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ABSTRACT With the development of the Internet of Things, the security of embedded device has received
extensive attention. Taint analysis technology can improve the understanding of the firmware program
operating mechanism and improve the effectiveness of security analysis. It is an important method in security
analysis. Traditional taint analysis of embedded device firmware requires complex pre-preparation work,
setting up a virtual operating environment. Those security analysts have to invest a lot of time and effort
in this work, and the results are usually unsatisfactory. In this paper, we propose a dynamic taint analysis
method based on entity equipment. The core idea of our approach is to divide the taint analysis into two
parts: the simulation analysis on the host and the real execution on the entity equipment. Since one of the
features of our method is based on entity equipment, there is no need to build a dedicated virtual environment.
Another feature is that the tested firmware program runs on entity equipment and can ensure the accuracy
of the analysis by comparing the results of the taint analysis with the device firmware run-time information.
We implement a prototype system and verified the effectiveness of the method, which can perform taint
analysis on multiple architecture embedded firmware programs and detect vulnerabilities such as stack
overflow, heap overflow and so on. Finally, we verify our prototype with a test case to effectively detect
vulnerabilities in the firmware program. And we evaluate the performance of the prototype, compared with
PANDA, the time overhead of our prototype is reduced by 5.9%.

INDEX TERMS Embedded firmware, dynamic taint analysis, cross-debugging.

I. INTRODUCE
With the pervasive application in economic development and
social life, embedded devices have become more and more
important. The need for security testing of embedded device
firmware has also emerged. Taint analysis technology has
been widely used in software vulnerability analysis [1]. The
core principle is to add a taint label to the data, track the
propagation process of taint data during program running,
and detect taint labels in the sensitive data area or when
programs call APIs to send data out [2]. Through the taint
analysis of programs, we can have a deeper understanding of
the mechanism of the vulnerability.

Due to its advantages, taint analysis has been applied to
many research fields such as vulnerability mining [3]–[6]
and sensitive data leakage detection [7]–[10]. However, there
are some difficulties in applying taint analysis to embedded
device firmware analysis. One obvious reason is that for
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commercial confidentiality. Embedded device manufacturers
generally do not provide firmware source code, so security
researchers can only use binary code to analyze the security
performance of embedded device firmware. In the binary
code analysis of embedded device firmware, it is usually
necessary to set up a virtual environment. Since the platform
architecture and dependent libraries of the embedded device
firmware are different, various problems often occur when
setting up the virtual environment [11]. This will occupy
a large number of researchers’ time and effort. Therefore,
security analysts urgently need an analysis tool with a simple
environment and a wide range of applications, which can
perform taint analysis on the firmware program if the system
performance overhead can be tolerated.

In this paper, we design a taint analysis framework based
on entity equipment, which can perform taint analysis to
embedded device in real environments. The core idea is to
divide taint analysis into simulation analysis on the host
and real execution on embedded devices. The simulation
analysis on the host, which can be seen as a monitor and
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replicator, obtains run-time information of the program
firmware through cross-debugging, performs simulation exe-
cution and taint analysis on the host. The results of the sim-
ulation execution are compared with the results of the device
firmware operation to ensure the correctness of the simula-
tion execution. Our method does not need to build a com-
pleted firmware virtual environment on the host. Therefore,
we have reduced the manual work required to build a virtual
environment.

We use cross-debugging provided by embedded system
vendors to achieve coordination between simulation analysis
and real execution. For the simple analysis environment and
strong adaptability, the dynamic taint analysis technology
based on entity equipment proposed in this paper has a
very broad application prospect in firmware program security
analysis.

We implement our method by gdb. Then, the prototype
system is evaluated by test machine to verify the validity
and effectiveness of the prototype. The results show that our
prototype achieves a certain degree of analytical accuracy
with acceptable performance overhead.

Contributions of this work are:
1) We design a dynamic taint analysis framework based on

entity equipment. The method performs the taint analysis and
simulation analysis on the host. At the same time, firmware
program performs real execution on the target device. The
host obtains the run-time information of the target device
through cross-debugging. The advantage of our design is that
the bottleneck of the hardware and software capabilities of the
embedded device can be avoided by performing taint analysis
on hosts. It can also save the preparation for setting up the
virtual environment.

2)We implement a prototype system and test it. The system
can effectively detect firmware vulnerabilities such as stack
overflow and heap overflow, and also can mark the output
formatted strings with taint label.
3) We study the impact of the prototype on the efficiency

of the target program and evaluate it with the bin64 toolset.
The paper is organized as follows. Section II reviews

related works briefly. Motivations of this work are described
in Section III. Section IV presents the overall design of
the system and the functions of each module. Section V
introduces the algorithm of our method. Section VI details
the implementation on gdb, and Section VII examines the
actual case. Section VIII describes the experiment and anal-
ysis of the test set, Section IX discusses the limitations of
our approach, as well as possible solutions, and Section X
concludes the paper.

II. RELATED WORK
Taint analysis is generally divided into hardware-based,
virtual-environment-based, software-based, and code-based
four classes [12], each of which has its own characteristics.

Hardware-based taint analysis tools such as Raksha, Flex-
iTaint and PIFT [13], need to expand the system at the
hardware level, redesign the hardware structure of registers,

caches and memory, and add corresponding taint information
labels to achieve the storage, dissemination and detection
function of taint information. Although such methods have
low system overhead and high efficiency in taint analysis,
they are too laborious and not portable for embedded device
firmware analysis.

Virtual-environment-based taint analysis tools [14], [15]
usually add a taint analysis module in the virtual environment,
so that the taint analysis module and the target program run in
different layers. The taint analysis module of Phosoher [16]
runs on the virtual machine monitoring layer, and target
programs run on the target operating system layer. Since the
analysis module runs on the bottom layer of the target pro-
gram, the taint information recorded by such methods is more
accurate. However, this method requires virtual environments
to run firmware programs. This preparation is also very com-
plicated due to the different architectures and dependencies
of the firmware program. For example, FIRMADYNE [11]
can only successfully simulate 8617 firmware images while
23035 firmware images is downloaded.

Software-based taint analysis mainly performs taint anal-
ysis on operating systems and applications. The core idea
is to mark related resources in operating systems or appli-
cations, and perform taint analysis on this basis, such as
TaintDroid [17]. This method requires frequent instrumenta-
tion or code rewriting, and the analysis efficiency is greatly
reduced. Subject to the hardware and software environ-
ment of embedded device, this approach is rarely used in
embedded device environments. There are similar jobs in
reference [18]–[21].

Code-based taint analysis tools [19], [22]–[24] often fail
to analyze source code for commercial reasons, and only
binary code analysis is possible. The main practice is to insert
taint tracking codes in the binary code to get taint propa-
gation information when the program is running. Dynamic
taint analysis often uses this approach. Taint analysis of
binary code can perform taint tracking detection at the
instruction level with high accuracy, but frequent instru-
mentation will occupy system resources and reduce system
operation efficiency. In addition, the type and size of the
computer’s instructions make it extremely difficult to accu-
rately model binary code, and binary code lacks high-level
semantic support, and generally relies on instrumentation
platforms or binary disassembly tools to reduce the workload.

The analysis objects of such hybrid execution tools are
generally intermediate representation languages translated
from machine code. The advantages include two aspects:
First, the hybrid execution tool based on intermediate repre-
sentation languages can be independent of the architecture,
that is, if the translation module of the specific architecture is
available, the analysis work can be used to test the firmware
program based on different platforms; Second, a lot of devel-
opment work can be saved because the workload of analyzing
intermediate representation languages is much lower than the
analysis of machine language. The above hybrid execution
tools were originally designed to alleviate the work required
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for code migration, and to solve the problem that the compu-
tational performance of the embedded system is difficult to
meet the symbol execution, but they are good references for
our work.

In existing works, researchers have applied symbol exe-
cution and hybrid execution to the testing of embedded
device firmware. For example, Mayhem [25] uses the BAP
framework [26] to convert instructions into IR statements,
so Mayhem is independent of the architecture. Overall, May-
hem separates concrete executions of the hybrid execution
from symbolic executions, where concrete executions are
performed by target devices and symbolic executions are
performed on hosts. Later, Chen et al. [27] improved this
structure, and realized a hybrid execution tool with lower
development cost and better consistency, and implemented
on the embedded system VxWorks. Specifically, the concrete
implementation only includes the CE core responsible for
concrete implementations and the debugging agent for cross-
debugging, this design were more suitable for the limited
hardware resource environment of the embedded system.

But ours is different from the existing work [28]–[31].
Take Avatar as an example, there are three main differences
between our work and Avatar. Firstly, In Avatar the firmware
runs in the emulator while in our work it runs in the real
device. Secondly, the target of Avatar is devices without
operating system, such as Hard Disk Drive and Common
Feature Phone. While our target is embedded devices with
Unix-like operating system, such as Network printer. Thirdly,
Avatar is a frameworkwhich requires a JTAG-based hardware
debugger, so it needs some hardware’s help like jlink. And our
prototype can perform safety analysis only by using cross-
debugging tools such as gdb.

Our work implements a general approach to performance
taint analysis of embedded device firmware, as well as
details of the prototype system and experiments implemented
on gdb.

III. MOTIVATION
The defect in embedded device firmware is the main rea-
son we conducted this research. Figure 1 shows the trend
of the numbers of vulnerabilities found in several popular
embedded systems (Android, Apple iOS, and Cisco iOS).
From the statistics, we find that so many vulnerabilities were
discovered every year.

From our perspective, one major reason is inadequate
testing technique. A commonmethod of performing security
testing on embedded device firmware is black box testing.
Test cases are generated randomly, or some heuristics. Then
test cases are imported into the program, observing and ana-
lyzing the output of the program. If the output is incorrect,
it means that a potential vulnerability has been discovered.
One disadvantage of the black box testing is that the inter-
nal state of the tested program cannot be obtained, and the
researchers cannot obtain the mechanism of the vulnerability.
Another disadvantage is about code coverage of black box
testing. Even if all the test inputs generated by the black box

FIGURE 1. Trend of the numbers of discovered vulnerabilities from Jan. 1,
2015 through Dec. 31, 2018 (data collected from National Vulnerability
Database. http://nvd.nist.gov/).

testing have been executed, there may still be a large number
of vulnerabilities in the tested program.

In recent years, binary symbol analysis of device firmware
has become a hotspot and has beenwidely used inmany cyber
security challenges. However, in practical applications, prob-
lems such as path space heuristic search, constraint solving,
parallel processing, memory modeling and performing envi-
ronmental simulations require further research and improve-
ment.

The effectiveness of taint analysis has been verified on
general-purpose computer platforms, which is our second
motivation. Researchers have developed a number of sophis-
ticated PC-based taint analysis tools, including TEMU, Flow-
Droid [32] and TaintDroid, for reference.

The instrumentation can obtain run-time information
on the tested firmware, which can be used to perform the
taint analysis of the embedded device firmware. Instrumen-
tation is a commonly used method for dynamic taint anal-
ysis of the tested program on PC platforms. But the use
of instrumentation on embedded platforms is also a more
complicated task, because instrumentation is closely related
to the operating systems and hardware structures.

Fortunately, cross-debugging can be obtained from ven-
dors that allow third parties to develop applications for their
embedded systems. For example, embedded Linux can be
debugged through gdb; WTX protocol is the debugging tech-
nology provided by Wind River for VxWorks; Windows CE
debugging function is integrated in Platform Builder IDE;
CodeWarrior Development Studio provides debugging func-
tion for Palm; we can separately get run-time information for
Android and iOS apps through Android Debug Bridge and
debugserver. Our approach can be applied to different embed-
ded systems through cross-debugging techniques provided by
different platforms.

IV. SYSTEM ARCHITECTURE
In this section, we first introduce the overall framework and
briefly introduce each module, and then illustrate the col-
laboration between modules through a typical taint analysis.
Figure 2 demonstrates the system framework.
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In our framework, the firmware program is actually exe-
cuted on the device. The host gets the run-time information
of the firmware program by using cross-debugging tools such
as gdb. Then the host performs taint analysis by using the
run-time information. The results performed by the host are
checked against the values in the real device to ensure the
accuracy of the analysis. Of course, we design some modules
to implement the functions.

A. DESCRIPTION OF MODULES
The function of the gdb Server module is to debug the target
firmware program and get the run-time information. Based
on commands received from the gdb + instrumentation
engine module, the gdb Server can start and stop debugged
programs, set breakpoints, perform individual steps. Run-
time information obtained from programs includes executed
instructions, registers, and values in memory.

The gdb + instrumentation engine is the only interface
between the host and the embedded device. Its function is to
send the obtained program’s run-time information to the IR
liftermodule. Another function of the gdb+ instrumentation
engine is to accept commands from the taint analysis engine
and sends them to the gdb Servermodule. In addition, it has a
special function named ELF-file-parsing to parsing the ELF-
file and deal with the preprocess work.

The IR lifter module is to translate machine instruc-
tions into intermediate representation statements. The inputs
are machine instructions from the gdb + instrumentation
engine, and the outputs are intermediate representations that
can be interpreted by the taint analysis engine. The IR lifter
module relies on the embedded device firmware architecture,
we implemented the prototype system on gdb, and we used
the VEX module under the Valgrind framework for IR lifter.

The taint analysis engine is the core part of the framework.
Its main functions are to set taint labels, track the spread of
taint data by invoking the taint-propagation-strategy function,
and detect taint labels at the taint convergence points. The
taint analysis engine has a function named check to compare
and verify the results executed by the taint analysis engine
with the information obtained by the gdb Server and the gdb
+ instrumentation engine. Because the taint analysis engine
is simulation, the results executed may be inconsistent with
the values performed by the embedded device firmware, this
will affect the accuracy of the taint analysis.

The functions of the storage module are to record the IR
file generated by the IR lifter module and the values of the
registers and memory calculated by the taint analysis engine,
as well as the taint markers, and save them in the taint analysis
file database for replay analysis.

B. COOPERATION OF MODULES
In this section, a typical taint analysis process is used to
describe the collaborative process between all modules.

At first, the ELF-file-parsing function of the gdb+ instru-
mentation engine module parse related information about
device’s platform architecture and instruction set.

Instrumentation: 1) The gdb + instrumentation engine
module sends gdb debug commands to the gdb Server of the
entity equipment, and the firmware program is aborted at the
specified breakpoint; 2) The gdb Server returns command
response and device firmware run-time information (in the
form of a basic block file) to the gdb + instrumentation
engine module; 3) The gdb + instrumentation engine calls
the subsequent processing function to perform subsequent
processing steps on the obtained basic block file.

The IR lifter: 4) The IR liftermodule converts the resulting
basic block file into an IRSB. At the same time, the IRSB
information is stored into the VEX information storage area
VCache.

Taint analysis: 5) The taint analysis engine invokes the
taint-propagation-strategy function to perform the taint anal-
ysis process and stores the information after execution about
memory, registers and temporary variables in the MCache
RCache and TCache of the storage module; 6) After the
taint analysis to the IRSB, the taint analysis engine passes
the next-PC-address to the gdb + instrumentation engine
module. And the gdb + instrumentation engine module
repeats the previous process based on the next-PC-address.

After the entire taint analysis is completed, the informa-
tion stored in the storage is output to the taint analysis file
database.

C. ADVANTAGES OF THE ARCHITECTURE
The advantages of the architecture can be seen in Figure 2.

1) Our method overcomes the hardware limitations of
embedded system devices, making it possible to perform taint
analysis on the embedded firmware of the entity equipment.
And with this architecture, we can analyze and test any
embedded device that supports remote debugging, this is
more portable.

2) Save a lot of work on environment. Figure 2 shows that
most work of the taint analysis (ELF file parsing, IR con-
version, taint analysis, data saving, result verification, etc.)
occurs on hosts. Therefore, our method is not limited by the
hardware resources of the device. In addition, the firmware
program runs on the physical device the architecture, our pro-
totype obtains related information through cross-debugging.
So researchers do not need to set up a virtual environment,
which is much less expensive than virtual-environment-based
taint analysis.

3) Get accurate run-time information. Due to the use of
the instrumentation module, the taint analysis framework can
obtain accurate run-time information, and cooperate with the
check function to compare and verify the results of the taint
analysis engine. This overcomes the defects of simulation
execution.

4) No need to obtain firmware program source code.
With the increase in aggressive behavior against embedded
devices, embedded device vendors are also upgrading the
level of security for firmware, and security researchers have
difficulty in accessing firmware source code. This framework
can overcome this shortcoming.
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FIGURE 2. Dynamic taint analysis framework.

V. ALGORITHM
Algorithm 1 shows the algorithm of our method. The tested
program P and the initial taint source S are the inputs of
the algorithm. The way to introduce taint sources will be
described in the next section. The output of the algorithm is
a set of formatted results generated according to our method.

Algorithm 1 Algorithm of the Proposed Method
Parameteres: Program P, Taint sources set S
Results: R, M , T
1: I = ELF_parsing(P)
2: sim_state(R,M ,T ) = initialize(P, I )
3: while not_end_of (P) and not_breakpoint_of (P) do
4: B = current_basicblock(P)
5: IR = ir_translate(B)
6: for I in IR.inst do
7: set(value, label) = simulation_execution(I , S)
8: sim_state(R,M ,T ) = update(set(value, label))
9: end for

10: real_value(R,M ,T ) = instrumentation(bp′)
11: if sim_state(R,M ,T ) == real_value(R,M ,T ) then
12: save_state(R,M ,T )
13: else
14: return -1
15: end if
16: end while

The analysis framework parses the ELF file to obtain
related information in Line 1. Then an initial simulation
state that includes registers R, memory M , and temporary
variables T is created in Line 2. Starting from Line 3,
the taint analysis framework runs the program until the pro-
gram finishes running, or a termination command is met.

Typical termination command includes running out of preset
test times, reaching preset program breakpoints, or throwing
uncaught exceptions. The first step of the loop is to read the
current basic block to be executed from the running program,
and then translate it into a set of intermediate representation
statements (Lines 4, 5).

The algorithm then performs corresponding operations
depending on the type of operations. The result is a set of
values and labels about simulation memory, registers and
so on. The set will be used to update the initial simulation
state. After a basic block is executed, the values in the initial
simulation state are compared with the values obtained by
instrumentation.

At a higher level, all operations are divided into three
categories such as instrumentation, intermediate representa-
tion conversion, taint analysis. If the operation type is to
obtain data input, perform the instrumentation operation to
obtain related information when the program is running; if the
operation type is a conversion instruction form, convert the
obtained binary instruction into an intermediate represen-
tation language; if the operation type is to perform taint
analysis, The taint analysis engine is called for taint analysis.
When the result of comparison is consistent, the program
continues, or an error is raised if a mistaken occurs.

VI. IMPLEMENTATION
We implement our prototype based on our designed frame-
work. In this section, we will focus on the implementation
of the system. The prototype system is designed for embed-
ded systems on general-purpose computers. The total code
amount of the system is about 12,000 lines of Python code
without comments.

Note that the implementation details described in this
section are specific to gdb, but the architecture and algorithm
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FIGURE 3. Dynamic instrumentation flow chart.

of our method are generic and applicable to other embedded
systems.

A. INITIALIZATION AND DYNAMIC INSTRUMENTATION
The system first creates and initializes the gdb+ instrumen-
tation engine module. The initialization is mainly divided
into two parts. One is to initialize the information and some
parameters of the system platform and firmware program
obtained in the ELF file parsing module. This is due to the
difference between the instruction set, register type and byte
order of different platform architectures. The other part is to
register the taint analysis event and the signal, address, etc.
of interest. This part mainly provides an interface for the
simulation taint analysis engine module, which facilitates
the analysis of the basic block.

The initial breakpoint is set after initialization to start
executing the program. The prototype system analyzes in
units of basic blocks, triggers taint analysis events at the
beginning and end of basic blocks for simulation execution,
taint analysis, and verification. When the target program calls
library functions, the taint propagation analysis can be per-
formed directly according to the function of library functions
to improve the efficiency of the taint analysis.

B. INTERMEDIATE REPRESENTATION CONVERSION
In order to implement the taint analysis tool based on inter-
mediate representation language, we need to add a module
to convert the machine code into intermediate representation

statements. Existing binary translation frameworks such as
LLVM (static) and Valgrind (dynamic) already have this
function. Valgrind does not require program source code
and can operate on executable files. Currently, it supports
multiple mainstream platforms (x86, ARM, MIPS, PPC).
Our prototype system draws on Valgrind’s method of calling
the pyVEX module to convert machine instructions, includ-
ing intermediate expressions, intermediate expression opera-
tions, temporary variables, states, blocks, and more.

1) Expressions: The value evaluated from the intermediate
expression or constant, includes memory load, register read,
and arithmetic results.

2) Operations: The processing of intermediate expressions
includes integer operations, floating point operations, bit
operations, and so on.

3) Temporary variables: The temporary variable used by
the VEX expression processing, starting with t0.

4) Statements: Intermediate statements that change the
target machine’s state. For example, the writing of memory
and registers.

5) Blocks: A set of intermediate statements and inter-
mediate expressions, represents a basic block of the target
machine.

C. SIMULATION EXECUTION AND RESULT VERIFICATION
Our prototype system obtains run-time information from the
real execution of the target device, and performs simulation
execution on the host, and performs taint mark propagation
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FIGURE 4. Simulation execution flow chart.

according to the taint propagation strategy. The specific pro-
cess is shown in Figure 4.

In order to ensure the correctness of simulation executions,
the calculated simulation memory’s and registers’ values are
compared with the results obtained by the entity equipment
to ensure the accuracy of the analysis, after the end of each
basic block analysis.

D. TAINT ANALYSIS
The taint source introduction is the beginning of taint analy-
sis. In this prototype, the granularity is marked by byte, and
the taint information is stored by the way of bitmap. In order
to make the prototype meet the actual needs, we provide three
ways to introduce taints:

1) Program execution parameters. Some programs input
data through command line parameters, so we can choose to
use command line parameters as taint sources.

2) Library functions. Functions such as read, scanf,
getchar, etc., can enter data into the program by reading files,
so it is possible to mark the input information as taint sources
by recognizing the input of relevant library functions.

3) Manually marking. In some cases,, the above two meth-
ods may not be used for taint marking, thus providing a
manual marking method for taint marking data is necessary.

According to the characteristics of intermediate represen-
tation statements, it can be divided into four categories:

1) single-data dependencies, such as constants, temporary
variables, registers, memory values, etc., whose taint labels
can be directly propagated to the target data.

2) Multi-data dependencies, mainly including multi-
parameter expressions such as bit operations and arithmetic
operations.

3) data-extension dependencies, mainly some data-
length-extension expressions, including 0-extension and
sign-extension.

4) special dependencies, refers to the taint propagation of
ITE expressions. In addition, since the libc library function is
called in the simulation taint analysis, the taint propagation
strategy should also include the processing of the libc library
function.

The taint detection section mainly checks whether the taint
propagation process violates security policies, and warns and
records relevant information if the security policies are vio-
lated. The taint detection of our prototype mainly checks two
aspects. One is to check whether the privacy is leaked. For
some programs that have sensitive information (such as pass-
word, personal data), mark private data as taint data to check
whether there is a leak of privacy during the running process.
The second is to check whether the control flow is hijacked,
that is, when the taint data modifies the return addresses,
function pointers, etc. to control the transfer related data,
the program is considered to have a vulnerability.

Algorithm 2 shows the algorithm details of the function
simulation_execution(). The instruction I , taint sources set
S and taint convergence points set C are the inputs of the
function. The set(value, label) is initialized to ø in Line 1.
The value and label of results are calculated by the func-
tion of execution and propagation, which are used to update
set(value, label) in Line 5. Then the function will detected
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Algorithm 2 Algorithm of the Function Simulation_
Execution
Parameteres: Instruction I , Taint sources set S,

Taint convergence points set C
Results: set(value, label) or taint_information(C)
1: set(value, label) = ∅
2: while do
3: value = execution(I , S)
4: label = propagation(I , S)
5: set(value, label) = update(value, label)
6: if taint_detection(C) ==true then
7: return taint_information(C)
8: else
9: return set(value, label)

10: end if
11: end while

whether taint convergence points are tainted. If the result is
true, the information about the taint detection will be returned
in Line 7.

VII. CASE STUDY
A. TEST ENVIRONMENT
This subsection illustrates the effectiveness of the system
design and the operation as expected through an example
operation. Before displaying the results, we first introduce
the experimental environment shown in Table 1. The host is a
personal computer and the target is an embedded device. The
target is connected to the host through a serial port.

TABLE 1. Experimental environment.

B. TEST CASE
This subsection examines the feasibility of a prototype sys-
tem by performing taint analysis to a program with stack
overflow vulnerability. The target program of this experiment
is from a PWN competition named [XMAN] level2 in the
Jarvis OJ CTF training platform (website is https://www.
jarvisoj.com/challenges). The program’s decompiled result in
IDA pro is shown in Figure 5.

It can be seen from Figure 5 that the function vulner-
able_function() reads 0 × 200 bytes of data into the buf,
which exceeds the size of the buf space, causing the stack to
overflow. In the process of taint analysis using our system,
the prototype prompts that the eip register is marked, and
there may be a control flow hijacking vulnerability, as shown
in Figure 6.

FIGURE 5. Decompile result.

When manually analyzing the log, we can find that the
system marked the function read() as taint source, and record
the taint propagation process. Finally, when the eip register
is marked with taint labels, a warning is issued. After manual
analysis, we can find a vulnerability is triggered at 0×40061f
of the program, as shown in Figure 7.

Similarly, our system can detect heap overflow and format
string vulnerability by the target program with taint label.

The above case confirms the feasibility of our method
in practical applications. But we are also concerned about
another question that cannot be answered in this section: Does
our approach have a negative impact on the effectiveness
and efficiency of embedded systems? This question will be
answered in the next section.

VIII. EVALUATION
A. EXPERIMENTS SETUP
In this section, we use the prototype to perform taint analysis
on several programs in the test standard set and use time
consumption to evaluate the impact of the prototype system
on the efficiency of the target program. Because we need
code checking and reverse engineering to analyze the reasons
for the comparison of results, the test program is relatively
small. Please note that all programs tested are from the
bin64 toolset.

B. SYSTEM PERFORMANCE ANALYSIS
In this experiment, we analyzed the average time of a taint
analysis, and the results are shown in Table 2. In this section,
we will answer the question of the negative impact our anal-
ysis methods have on the efficiency of embedded systems.

Dynamic instrumentation of the prototype system is in
units of basic blocks. It can be seen from Table 2 that the
more breakpoints of the analyzed program, the greater the
time overhead of dynamic taint analysis. The reason for
this phenomenon is that frequent instrumentation reduces the
efficiency of taint analysis. As can be seen from the last line
of Table 2, an average of 98511 breakpoints are insert into a
program, and the average analysis time is 23m1.550s. It takes
about 0.014s to analyze a basic block.

In addition, the prototype system performs taint anal-
ysis at the Intermediate representation statements level,
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FIGURE 6. Taint analysis tips.

FIGURE 7. Taint analysis log.

TABLE 2. Time consumption for one run of taint analysis.

and translates each instruction into multiple Intermediate
Representation Statements during the execution process.
It can be seen in Figure 7. Therefore, the analysis workload

is larger than the taint analysis at the instruction level, it’s
another reason which also causes the system analysis effi-
ciency to decrease.
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In order to more realistically evaluate the performance of
our prototype, we added a comparative evaluation test of the
system performance overhead of PANDA for taint analysis of
test sets (the bin64 toolset).

PANDA is a dynamic analysis platform based on QEMU
virtual machine with functions such as record, replay and
analysis. In this experiment, the total time for PANDA to
perform taint analysis on the test set is the sum of record,
replay, and analysis. According to our tests, the time recorded
in each test is different due to various aspects such as system
operation. Therefore, we calculated the average time cost of
5 tests on the test set by PANDA and compared them. From
the comparison results, the total time of our prototype is
reduced by about 5.9%.

IX. DISCUSSION
Although this paper proposes a new embedded device taint
analysis method, which is an alternative to the existing
method. But we do not think it can solve all the problems
related to the subject of this research. In this section we will
discuss the limitations of this approach, as well as possible
solutions for future research.

The first limitation is the decline in the efficiency of pro-
grams, which stems from the design of our approach. Specif-
ically, we take the instrumentation method to get programs’
run-time information, and this will greatly reduce the run-
ning speed of the embedded device firmware. Therefore,
our system may have problems when testing time sensi-
tive program. In order to solve this problem, we need to
design a more efficient instrumentation method. Another
solution that we are doing is combining taint analysis with
fuzzing. Firstly, we get a collection of test cases that crash
the firmware program through the fuzzing test, and then
research the reason of the crash caused by the specific test
case. So, we do not have to do a lot of analysis work except
for a potential vulnerability. This can reduce the impact of low
efficiency.

The second limitation is the accuracy of taint analysis.
The problem is caused by the implementation of the pro-
totype. Since the firmware program is simulation execution
on hosts, the result may be different from the real execution
result of the firmware program on target devices, so the
checkmodule is required to ensure the consistency of the two
results. At present, we adopt a conservative strategy to deal
with the inconsistency of the result verification. That is, if the
results are different, the simulation execution is performed
again on the host. The implementation of the check module
and the use of conservative strategies can affect the efficiency
of the embedded device firmware.

The last limitation is the portability of our framework. Due
to the difference between the architectures and platforms,
there are still a lot of problems to migrate the prototype,
such as pointer, local call, string operation, register alias, and
floating point operation. Detailed information about these
challenges and related solutions can be found in other’s
works [33].

X. CONCLUSION
In this work, we propose a taint analysis method based on
entity equipment. The core idea of this method is to perform
the taint analysis by simulation execution on the host and
real execution on the target device. The host uses the running
information of firmware program obtained by GDB debug-
ging to construct the simulation execution environment, and
simulates the execution of intermediate statements at the level
of intermediate representation language to get the simulation
state of program operation and the state of taint propagation.
The target device actually runs the firmware program and
waits for the mainframe to verify the status at the set break-
point. After the verification is passed, the firmware program
continues to run downward. Our approach overcomes the
strict limitations of embedded device hardware and software.
Through the embedded system cross- debugging feature,
the host can communicate with the target device. This method
overcomes the shortcomings of performing a large number
of manual tasks while constructing a virtual environment for
taint analysis.

We implemented a prototype system on gdb and practiced
the feasibility of the method. Experiments show that the
prototype can perform taint analysis on embedded device
firmware, and can detect stack overflow, heap overflow and
other types of vulnerabilities. As far as we know, this is the
first system to do this work.
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