semantic features from vec-
torized token vectors, Later it uses attention mechanism
over the BiLSTM layer to further learn the weight of the
vectors. Finally it constructs CPDP models via Logistic
regression classifier.

• Large-scale empirical studies are designed to show the
effectiveness of DeepCPDP by making a comparison
with eight state-of-the-art baselines in CPDP. In addi-
tion, experimental results also show the usage of our
proposed SimASTToken2Vec, BiLSTM and attention
mechanism is more competitive in DeepCPDP when
compared to other candidate settings.

VOLUME 7, 2019 184833



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

The remaining part of this article is organized as follows.
Section II analyzes the background of SDP and summa-
rizes related work for CPDP. Section III first introduces the
framework of our proposed CPDP method DeepCPDP and
then shows the details of important steps in DeepCPDP.
Section IV gives the details of our experimental setup, includ-
ing experimental subjects, evaluation measure, and statistical
analysis methods. Section V performs result analysis for four
research questions. Section VI compares DeepCPDP in terms
of effort-aware evaluation measures and analyzes the com-
putational cost of DeepCPDP. Section VII discusses some
potential internal, external and construct threats to the validity
of our empirical studies. Section VIII summarizes this arti-
cle and discusses several future directions for researchers to
explore.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND OF SOFTWARE DEFECT PREDICTION
In different phases of software development process (e.g.,
requirement analysis, software design and software coding),
software defects may be introduced unconsciously. Hidden
defects in the projects will output unexpected results and
even result in economic loss that are difficult to estimate for
enterprises after these software projects are deployed to real
working environment.

Since available software quality assurance resources allo-
cated for software testing (or code inspection) are usually
limited, effective approaches are required by developers to
identify all the defective modules in the early phase of devel-
opment. This is helpful to optimize the allocation of limited
testing resources. Software defect prediction [16], [34], [41]
is one of such effective static methods. The target can be set
to defect-proness or defect density of the program modules
depending on the real application requirements. When the
prediction target is set to defect-proness, the brief process
can be summarized in Figure 1.1 Firstly, software modules
can be easily extracted from software repositories, such as
version control systems (e.g., SVN, GIT, CVS), which store
the source codes and commit messages, bug tracking systems
(e.g., Jira, Bugzilla), which manage bug reports. Secondly,
software metrics (i.e., features) are manually designed and
thesemetrics are used tomeasure extracted programmodules.
These hand-crafted metrics are mainly designed based on
the code complexity (such as Halstead features, McCabe
features, CK features), development process (such as code
churn based features), or developer experience. The type of
the modules can be labeled after using SZZ method [12],
[50], which links bug reports to their bug-fixing changes and
considers modules related to bug-fixing changes as defec-
tive modules. Thirdly, SDP models can be trained based on
the gathered labeled SDP datasets and these trained models
are later utilized to distinguish defective modules from non-
defective modules for new modules.

1In Figure 1, the red color is used to show the defective modules and the
green color is used to show the non-defective modules.

FIGURE 1. The brief process of software defect prediction when the
prediction target of program modules is set to defect-proneness.

B. RELATED WORK ANALYSIS FOR CROSS-PROJECT
DEFECT PREDICTION
When applying software defect prediction to real software
development, a target project may be a new project or may
have a few labeled modules to train a high-quality model.
For this situation, a very simple solution is to use the labeled
dataset gathered from other projects to train models. How-
ever, due to different application domains, development pro-
cesses, used programming languages, developers’ experience
in different projects, a certain data distribution difference
between two different projects exist in most cases.

Researchers conducted several large-scale empirical stud-
ies on software projects from real world to investigate the
feasibility of CPDP. Zimmermann et al. [64] analyzed large-
scale projects gathered from open-source communities and
commercial corporation (i.e., Microsoft). After gathering
results from more than 600 cross-project defect predictions,
they found only 3% can achieve satisfactory performance.
He et al. [18] only analyzed open-source projects. After
running more than 160,000 cross-project defect predictions,
they found only 0.3% to 4.7% CPDP pairs can achieve satis-
factory performance when considering different classifiers.
The above two empirical studies [18], [64] showed CPDP
is a serious challenge problem. However, when considering
effort-aware evaluation measures, Rahman et al. [46] sur-
prisingly found the CPDP methods can perform significantly
better than the random method and is no worse than the
WPDP methods.

In the past years, a number of CPDP methods have been
proposed to reduce data distribution difference between the
source project and the target project. Detailed information of
existing proposed CPDP methods can be found in a recent
meta-analysis and systematic literature review [21]. In this
article, we briefly classify existing CPDP methods into three
categories: supervised homogeneous methods, supervised
heterogeneous methods and semi-supervised methods. In this
article, since we aim to propose novel supervised CPDP
methods via deep learning, we only summarize related work
of supervised homogeneous methods in this subsection.

Some methods focus on relevant source project selection.
For example, He et al. [18] utilized 16 distribution charac-
teristics, which can be used to measure the central tendency
and dispersion of metric values, to select relevant projects.
Krishna and Menzies [28] considered the concept of bell-
wether. In the context of SDP, the bellwether is the source

184834 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

project whose training data can train the model with the
best performance when compared to other source projects.
Liu et al. [33] proposed a two-phase method TPTL. This
method can automatically choose two source projects, which
have highest distribution similarity to the target project.
Then it leverage TCA+ method [40] to build two models
for these two projects respectively and then combine their
prediction results. Some methods focus on instance selec-
tion or instance weight setting for the source project. Two
classical instance selection methods are Burak filter pro-
posed by Turhan et al. [54] and Peter filter proposed by
Peters et al. [44]. Li et al. [31] conducted an extensive
comparison of instance-level filters. Ma et al. [36] proposed
Transfer Naive Bayes (TNB) method. This method estimates
the distribution of the target project, and transfers cross-
project data information into the weight of the modules in the
source project. Some methods focus on feature mapping and
feature selection. Nam et al. [40] applied a classical transfer
learning method TCA to make feature distribution between
two project more similar. Moreover, they proposed TCA+,
which supports selecting a suitable normalization method
automatically. He et al. [17] analyzed the feasibility of the
CPDP models trained by a simplified feature subset in three
different scenarios. Ni et al. [42] proposed a cluster based
method FeSCH. This method includes the feature clustering
phase and the feature ranking phase. Yu et al. [61] performed
an empirical study on the effectiveness of feature subset
selection methods and feature ranking methods for CPDP.
Other studies considered other machine learning methods
(such as ensemble learning and class imbalanced learning).
Panichella et al. [43] proposed a combined method CODEP
by using ensemble learning. This method can effectively
employ different classifiers. Ryu et al. [47], [48] designed
CPDP methods by further considering the class imbalanced
learning algorithms.

Since deep learning has succeeded in many areas (such as
pattern recognition, natural language processing), researchers
have also tried to apply deep learning to software defect
prediction. Wang et al. [55] leveraged DBN (deep belief net-
work) to learn semantic metrics from token vectors extracted
from program modules’ abstract syntax trees and then used
these features to construct SDP models. Empirical results
showed their method can outperform the TCA+method [40].
Then, Li et al. [30] proposed CNN (convolutional neural
network) based framework. In this framework, they encoded
extracted token vectors as numerical vectors via word embed-
ding and then used CNN to automatically learn semantic fea-
tures. Finally they used both semantic features and traditional
hand-crafted metrics to construct SDP models. Empirical
results showed their method can outperform state-of-the-art
SDP baselines, including DBN-based method [55].

Different from the above studies, we mainly focus on
CPDP issue. We use SimAST to represent source code of
extracted program modules, since this modeling method can
ignore the project-specific information and is more suitable
for CPDP issue. To train CPDP model, we employ BiLSTM

neural network. BiLSTM is designed to effectively model
the sequential data and can learn semantic features from
token vectors. Moreover, since representing token vectors
with more meaningful representation might further improve
the prediction performance of software defect prediction,
we design a new unsupervised based embedding method
SimASTToken2Vec, which can automatically learn mean-
ingful representation for token vectors. Moreover, we use
attention mechanism over the BiLSTM layer to learn the
weight of the vectors from the learned semantic features.

III. OUR PROPOSE METHOD DEEPCPDP
A. FRAMEWORK OF DEEPCPDP
The framework of DeepCPDP can be found in Figure 2.
The first phase uses the labeled dataset in the source project
for training and the granularity of the extracted modules
is set to file in our empirical study. Since the majority
(around 80%) of defects are contained in a small number
(around 20%) of modules, most of the gathered datasets
have a certain class imbalanced problem [6], [22], [35], [51].
In our study, we utilize a sampling basedmethod (i.e., random
under-sampling) to solve this problem. In the second phase,
we first parse source code of extracted program modules
and model it via SimAST. Then we extract token vectors
from SimAST. In addition, we propose an unsupervised based
embedding method SimASTToken2Vec, which is used to
learn meaningful representation for token vectors by ana-
lyzing SimAST’s natural structure. An embedding matrix is
output by SimASTToken2Vec and we can generate vector
representation of token vectors by retrieving this matrix.
In the third phase, BiLSTM neural network is leveraged to
learn semantic features from vectorized token vectors auto-
matically. Moreover, we use the attention mechanism over
the BiLSTM layer to learn the weight of the vectors from the
learned semantic features. Finally we use Logistic regression
classifier (i.e., Sigmoid layer) to train the CPDP model.

When predicting new program modules of the target
project, we first use SimAST to model the source code of
these modules. Then we extract token vector and perform
word embedding. Finally we use the trained CPDP model
to classify these modules as defective or non-defective. The
details of important steps in DeepCPDP can be found in the
remaining part of this section.

B. DETAILS OF DEEPCPDP
1) PERFORMING DATA PREPROCESSING
The labeled dataset is gathered by mining and analyzing the
source project’s software repositories (such as its version con-
trol system and bug tracking system). However, the majority
(around 80%) of defects are contained in a small number
(around 20%) of program modules [51] and this often results
in a certain class imbalanced problem for the most of the
gathered datasets. Notice in our study, we treat defective
modules as the minority class and non-defective modules as
the majority class. It is obvious the cost of misclassifying the

VOLUME 7, 2019 184835



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

FIGURE 2. Framework of our proposed method DeepCPDP.

defective modules is higher than the cost of misclassifying
the non-defective modules. When training models from these
datasets with a certain class imbalanced problem, classical
classifiers may not have satisfactory performance when pre-
dicting the instances in the minority class [51]. To solve
this problem, we use a sampling based class imbalanced
learning method (i.e., random under-sampling) to the training
dataset. Random under-sampling is an instance-level strategy
and this strategy has been successfully used in previous SDP
studies for performing data preprocessing [14], [26]. This
strategy randomly eliminates the majority class instances
until the number of the majority class instances is the same as
the number of the minority class instances. Assuming there
are 400 non-defective modules and 100 defective modules,
we will randomly remove 300 non-defective modules by
using this strategy.

2) PARSING SOURCE CODE AND EXTRACTING TOKEN
VECTOR
This phase parses source code of program modules
and model it by using simplified abstract syntax tree
(SimAST). For each node of SimAST, we only keep its
node type, since this information is project-independent,
while we ignore the name of method and variable,

FIGURE 3. An SimAST of the simple Java code snippet.

since these information is project-specific (i.e., the name
of method and variable has high diversity for differ-
ent developers). Therefore, this modeling method is
project-independent and especially suitable for the problem
of CPDP. For a simple code snippet written by Java program-
ming language, its SimAST after parsing the source code can
be found in Figure 3.

According to the definition of Java AST, there are 92 types
of AST nodes. However, based on the suggestions [30], [55],
we only extract nodes, which belong to three categories,

184836 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 1. Selected AST node types and their corresponding categories.

as tokens. The details of selected node types (i.e., 19 node
types in total) and their corresponding category can be found
in Table 1. From this table, the node types in the first category
are related to class instance creation and method invocation.
The node types in the second category are related to type
declaration, method declaration, or enum declaration. The
node types in the third category are related to control flow
(such as if statement, while statement, catch statement, throw
statement).

Since empirical subjects considered by our study are writ-
ten by Java programming language, we utilize Eclipse JDT
toolkits (i.e., ASTParser and ASTVisitor) to model SimASTs
by parsing their source code and extracting token vectors
from program modules. Specifically, we utilize ASTParser
to parse source code of each module into SimAST. Then
we utilize ASTVisitor by using preorder traversal strategy
to extract nodes, which only belong to node types listed
in Table 1. Notice the preorder traversal strategy is used to
guarantee that the extracted tokens should be in the order,
which keeps the consistence with the lexical reading order
of the source code. In the end of this phase, each module can
be represented as a token vector.

3) PERFORMING TOKEN EMBEDDING VIA
SIMASTTOKEN2VEC
Since token vectors with more meaningful representation
can be helpful to improve the prediction performance of
trained SDP models, we propose a new unsupervised based
embedding method SimASTToken2Vec. SimASTToken2Vec
is used to learn meaningful vector presentation of tokens and
then further construct vector presentation for token vectors.

Since our tokens are nodes extracted from SimAST,
we only learn vector presentation for nodes in SimAST.
In our proposed token embedding method, we assume that
nodes appearing in the similar context should have the similar
semantic information. Our method is motivated by the idea of
continuous bag-of-words (CBOW) model of word2vec [38],
since the assumption of CBOW model is also that words
appearing in the similar context should have the similar
semantic information. In our propose SimASTToken2Vec
method, we aim to extract the context of node from SimAST’s
natural structure. That is to say, for a node of modeled
SimAST, we treat nodes (its parent node and its children

FIGURE 4. An illustrative example for predicting a central node when its
context nodes is given.

nodes) as the context of this node. In our method, this node
is named as the central node, while its parent node and its
children nodes are named as the context nodes. Then we
train the SimASTToken2Vec model, which can be used to
predict a central node when given its context nodes. This is
similar to the CBOWmodel. We show an illustrative example
in Figure 4. When given a node’s context nodes (i.e.,
WhileStatement, NumberLiteral and SimpleName), our
trained model can predict this central node as InfixExpres-
sion.

Each node type in SimAST can be mapped to an unique
integer i (its value range is from 1 to N ). Here N is set to the
sum of the total node types (i.e., 19) considered in SimAST.
Then we further encode each node into a N -dimensional one-
hot vector. For example, a node mapped to the integer i will
be encoded into a one-hot vector. In this one-hot vector, only
the value in i-th position is set to 1, while the value in the
other positions of this vector is set to 0. We use vo(x) to
denote the one-hot vector for the node x, where vo(x) ∈ RN .
Then, a central node central, its parent node parent and
its children nodes {child1, child2, · · · , childn} can be de-
noted as {vo(central), vo(parent), vo(child1), vo(child2), · · · ,
vo(childn)}. The primary objective function for the model
training is:

vo(central)

≈ softmax
{[
vo(parent)+

n∑
k=1

vo(childk )
]
·We ·Wh

}
(1)

where We∈RN×E is the embedding matrix for learning;
Wh ∈ RE×N is the kernel of the output layer and is only used
in the model training phase; E is the dimension of the vector
presentation for learning.

VOLUME 7, 2019 184837



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

Since the SimASTToken2Vec model can be regarded as a
kind of neural network. To train SimASTToken2Vec model,
we use Adam [27] for stochastic gradient descent and set
cross-entropy loss to the loss function. After the model is
trained, we can get the embedding matrix We. In this matrix,
the vector in the i-th row is the vector representation of the
node (i.e., token), which is mapped to the integer i. Therefore,
we can find the vector representation by searching for the
matrixWe, and then generate the vector presentation for token
vectors.

4) TRAINING CPDP MODEL VIA BILSTM NEURAL NETWORK
AND ATTENTION MECHANISM
In this phase, we first leverageBiLSTM [49] to learn semantic
features automatically from vectorized token vectors. Then
we use attention mechanism over the BiLSTM layer to learn
the weight of the vector from the learned semantic features.
Finally, we use Logistic Regression classifier to train the
CPDP model.

The BiLSTM [49] neural network is designed to effective
capture long-term dependencies (i.e., a code element may
depend on another code element, which are not immediately
before it) from the sequential data andmaintain the contextual
features in both the past and the future. BiLSTM is a kind
of recurrent neural network and its effectiveness has been
verified in many application domains, such as text mining,
machine translation, and speed recognition. Since code is
also generated by developers, it shares similar properties with
language texts. In our study, we want to investigate whether
using BiLSTM can automatically learn semantic features
from the source code and then use learned semantic features
to perform CPDP. This model can transform a sequence of
vectors as the input to a sequence vectors as the output.
In our study, a BiLSTM layer is composed of two parallel
LSTM layers, which can propagate in two different direc-
tions. Moreover, these two layers can memorize both the past
information and the future information of each sequence from
both the forward direction and the backward direction [49].
The forward pass and the backward passe of each layer are
performed in the similar way of traditional neural networks.
Finally, these two layers can memorize the sequence infor-
mation from both directions.

The hidden features trained by the BiLSTM layer are fed
into the attention layer. Attention mechanism can determine
the importance of each node of the sequence, and weight each
node when constructing the expression of the token vector.
We can use the attention mechanism to enhance the impact
of key nodes, and learn the advanced features through it.
In this article, we adopt a simple approach utilized by both
Bahdanau et al. [2] and Tang et al. [52].

Here we show the implementation details of this phase.
In this phase, the structure is composed of an embedding
layer, a BiLSTM layer, a max pooling layer, an attention
layer, and a single unit output layer. For the embedding layer,
we can encode token vectors into vector sequences and then
feed these sequences into the BiLSTM layer. The embedding

matrix We learned by SimASTToken2Vec in the previous
phase is the kernel of this layer, and this embedding matrix
will not be updatd during the training process of the DNN
based CPDP model. Therefore, we can treat SimASTTo-
ken2Vec as a pre-training method for the embedding layer.
For the BiLSTM layer, we can capture contextual features
from both the past and the future in a vector and it is able to
output a feature vector with the same length of its input vector,
in which each feature is a contextual feature of a token. For
the max pooling layer, we can employ this layer to pool an
unfixed-size feature vector into a fixed-size feature vector in
a multi-dimensional space. By using this layer, we can extract
representative information from the original feature vector.
For the attention mechanism, we use the implementations
provided by Felbol et al. [13] to learn the weight of the
vector. Finally, for the output layer, the input of this layer
is the pooled contextual semantic features with the weight.
This layer only has one unit and set its activation function
to the sigmoid function. Therefore, this layer can be treated
as a Logistic regression classifier. We choose this classifier
since this classifier has also been used in previous deep
neural network based software defect prediction studies [30],
[55] and choosing the same classifier can guarantee a fair
comparison.

In this phase, we use the L2 regularization to both the
kernel of the BiLSTM layer and the output layer to alleviate
the over fitting problem. Later, we set cross entropy loss to
the loss function and use Adam [27] to perform stochastic
gradient descent.

5) CLASSIFYING NEW MODULES IN THE TARGET PROJECT
This phase uses the trained CPDPmodel to classify unlabeled
modules in the target project. First, source code of this mod-
ule is parsed into SimAST and a token vector is extracted.
Then, the token vector is encoded into a vector sequence
by retrieving the embedding matrix We, which can be pro-
cessed by the embedding layer. Later, the vector presentation
of the sequence is put into the BiLSTM neural network.
Finally, the trained model returns the defect-proneness of this
unlabeled module. When the prediction value of the defect-
proneness is smaller than a given threshold (i.e., 0.5), this new
module can be predicted as non-defective, otherwise it can be
predicted as defective.

IV. EMPIRICAL SETUP
A. EMPIRICAL SUBJECTS
In our study, PROMISE data sets [25] is chosen to show
the effectiveness of DeepCPDP. This dataset is gathered by
mining ten large-scale open source projects written by Java
programming language. These project come from different
application domains and have been widely used as experi-
mental subjects in previous SDP studies [8], [9], [30], [55].
In addition, these datasets are publicly available online.2

2https://tiny.cc/seacraft

184838 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 2. The statistic information of experimental projects.

Therefore, the choice of these experimental subjects can
make our comparison more reliable.

The statistic information of these experimental projects is
summarized in Table 2. This table shows the name of the
project, the versions of this project considered in our study,
the number of program modules, the number (#) and the
percentage (%) of defective modules. The hand-craft metrics
used for some of baselines and the description of these met-
rics can be found in Table 3.

Since our proposed method DeepCPDP is based on DNN
model, The effectiveness of DeepCPDP depends on the
assumption that the training dataset has sufficient number
of program modules. To satisfy this requirement, we first
combine themodules of all the versions from the same project
into a dataset. Then, we only choose the projects as the source
projects if their corresponding datasets contain at least a
certain number of modules after applying the random under-
sampling strategy. In our study, the threshold for this number
is set to 800 empirically.

Based on the above process, only four projects (i.e., camel,
xalan, poi and xerces) can be set to the source projects in our
study. For example, the project Camel has four versions (i.e.,
1.0, 1.2, 1.4 and 1.6). After combining modules in these four
versions, the final combined dataset contains 2,712 program
modules in total, and 562 modules are defective modules
(i.e., the percentage of defective modules is 20.7%). After
applying the random under-sampling strategy, the prepro-
cessed dataset still contains more than 800 modules. There-
fore, the project Camel can be set to the source project in our
study.

In summary, four projects can be set to the source projects,
while all the ten projects can be set to the target projects. Since
the same project can not be set to the source project and the
target project simultaneously in the context of CPDP, there
are 36 CPDP pairs in total.

B. EVALUATION MEASURE
Existing work have found that threshold-dependent per-
formance measures (for example, accuracy, precision,
recall or F1) are problematic. The reasons can be summarized
as follows: First the computation of these measures depends
on a selected threshold. The value of this threshold is set
to 0.5 in most cases [10], [29], [45]. Second, these evaluation
measures are sensitive to the datasets with class imbalanced
issue [62].

Recently, researchers tend to use the AUC (Area Under
the ROC Curve) to measure performance of the trained
SDP models. This evaluation measure is also recommended
in a recent benchmark study [29]. The AUC measure is a
threshold-independent evaluation measure and it can be used
to evaluate a SDP model’s ability to discriminate the non-
defective modules from the defective modules. AUC can
be computed by computing the area under the curve. This
curve can plots the false positive rate(fpr) against the true
positive rate (tpr). The value range of AUC measure is [0,1].
Here the value 0 denotes the worst performance of the traind
model, while the value of 1 denotes the best performance.
It is obvious that the higher value of the AUC evaluation
measure, the better the prediction performance of the trained
SDP model.

C. STATISTICAL ANALYSIS METHODS
Statistical test can be used to analyze whether there exists
a statistically significant difference between results of two
differentmethods.Wilcoxon signed-rank test [57] is first used
to perform statistical test. This statistical test method does
not require the analyzed data should follow any distribution.
Moreover, it can be used to compare pairs of results and is
able to compare the difference against zero.

Then Cliff’s delta [4] is used to measure the effect
size between two different methods. Cliff’s delta is a non-
parametric effect size measure and can be used to quantify the
amount of difference between twomethods. Table 4 describes
the value range of Cliff’s delta values and its corresponding
effectiveness level.

Finally we use Scott-Knott test [23] to rank our proposed
method DeepCPDP and all the baselines in terms of AUC
measure. Scott-Knott test performs the method grouping pro-
cess in a recursive way. Firstly, s a hierarchical cluster anal-
ysis method is used to partition all the CPDP methods into
two ranks by considering the mean performance (measured
by AUC). Then, it is recursively conducted for each rank
to further divide the ranks if the divided ranks are signifi-
cantly different. The Scott-Knott test will terminate when the
ranking can no longer be divided into statistically different
rankings. For Scott-Knott test, a method m1 performs signif-
icantly better (or worse) than another method m2, if p value
of Wilcoxon signed-rank test when the confidence level is set
to 95% is less than 0.05 and the effectiveness level is not
negligible (measured by Cliff’s delta). While the difference
between m1 and m2 is not significant, if (1) p-value is less
than 0.05 and the effectiveness level is negligible, or (2) p
value is not less than 0.05.

D. EXPERIMENTAL SETTINGS
1) SETTINGS FOR EMBEDDING METHOD
SIMASTTOKEN2VEC
Based on Figure 2, the embedding matrix can be constructed
by using the dataset gathered from a source project via
SimASTToken2Vec. However, SimASTToken2Vec learns

VOLUME 7, 2019 184839



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 3. Name and description of the hand-crafted metrics used for measuring program modules in some baselines.

TABLE 4. The value range of Cliff’s delta δ and its corresponding
effectiveness level [4].

tokens’ semantic information from the SimAST’s natural
structure. Moreover, both structure and tokens in SimAST
are project-independent. Therefore, we do not need to train
embedding matrix for every source project individually.
Instead, we combine the modules from all the project into a
single dataset and then train only one embedding matrix.

Based on the description of SimASTToken2Vec in
Section III, we can find SimASTToken2Vec has two param-
eters: N and E . In our study, N is set to 19, since the sum
of node types used in SimAST is 19. E is empirically set
to 20. The batch size for training the embedding matrix is set
to 1024. The epoch for training is set to 1000. Early-stopping
criteria is set as follows: when the loss on the training dataset
does not decrease any more, the training process will termi-
nate in advance.

2) SETTINGS FOR BILSTM NEURAL NETWORK AND
ATTENTION MECHANISM
For the embedding layer, we set the input dimension of this
layer to 19, since this matches the dimension of the embed-
ding matrix We learned by SimASTToken2Vec. Then we set
the output dimension of this layer to 20. For the BiLSTM
layer, we first set the dimension of this layer to 512, Then we

set the output of the BiLSTM layer as the average value of the
output of the both forward and backward LSTM layers. This
setting can be implemented by Keras (i.e.,the merge mode of
Bi-directional layer can be set to ave). The batch size for train-
ing is set to 64. To optimize the value of hyper-parameters
in DeepCPDP, we further split the original training dataset
by 80%:20% for training and validation respectively. The
training epoch is set to 100, and early-stopping technique
is utilized to stop training process automatically in advance
when the performance on the validation set of the trained
model can not be improved after 10 epochs. For each epoch,
the DNN model along with the value of its hyper-parameters
(i.e., kernels and bias) will be stored. Finally, the trained
model, which can achieve the best performance on the val-
idation set in terms of AUC measure will be output as our
final trained CPDP model. Notice for other hyper-parameters
(e.g., the activation function in the BiLSTM layer), we use
the default value considered by Keras.

3) OTHER SETTINGS
Our proposed method DeepCPDP is implemented based on
Keras3 framework with Tensorflow backend. Our proposed
method and baselines are run on a server: 2 Intel Xeon CPU
E5-2640 @2.60GHz, 2 GPU (NVIDIA Titan X) with 12 GB
memory, 32 GB RAM and Ubuntu 14.04.5 OS.

Since there exist the random factors when using random
under-sampling to solve class imbalanced problem and train-
ing CPDP model, we run our experiments 10 times inde-
pendently for each CPDP pair with different random seeds.

3https://keras.io/

184840 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 5. The cluster result after using k-means clustering.

Finally, we show the average of these 10 values in terms of
AUC measure.

V. RESULT ANALYSIS
A. RESULT ANALYSIS FOR RQ1
RQ1: Can our proposed new embedding method
SimASTToken2Vec learn meaningful vector presentation
of tokens?

Motivation: In RQ1, we first want to analyze whether our
proposed embedding method SimASTToken2Vec can learn
meaningful vector presentation for tokens. Then we want to
investigate whether the learned vector presentation of tokens
is helpful to improve the prediction performance of our pro-
posed method DeepCPDP.

Approach: We evaluate vector representations learned
by our proposed embedding method SimASTToken2Vec
from qualitative perspective and quantitative perspective
respectively.

Results: We first analyze the effectiveness of the embed-
ding method SimASTToken2Vec from the qualitative per-
spective. Since similar tokens should share similar semantic
information and they are assumed to have similar vector
representations. To evaluate whether SimASTToken2Vec can
achieve this goal, we select a subset of node types in SimAST.
Then, we perform k-means clustering on their vector repre-
sentations learned by SimASTToken2Vec and the value of k
is set to 5. The clustering result can be found in Table 5. In this
table, we can find: (1) cluster 1 includes node types mainly
related to literal, (2) cluster 2 includes node types
mainly related to loop, (3) cluster 3 includes node
types mainly related to jump, (4) cluster 4 includes node
types mainly related to declaration, (5) cluster 5 includes
node types mainly related to comment. It is not hard to
find that the cluster results after using k-means clustering
is reasonable since it keeps the consistent with the domain
knowledge. These results also suggest that our proposed
method SimASTToken2Vec has achieved the goal. Therefore,
the vector presentation learned by SimASTToken2Vec is
meaningful.

Then we analyze the effectiveness of the embedding
method SimASTToken2Vec from the quantitative perspec-
tive. We first set SimASTToken2Vec to our default embed-
ding method in our proposed method DeepCPDP. Then we
set a random embedding method in DeepCPDP as the base-
line method for RQ 1. The random embedding method wa
employed for CNN based SDP in the previous study [30].
For this baseline, the embedding matrix is randomly initial-
ized in the embedding layer and then is tuned during the

FIGURE 5. The performance value of DeepCPDP when using two different
embedding methods in terms of AUC.

process of the CPDP model training. Figure 5 uses boxplot
to show the performance comparison results (measured in
terms of AUC) when DeepCPDP use two different embed-
ding methods on all CPDP pairs. The detailed comparions
results can be found in Table 6. On average, DeepCPDP using
the embedding method SimASTToken2Vec can outperform
DeepCPDP using the random embedding method by 3.62%.
After conducting Wilcoxon signed-rank test, the computed
p-value is 1.28E-3. This shows that the difference between
these two embedding methods is statistically significant.
After measuring the effect size, the computed value of Cliff’s
delta is 0.235. This shows that the effectiveness level between
these two embedding methods is not negligible. Based on
the above results, we can conclude that DeepCPDP using
SimASTToken2Vec can significantly outperformDeepCPDP
using the random embedding method. Therefore, the embed-
ding method SimASTToken2Vec is helpful to improve the
performance of our proposed method DeepCPDP.

Answer to RQ1: our proposed embedding method
SimASTToken2Vec can learn meaningful vector presentation
of tokens both from qualitative perspective and quantitative
perspective.

B. RESULT ANALYSIS FOR RQ2
RQ2: Can BiLSTMneural network achieve better perfor-
mance than other DNN models in our proposed method
DeepCPDP?

Motivation: Recently, Li et al. [30] applied CNN model,
which has advantages in capturing local patterns more effec-
tively, to software defect prediction and found CNN model
can achieve better prediction performance than DBN model
based on the analysis of their empirical results [55]. There-
fore, in RQ2, we want to analyze the influence of different
DNN models in our proposed method DeepCPDP and verify
whether BiLSTM neural network can achieve the best perfor-
mance.

Approach: In our proposed method DeepCPDP, we set
BiLSTM neural network as our default DNN model. In RQ2,
we want to compare the prediction performance of Deep-
CPDP method using BiLSTM neural network with Deep-
CPDP method using CNN model (i.e., the baseline in RQ2).
For DeepCPDP using CNN model, we use 1D convolution

VOLUME 7, 2019 184841



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 6. The performance value of DeepCPDP when using the
embedding method SimASTToken2Vec or the
random embedding method.

layer to extract semantic features from token vectors instead
of using a BiLSTM layer. This setting is also employed in the
previous study [30]. For hyper-parameters used for the convo-
lution layer, the dimension size and regularization method is
consistent with that of our BiLSTM layer, and value of other
hyper-parameters is consistent with the previous study [30]
for a fair comparison.

Results: Figure 6 uses boxplot to show the performance
comparison results (measured in terms of AUC) when Deep-
CPDP use two different DNN models on all CPDP pairs.
The comparison results in detail can be found in Table 7.
On average, DeepCPDP using BiLSTM neural network can
outperform DeepCPDP using CNN model by 2.74%. After
conducting Wilcoxon signed-rank test, the computed p-value
is 1.07E-4. This shows that the difference between BiLSTM
model and CNN model is statistically significant. After mea-
suring the effect size, the computed value of Cliff’s delta
is 0.174. This shows that the effectiveness level between
BiLSTM model and CNN model is not negligible.

TABLE 7. The performance value of DeepCPDP when using BiLSTM
neural network or using CNN model.

FIGURE 6. The performance value of DeepCPDP when using different
DNN models in terms of AUC.

Answer to RQ2: DeepCPDP using BiLSTM neural net-
work can significantly outperform DeepCPDP using CNN
model.

C. RESULT ANALYSIS FOR RQ3
RQ3: Can using attentionmechanism improve the perfor-
mance of our proposed method DeepCPDP?

Motivation: Traditional BiLSTM does not consider the
attention mechanism. Therefore, in this RQ, we want to

184842 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

FIGURE 7. The performance value of DeepCPDP when using or not using
the attention mechanism in terms of AUC.

investigate whether using attention mechanism can fur-
ther improve the performance of our proposed method
DeepCPDP.

Approach:We use attention mechanism over the BiLSTM
layer to learn the weight of the vectors from the learned
semantic features. Attention mechanism can determine the
importance of each node of the vector, and weight each
node when constructing the expression of the token vec-
tor. We can use the attention mechanism to enhance the
impact of key nodes, and learn the advanced features through
it. In this article, we use a simple approach utilized by
Bahdanau et al. [2] and Tang et al. [52].
Results: Figure 7 uses boxplot to show the performance

comparison results (measured in terms of AUC) between
DeepCPDP with the attention mechanism and DeepCPDP
without the attentionmechanism on all CPDP pairs. The com-
parison results in detail can be found in Table 8. On average,
DeepCPDP with the attention mechanism can outperform
DeepCPDP without attention mechanism by 3.09%. After
conducting Wilcoxon signed-rank test, the computed p-value
is 3.47E-3. This shows that the difference between Deep-
CPDP with the attention mechanism and DeepCPDP with-
out the attention mechanism is statistically significant. After
measuring the effectiveness, the computed value of Cliff’s
delta is 0.174. This shows that the effectiveness level between
DeepCPDP with the attention mechanism and DeepCPDP
without the attention mechanism is not negligible.

Answer to RQ3:, DeepCPDP using the attention mech-
anism can achieve better performance with statistically
significance than DeepCPDP without using the attention
mechanism.

D. RESULT ANALYSIS FOR RQ4
RQ4: Can our proposed method DeepCPDP perform
significantly better than state-of-the-art CPDP baseline
method?

Motivation: In the previous three RQs, we thoroughly
investigate the influence of embedding methods, DNN mod-
els, and whether using attention mechanism for our proposed
method DeepCPDP. In RQ4, we want to investigate whether
our proposed method DeepCPDP can advance the state of the
art of CPDP domain by comparing CPDP baselines.

TABLE 8. The performance value of DeepCPDP when using the attention
mechanism or not using the attention mechanism.

Approach: In RQ4, we choose state-of-the-art CPDP
baselines as follows. First, we consider a CNN model based
SDP method proposed by Li et al. [30] as the first base-
line. In their empirical studies, they found their proposed
method has better performance than the DNN model based
SDP method [55]. Then we consider other seven CPDP
baseline method, which are based on hand-crafted metrics
(the description of these metrics can be found in Table 3).
These baseline methods are CamargoCruz09-DT [5],
Turhan09-DT [54], Menzies11-RF [37], Watanabe08-
DT [56], Ma12-DT [36], Panichella14-LR [43] and
Amaski15-DT [1]. Since in a recent comparative study for
comparing 24 different CPDP methods [20], these seven
CPDP methods can achieve better performance when com-
pared to other CPDP methods. The effectiveness of each
CPDPmethod has been evaluated by considering six different
classifiers and the suffix of method name represents the
classifier with the best prediction performance in previous
comparative study conducted by Herbold et al. [20] and
Chen et al. [7]. In particular, the suffix DT denotes that the
CPDP baseline uses decision tree as the classifier, the suffix
RF denotes the CPDP baseline uses random forest as the

VOLUME 7, 2019 184843



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

classifier, and the suffix LR denotes the CPDP baseline uses
Logistic regression as the classifier.

Baseline1 (Li17-CNN): Li et al. [30] proposed CNN (con-
volutional neural network) based framework. In this frame-
work, they encoded extracted token vectors as numerical
vectors via word embedding and then used CNN to automati-
cally learn semantic features. Finally they used both semantic
features and traditional hand-craftedmetrics to construct SDP
models. We use the same network structure and network
parameter settings considered in the previous study [30] to
implement this baselinemethod. Notice for a fair comparison,
we use the same token vectors based on SimAST and the same
training process as ours for this baseline. Finally, instead of
using a fixed number of epochs (i.e., 15) for different source
projects [30], we use early-stopping technique to automati-
cally tune the number of epochs for better performance.

Baseline2 (CamargoCruz09-DT): Camargo and
Ochimizu [5] applied power transformation to the value of the
metric. This transformation method can improve symmetry
and normality of the metric value. Moreover, this method can
also effectively reduce the number of outliers.

Baseline3 (Turhan09-DT): Turhan et al. [54] proposed
this method. This method first normalizes the metric data via
the logarithm transformation. Then it applied a relevancy fil-
ter to the available training data of the source project by using
k-nearest neighbor algorithm. After using this relevancy fil-
ter, the k nearest modules in the source project can be selected
when given an module in the target project. The similarity
of different modules is computed by using the Euclidean
distance based on the metric value of these modules. Notice a
module in the source project may be a nearest neighbours for
different modules in the target project, they only choose this
module once and store it in the filtered dataset. Moreover,
the value of the parameter k is set to 10 in the previous
study [54] and we follow this setting when implementing this
baseline.

Baseline4 (Menzies11-RF): Menzies et al. [37] used the
WHERE algorithm to construct local models by clustering
the training dataset. Then they used WHICH rule learning
algorithm to the classification of the results. Notice WHICH
rules were generated for each cluster and then used for con-
structing local models.

Baseline5 (Watanabe08-DT): Watanabe et al. [56] pro-
posed to alleviate the data distribution difference between
projects via a standardization normalization formula. As a
formula for standardization, they proposed to multiply each
metric value of the target project with the mean value of
the source project and divide this by the mean of the target
project.

Baseline6 (Ma12-DT): Ma et al. [36] proposed Transfer
Naive Bayes (TNB) method. Different from instance selec-
tionmethods [37], thismethod assignsweights to themodules
in the source project according to the similarity between the
source project and the target project. Then it utilizes Naive
Bayes classifier to construct CPDPmodels on these weighted
program modules.

FIGURE 8. Comparison results between the method DeepCPDP and
baseline methods in terms of AUC by using Scott-Knott test.

Baseline7 (Panichella14-LR): Panichella et al. [43] pro-
posed a COmbined DEfect Predictor (CODEP) method. They
investigated six different classifiers (belonging to four cat-
egories: regression function, neural network, decision tree
and rule based model) in CPDP. Empirical results show these
different classifiers could identify different defective program
modules by using principal component analysis and overlap
metrics, though they achieved similar performance. Then they
proposed a combined model based on these six classifiers via
Logisitic regression.

Baseline8 (Amaski15-DT): Amasaki et al. [1] investi-
gated the data simplification by removing redundant infor-
mation. In particular, they first identified redundant features
from the dataset in the target project by using an unsupervised
feature reduction method. Then, they removed the same fea-
tures from the cross-project dataset.

For the last seven baselines, the setting of these methods is
consistent with the settings that perform best in the recently
comparative study on different CPDP methods [20]. Notice
we follow the same process used by our proposed method
DeepCPDP to evaluate these eight baselines for a fair com-
parison. For example, these methods all use random under-
sampling to handle the class imbalanced problem.

Results: Table 9 shows the comparison results (mea-
sured in terms of AUC) between our proposed method
DeepCPDP and eight state-of-the-art baseline meth-
ods. Comparing with Li17-CNN, CamargoCruz09-DT,
Turhan09-DT, Menzies11-RF, Watanabe08-DT, Ma12-DT,
Panichella14-LR and Amaski15-DT, our method outper-
forms them by 6.18%, 21.17%, 12.13%, 18.30%, 12.34%,
5.07%, 4.52%, and 5.62% respectively on average. After
conducting Wilcoxon signed-rank test, the computed p-value
is 3.41E-05, 2.16E-07, 4.83E-06, 1.83E-07, 3.88E-07, 2.78E-
02, 2.42E-02, and 1.88E-02 respectively. These results show
that the difference between our proposed method DeepCPDP
and these eight baselines is statistically significant. In addi-
tion, after measuring the effect size, the computed value
of Cliff’s delta is 0.402, 0.940, 0.704, 0.870, 0.718, 0.295,
0.279 and 0.31 respectively. These results show that the
effectiveness level between our proposed method DeepCPDP
and these baseline methods is not negligible. Figure 8 uses

184844 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 9. The performance value of our proposed method DeepCPDP and baseline methods in terms of AUC.

Scott-Knott test to show the performance comparison results
when comparing our proposed method DeepCPDP with
baselines in terms of AUC. From this figure, we can find
DeepCPDP is in the top 1 group. Baseline7, Baseline6,
Baseline8 and Baseline1 are in the top 2 group. Baseline3 and
Baseline5 are in the top 3 group. While Baseline4 and Base-
line 2 are in the final group.

Answer to RQ4:, our proposed method DeepCPDP can
perform significantly better than eight state-of-the-art CPDP
baseline methods.

VI. DISCUSSION
A. COMPARISON IN TERMS OF TWO EFFORT-AWARE
EVALUATION MEASURES
In previous empirical studies, we mainly compare our pro-
posed method DeepCPDP in terms of traditional non-effort-
aware evaluation measure (i.e., AUC). In this subsection,
we further compare DeepCPDP in terms of two effort-aware
evaluation measures (i.e., ACC and Popt ). These two mea-
sures are more practical for practitioners, since it enable them
for detecting more defective modules when given limited
SQA efforts. In particular, ACC shows the percentage of

defective modules identified by developers when expending
20% of the SQA efforts.4 Popt is the normalized version of the
effort-aware performance indicator. The details of these two
effort-ware evaluation measures can be found in recent effort-
aware software defect prediction studies [11], [60]. Figure 9
and Figure 10 show the performance comparison results
between our proposed method DeepCPDP and eight baseline
methods in terms of ACC and Popt by using Scott-Knott test
respectively. Final results showDeepCPDP can also in the top
1 group when considering these two evaluation measures.

B. COMPUTATIONAL COST ANALYSIS
In this subsection, we mainly compare our proposed Deep-
CPDP in terms of model construction time. The model con-
struction time for DeepCPDP and baselines can be found
in Table 10 and we report the average construction time
when given the source project. From Table 10, we can find
the model construction time of our proposed method is
acceptable (i.e., training a model needs about 66 seconds

4Notice we use LOC (lines of code) to denote the efforts in our study,
which is consistent with previous studies [11], [60].

VOLUME 7, 2019 184845



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

TABLE 10. Comparison results with baselines for our proposed method DeepCPDP in terms of Computational Cost (Unit: Millisecond).

FIGURE 9. Comparison results with baselines for our proposed method
DeepCPDP in terms of Popt by using Scott-Knott test.

FIGURE 10. Comparison results with baselines for our proposed method
DeepCPDP in terms of ACC by using Scott-Knott test.

to 355 seconds on average). Moreover, based on the results
in terms of both the traditional evaluation measure and the
effort-aware evaluation measures, our proposed DeepCPDP
can achieve better performance than all the baselines with
statistically significance. Finally, with the increasing labeled
modules after gathering more datasets, the advantage of our
proposed deep learning based method will be more obvious.
Therefore, DeepCPDP is applicable in practical cross-project
software defect prediction.

VII. THREATS TO VALIDITY
A. THREATS TO INTERNAL VALIDITY
The first internal threat is the faults during the implementa-
tions of these CPDP methods. To allevate this threat, we con-
sider the implementations of supervised CPDP methods in
CrossPare platform [20]. The second internal threat is the
value of hyperparameter in the classifier used by our proposed
method and baselines. In our study, we use the default value
for these hyperparameters. In the future, we will investigate
the influence of hyperparameter optimization [53] in our
proposed method.

B. THREATS TO EXTERNAL VALIDITY
The first threat is that in our empirical studies, we only choose
promise dataset. On the one side, the promise dataset has been
widely used in previous deep learning based defect prediction
studies [30], [55]. On the other side, our proposed method
DeepCPDP is based on the analysis of the source code and
we can only access the source code in the projects gathered
by the promise dataset. The second threat is the choice of the
baselines when answering for RQ4. In this article, we mainly
focus on supervised homogeneous CPDP methods. These
baselines are chosen since they either achieve competitive
performance in recent benchmark studies [7], [20], or are
often set to baselines in previous supervised CPDP studies.
Moreover, based on the related work analysis for CPDP
methods, we can findmany recently proposed CPDPmethods
can not be chosen in our empirical studies. For example,
some recent studies focused on heterogeneous defect predic-
tion [24], [32], [39], which assume that the source project
and the target project do not use the same metrics to measure
the extracted program modules. However, our study does not
have this issue, since our method use deep learning to learn
project independent features from SimASTs. Other studies
focused on semi-supervised CPDP methods [48], [58], [59],
[63], which further use a certain number of labeledmodules in
the target project to construct models. However, these studies
also do not satisfy our criteria for selecting baselines, since
our study only uses the modules in the source project to
construct the models.

C. THREATS TO CONSTRUCT VALIDITY
In previous SDP studies, many evaluation measures are used.
However, somemeasures (such as precision, recall, F1) based
on confusion matrix is threshold-dependent. The value of
these measures depend on the predefined threshold to decide
whether a new software module is defective or non-defective.
Therefore, we consider AUC to evaluate the prediction per-
formance of different CPDP methods. Moreover, we also
compare the performance of our proposed method in terms
of effort-aware evaluation measures.

VIII. CONCLUSION AND FUTURE WORK
In this article, we propose a novel deep learning based
CPDP method DeepCPDP. We represent source code of each
extracted programmodule by using simplified abstract syntax
tree, since this modeling method ignore the project-specific
information (such as the name of method and variable)
and especially suitable for CPDP problem. Then we utilize
embeddingmethod SimASTToken2Vec, BiLSTMneural net-
work and the attention mechanism to train the CPDP model.

184846 VOLUME 7, 2019



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

Final empirical results on 10 open source projects from dif-
ferent application domains demonstrate the effectiveness of
DeepCPDP when compared with state-of-the-art baselines.

In the future, we want to continue our research in three
directions. First the generalization of our empirical results
should be investigated by considering more datasets gath-
ered from other large-scale commercial projects and open
source projects. Second more state-of-the-art DNN models,
embedding methods, and class imbalanced learning methods
should be considered to further improve the performance
of DeepCPDP method. Finally our proposed method Deep-
CPDP should be applied to the software development process
and improve the quality of software projects.

For other researchers to follow our study, we provide a
package5 to replicate our proposed method DeepCPDP.

REFERENCES
[1] S. Amasaki, K. Kawata, and T. Yokogawa, ‘‘Improving cross-project defect

prediction methods with data simplification,’’ in Proc. 41st Euromicro
Conf. Softw. Eng. Adv. Appl., 2015, pp. 96–103.

[2] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ Sep. 2014, arXiv:1409.0473.
[Online]. Available: https://arxiv.org/abs/1409.0473

[3] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002.

[4] Y. Benjamini and Y. Hochberg, ‘‘Controlling the false discovery rate: A
practical and powerful approach to multiple testing,’’ J. Roy. Stat. Soc. B
(Methodol.), vol. 57, no. 1, pp. 289–300, 1995.

[5] A. E. C. Cruz and K. Ochimizu, ‘‘Towards logistic regression models for
predicting fault-prone code across software projects,’’ in Proc. 3rd Int.
Symp. Empirical Softw. Eng. Meas., 2009, pp. 460–463.

[6] J. Chen, S. Liu, W. Liu, X. Chen, Q. Gu, and D. Chen, ‘‘A two-
stage data preprocessing approach for software fault prediction,’’ in Proc.
Int. Conf. Softw. Secur. Rel., Jun. 2014, pp. 20–29. [Online]. Available:
https://ieeexplore.ieee.org/document/6895412

[7] X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu, T. He, and S. Liu, ‘‘Do dif-
ferent cross-project defect prediction methods identify the same defec-
tive modules?’’ J. Softw., Evol. Process, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2234

[8] X. Chen, D. Zhang, Z.-Q. Cui, Q. Gu, and X.-L. Ju, ‘‘Dp-share: Privacy-
preserving software defect prediction model sharing through differential
privacy,’’ J. Comput. Sci. Technol., vol. 34, no. 5, pp. 1020–1038, 2019.

[9] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, ‘‘Software defect num-
ber prediction: Unsupervised vs supervised methods,’’ Inf. Softw. Tech-
nol., vol. 106, pp. 161–181, Feb. 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/abs/pii/S0950584918302076

[10] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, and Z. Wang, ‘‘Large-
scale empirical studies on effort-aware security vulnerability prediction
methods,’’ IEEE Trans. Rel., to be published.

[11] X. Chen, Y. Zhao, Q.Wang, and Z. Yuan, ‘‘MULTI: Multi-objective effort-
aware just-in-time software defect prediction,’’ Inf. Softw. Technol., vol. 93,
pp. 1–13, Jan. 2018.

[12] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. E. Hassan, ‘‘A framework for evaluating the results of the SZZ approach
for identifying bug-introducing changes,’’ IEEE Trans. Softw. Eng., vol. 43,
no. 7, pp. 641–657, Jul. 2016.

[13] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann, ‘‘Using
millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm,’’ Aug. 2017, arXiv:1708.00524.
[Online]. Available: https://arxiv.org/abs/1708.00524

[14] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi,
‘‘An empirical study of just-in-time defect prediction using cross-
project models,’’ in Proc. Work. Conf. Mining Softw. Repositories, 2014,
pp. 172–181.

5https://github.com/EzioQR/DeepCPDP

[15] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, ‘‘Soft-
ware defect prediction using static code metrics underestimates defect-
proneness,’’ in Proc. Int. Joint Conf. Neural Netw., 2010, pp. 1–7.

[16] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, ‘‘A systematic
literature review on fault prediction performance in software engineering,’’
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov. 2012.

[17] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, ‘‘An empirical study on software
defect prediction with a simplified metric set,’’ Inf. Softw. Technol., vol. 59,
pp. 170–190, Mar. 2015.

[18] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, ‘‘An investigation on the
feasibility of cross-project defect prediction,’’ Autom. Softw. Eng., vol. 19,
no. 2, pp. 167–199, 2012.

[19] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity.
Upper Saddle River, NJ, USA: Prentice-Hall, 1995.

[20] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘A comparative study to bench-
mark cross-project defect prediction approaches,’’ IEEE Trans. Softw.
Eng., vol. 44, no. 9, pp. 811–833, Sep. 2018.

[21] S. Hosseini, B. Turhan, and D. Gunarathna, ‘‘A systematic literature review
and meta-analysis on cross project defect prediction,’’ IEEE Trans. Softw.
Eng., vol. 45, no. 2, pp. 111–147, Feb. 2019.

[22] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, ‘‘An ensemble oversampling model for class imbal-
ance problem in software defect prediction,’’ IEEE Access, vol. 6,
pp. 24184–24195, 2018.

[23] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman, ‘‘Scottknott: A package
for performing the Scott-Knott clustering algorithm in R,’’ TEMA (São
Carlos), vol. 15, no. 1, pp. 3–17, 2014.

[24] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, ‘‘Heterogeneous cross-company
defect prediction by unified metric representation and CCA-based transfer
learning,’’ in Proc. Joint Meeting Found. Softw. Eng., 2015, pp. 496–507.

[25] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. Int. Conf. Predictive
Models Softw. Eng., 2010, p. 9.

[26] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and
A. E. Hassan, ‘‘Studying just-in-time defect prediction using cross-project
models,’’ Empirical Softw. Eng., vol. 21, no. 5, pp. 2072–2106, 2016.

[27] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ Dec. 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[28] R. Krishna and T. Menzies, ‘‘Bellwethers: A baseline method for trans-
fer learning,’’ IEEE Trans. Softw. Eng., vol. 45, no. 11, pp. 1081–1105,
Nov. 2019.

[29] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[30] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. Int. Conf. Softw. Qual., Rel. Secur.,
2017, pp. 318–328.

[31] Y. Li, Z. Huang, Y. Wang, and B. Fang, ‘‘Evaluating data filter on cross-
project defect prediction: Comparison and improvements,’’ IEEE Access,
vol. 5, pp. 25646–25656, 2017.

[32] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, ‘‘Heteroge-
neous defect prediction with two-stage ensemble learning,’’ Automated
Softw. Eng., vol. 26, no. 3, pp. 599–651, 2019. [Online]. Available:
https://link.springer.com/article/10.1007/s10515-019-00259-1

[33] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, ‘‘A two-phase trans-
fer learning model for cross-project defect prediction,’’ Inf. Softw. Tech-
nol., vol. 107, pp. 125–136, Mar. 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/abs/pii/S0950584918302416

[34] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen, ‘‘FECAR: A feature
selection framework for software defect prediction,’’ in Proc. IEEE 38th
Annu. Comput. Softw. Appl. Conf., Jul. 2014, pp. 426–435.

[35] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen, ‘‘Empirical studies
of a two-stage data preprocessing approach for software fault prediction,’’
IEEE Trans. Rel., vol. 65, no. 1, pp. 38–53, Mar. 2016.

[36] Y. Ma, G. Luo, X. Zeng, and A. Chen, ‘‘Transfer learning for cross-
company software defect prediction,’’ Inf. Softw. Technol., vol. 54, no. 3,
pp. 248–256, 2012.

[37] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, ‘‘Local
vs. global models for effort estimation and defect prediction,’’ in Proc.
IEEE/ACM Int. Conf. Automated Softw. Eng., Nov. 2011, pp. 343–351.

VOLUME 7, 2019 184847



D. Chen et al.: DeepCPDP: Deep Learning Based CPDP

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ Jan. 2013, arXiv:1301.3781.
[Online]. Available: https://arxiv.org/abs/1301.3781

[39] J. Nam,W. Fu, S. Kim, T.Menzies, and L. Tan, ‘‘Heterogeneous defect pre-
diction,’’ IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874–896, Sep. 2018.

[40] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. Int.
Conf. Softw. Eng., 2013, pp. 382–391.

[41] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, ‘‘An empirical study on Pareto
based multi-objective feature selection for software defect prediction,’’
J. Syst. Softw., vol. 152, pp. 215–238, Jun. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219300573

[42] C. Ni,W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, andQ.-G. Huang, ‘‘A cluster
based feature selection method for cross-project software defect predic-
tion,’’ J. Comput. Sci. Technol., vol. 32, no. 6, pp. 1090–1107, 2017.

[43] A. Panichella, R. Oliveto, and A. De Lucia, ‘‘Cross-project defect predic-
tion models: L’Union fait la force,’’ in Proc. Softw. Evol. Week-IEEE Conf.
Softw. Maintenance, Reeng., Reverse Eng., Feb. 2014, pp. 164–173.

[44] F. Peters, T.Menzies, andA.Marcus, ‘‘Better cross company defect predic-
tion,’’ in Proc. Work. Conf. Mining Softw. Repositories, 2013, pp. 409–418.

[45] F. Rahman and P. Devanbu, ‘‘How, and why, process metrics are better,’’
in Proc. Int. Conf. Softw. Eng., 2013, pp. 432–441.

[46] F. Rahman, D. Posnett, and P. Devanbu, ‘‘Recalling the imprecision of
cross-project defect prediction,’’ in Proc. Int. Symp. Found. Softw. Eng.,
2012, p. 61.

[47] D. Ryu, O. Choi, and J. Baik, ‘‘Value-cognitive boosting with a support
vector machine for cross-project defect prediction,’’ Empirical Softw. Eng.,
vol. 21, no. 1, pp. 43–71, 2016.

[48] D. Ryu, J.-I. Jang, and J. Baik, ‘‘A transfer cost-sensitive boosting approach
for cross-project defect prediction,’’ Softw. Qual. J., vol. 25, no. 1,
pp. 235–272, 2017.

[49] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[50] J. Sliwerski, T. Zimmermann, and A. Zeller, ‘‘When do changes induce
fixes?’’ ACM Sigsoft Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[51] Q. Song, Y. Guo, and M. Shepperd, ‘‘A comprehensive investigation of the
role of imbalanced learning for software defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 45, no. 12, pp. 1253–1269, Dec. 2019.

[52] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, ‘‘Learn-
ing sentiment-specific word embedding for Twitter sentiment classi-
fication,’’ in Proc. Annu. Meeting Assoc. Comput. Linguistics, 2014,
pp. 1555–1565.

[53] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
‘‘Automated parameter optimization of classification techniques for defect
prediction models,’’ in Proc. Int. Conf. Softw. Eng., 2016, pp. 321–332.

[54] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

[55] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features for
defect prediction,’’ in Proc. Int. Conf. Softw. Eng., 2016, pp. 297–308.

[56] S. Watanabe, H. Kaiya, and K. Kaijiri, ‘‘Adapting a fault prediction model
to allow inter languagereuse,’’ in Proc. Int. Workshop Predictor Models
Softw. Eng., 2008, pp. 19–24.

[57] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[58] W. Fei, X.-Y. Jing, S. Ying, S. Jing, and Y. Sun, ‘‘Cross-project and within-
project semisupervised software defect prediction: A unified approach,’’
IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597, Jun. 2018.

[59] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X.Wang, ‘‘HYDRA:Massively
compositional model for cross-project defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 42, no. 10, pp. 977–998, Oct. 2016.

[60] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
‘‘Effort-aware just-in-time defect prediction: Simple unsupervised models
could be better than supervised models,’’ in Proc. Int. Symp. Found. Softw.
Eng., 2016, pp. 157–168.

[61] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, ‘‘An empirical study on
the effectiveness of feature selection for cross-project defect prediction,’’
IEEE Access, vol. 7, pp. 35710–35718, 2019.

[62] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye, ‘‘Learning from
imbalanced data for predicting the number of software defects,’’ in Proc.
Int. Symp. Softw. Rel. Eng., 2017, pp. 78–89.

[63] Z. Zhang, X. Jing, and T.Wang, ‘‘Label propagation based semi-supervised
learning for software defect prediction,’’ Automated Softw. Eng., vol. 24,
no. 1, pp. 47–69, Mar. 2017.

[64] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ‘‘Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,’’ in Proc. Eur. Softw. Eng. Conf. ACM Symp. Found. Softw. Eng.,
2009, pp. 91–100.

DEYU CHEN is currently an Associate Professor
with the School of Information Science and Tech-
nology, Nantong University. His research interest
includes software quality assurance.

XIANG CHEN received the B.Sc. degree from the
School ofManagement, Xi’an JiaotongUniversity,
China, in 2002, and the M.Sc. and Ph.D. degrees
in computer software and theory from Nanjing
University, China, in 2008 and 2011, respectively.
He is currently an Associate Professor with the
Department of Information Science and Technol-
ogy, Nantong University. His research interest
includes software engineering. Particularly, he is
interested in software maintenance and software

testing, such as software defect prediction, combinatorial testing, regression
testing, and fault localization. In these areas, he has published over 60 articles
in refereed journals or conferences, such as the IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, IEEE ACCESS, Information and Software Technology,
Journal of Systems and Software, IEEE TRANSACTIONSONRELIABILITY, Journal
of Software: Evolution and Process, Software Quality Journal, Journal of
Computer Science and Technology, ASE, ICSME, SANER, and COMPSAC.
He is a SeniorMember of CCF, China, and amember of ACM.He is currently
serving as an Associate Editor for IEEE ACCESS.

HAO LI is currently pursuing the master’s degree
with the College of Intelligence and Computing,
Tianjin University. His research interests include
software defect prediction and data mining.

JUNFENG XIE is currently pursuing the mas-
ter’s degree with the School of Computer Science,
Fudan University. His research interests include
software defect prediction and data mining.

YANZHOU MU is currently pursuing the mas-
ter’s degree with the College of Intelligence and
Computing, Tianjin University. His research inter-
ests include software defect prediction and data
mining.

184848 VOLUME 7, 2019


