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ABSTRACT This paper investigates the problem of fuzzy state feedback control for a category of fuzzy-
model-based coronary artery system(FMBCAS) with state time-delay. T-S fuzzy model is employed to
close in coronary artery system(CAS) which exists unknown nonlinear characteristics. Through the use of
linear matrix inequality technique, the synchronization controller for CAS are obtained. By utilizing the
delay-partitioning method, we can get a less conservative results. The Bessel-Legendre inequality and the
Moon’s et al. inequality with convex analysis are used to further reduce the conservatism of the system.
Finally, a simulation of CAS proves the effectiveness of our strategy.

INDEX TERMS Chaos synchronization, coronary artery system, Bessel-Legendre inequality, fuzzy control,
delay-partitioning method.

I. INTRODUCTION
Chaos synchronization has become an important topic in
the field of nonlinearity, it exists widely in biomedical,
information and other fields [1]–[5]. Confidential communi-
cation, chemical reactions, cardiovascular disease treatment
are some examples which use chaos synchronization [6], [7].
With the changes of blood vessel and blood pressure,
the coronary artery system will produce non-linear chaotic
dynamic behavior. Thus, the coronary artery system is also
a special chaotic system. Recently years, many researchers
study on the coronary artery system. Xu et al. in 1986 put
forward the mathematical equation of the CAS and the main
parameter values, mathematically prove that coronary artery
spasm will occur chaotic behavior [8].

Researchers have proposed a number of methods for the
study of nonlinear systems[9]–[18], such as adaptive con-
trol [19], [20], sliding mode control [21], [22], fuzzy con-
trol [23]–[25], event-triggered control [26], [27]. In the study
of CAS, the researchers applied the control methods of non-
linear system to chaos synchronization.
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Reference [28] designed a chaos suppression controller
using sliding mode control scheme for CAS. Reference [29]
used high-order sliding mode combined with adaptive control
method to achieve CAS synchronization in a limited time.
Reference [30] proposed a terminal sliding mode adap-
tive control for the synchronization of CAS with unknown
uncertainty boundary and the disturbance. It is a pity that
above literatures did not take the influence of time-delay into
account.

In practice of coronary heart disease treatment, the duration
of the drug, and the situation of the drug absorption affect
the stability of the system. There is a general phenomenon of
time-delay in CAS, and usually the time-delay changes over
time. Therefore, it has practical significance to research the
synchronization problem of uncertain CAS with time-delay.
The work [31] achieved the synchronization control of CAS
under interval time-varying delay through delay-partitioning
method. The paper [32] proposed a novel synchroniza-
tion control method by designing chaotic observers. Refer-
ence [33] used Wirtinger-based integral inequality to process
time delay to achieve chaos synchronization. Reference [34]
used Jensen inequality to obtain delay-dependent stabil-
ity conditions for chaotic finance systems. The methods

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 181933

https://orcid.org/0000-0001-5625-3048
https://orcid.org/0000-0002-4397-2139
https://orcid.org/0000-0002-2177-3980
https://orcid.org/0000-0002-3097-2412
https://orcid.org/0000-0002-4594-8802
https://orcid.org/0000-0001-7580-0836


R. Wang et al.: Synchronization of Fuzzy Control Design Based on Bessel–Legendre Inequality for CAS Time-Delay System

proposed in the above literatures to deal with the time-delay
chaotic system has achieved good results in obtaining system
stability criteria, but there is still room for further improve-
ment. According to the Lyapunov stability theory, the con-
servation of the delay-dependent stability criterion depends
on constructing an appropriate Lyapunov-Krasovskii func-
tional (LKF) and scaling the derivative of the constructed
LKF. At present, the mainstream methods are Wirtinger
inequality [35], Jensen inequality [36] and free-matrix-based
integral inequality [37]. Recently, a new inequality named
Bessel-Legendre inequality was proposed [38], which has a
less conservatism. In addition, the Moon’s et al. inequality
with convex analysis is also an effective way to reduce the
conservatism [39].

CAS is more complex than existing mathematical models,
and existing mathematical models can’t approximate the real
system well. Fuzzy control is an effective method for mod-
eling and controlling complex nonlinear systems. Through
the fuzzy logic, the language information is constructed on
the control system, so it is needn’t to establish the pre-
cise mathematical model of controlled plant in the design,
so that the control strategy is easy to design and apply to
practical system. The powerful universal approximation of
the Takagi-Sugeno (T-S) fuzzy system makes it a powerful
tool for controlling nonlinear systems. The T-S fuzzy model
approach uses a combination of fuzzy logic theory and linear
system theory to deal with complex nonlinear systems. Ref-
erences [40] and [41] show the advantages of modeling using
the T-S model.

Motivated by the above discussions, fuzzy state feedback
synchronization control for coronary artery system with state
time-varying delay is investigated in this paper. By utilizing
the linear matrix inequality technique, a new synchronization
controller for CAS are obtained. The contribution of the pre-
sented synchronization method are emphasized as follows:(a)
By constructing the fuzzy dynamic equation of the CAS,
the model further approximates the real CAS, thus achieving
better control effect.(b) By utilizing the delay-partitioning
technology [42], we can get a less conservative results.(c)
Bessel-Legendre inequality and the Moon’s et al. inequality
with convex analysis are used to further reduce the conser-
vatism of the proposed method.

The rest is organized as follows. The problem description
and preliminaries are described in Section 2. Section 3 elab-
orates the fuzzy synchronization control strategy for CAS
with state time-delay. The simulation results are illustrated in
Section 4 to verify the validity of the presented methodology.
Finally, the conclusions are drawn in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this paper, the mathematical equation of CAS is expressed
as follows:

ẋ(t) = Ax(t)+ Bx(t − τ (t))+ ζ, (1)

where x(t) = [x1(t), x2(t)]T , x1(t) and x2(t) represent inner
diameter changes and inner pressure changes of CAS.

Accordingly, we can derive the fuzzy model of coronary
artery drive system. In this paper, let us use T-S fuzzy model
to describe CAS with r fuzzy rules:
Rule i: IF ϕ1(t) is δi1 and . . . and ϕp(t) is δip
THEN{
ẋm(t) = Aixm(t)+ Bixm(t − τ (t))+ ζi,
xm(t) = ψ(t), −τM ≤ t ≤ 0, i = 1, 2, . . . , r .

(2)

where ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕp(t))T is the premise vari-
able, δij(i = 1 . . . r, j = 1 . . . p) is the fuzzy set, xm(t) ∈ Rn is
the state vector, τ (t) ∈ [0, τM ] denotes a time-varying delay
and τM is a positive constant. Ai,Bi ∈ Rn∗n are constant real
matrices, ζi is periodic perturbation.
The master system model of FMBCAS can be inferred as

follows: ẋm(t) =
r∑
i=1

hi(ϕ(t)){Aixm(t)+ Bixm(t − τ (t))+ ζi},

xm(t) = ψ(t), −τM ≤ t ≤ 0, i = 1, 2, . . . , r .

(3)

where fuzzy weighting functions

hi(ϕ(t)) = εi(ϕ(t))/
r∑
i=1

εi(ϕ(t)).

It is clear that hi(ϕ(t)) ≥ 0,
∑r

i=1 hi(ϕ(t)) = 1.
Similar to the master system, we can describe the slave

system using the following rules:
Rule i: IF ϕ1(t) is δi1 and . . . and ϕp(t) is δip
THEN{
ẋs(t) = Aixs(t)+ Bixs(t − τ (t))+ ζi + ω(t)+ u(t),
xs(t) = ψ̄(t), −τM ≤ t ≤ 0, i = 1, 2, . . . , r .

(4)

The slave system model with controller can be represented
by:

ẋs(t) =
r∑
i=1

hi(ϕ(t)){Aixs(t)+ Bixs(t − τ (t))

+ζi} + ω(t)+ u(t),
xs(t) = ψ̄(t), −τM ≤ t ≤ 0, i = 1, 2, . . . , r .

(5)

where ω(t) is the external disturbance and fuzzy weighting
functions

hi(ϕ(t)) = εi(ϕ(t))/
r∑
i=1

εi(ϕ(t)).

It is clear that hi(ϕ(t)) ≥ 0,
∑r

i=1 hi(ϕ(t)) = 1.
Defining e(t) = xm(t)−xs(t), the state equation of the error

system can be expressed as follows:

ė(t) = ẋm − ẋs

=

r∑
i=1

hi(ϕ(t))[Aixm(t)+ Bixm(t − τ (t))+ ζi]

−

r∑
i=1

hi(ϕ(t))(Aixs(t)+ Bixs(t − τ (t))+ ζi)

− u(t)− ω(t)

=

r∑
i=1

hi(ϕ(t))(Bie(t−τ (t))+(Ai−Ki)e(t))−ω(t) (6)
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In this paper, the state feedback controller will be designed
to make the slave system synchronized to master system.
We consider the following control law:

u(t) =
r∑
i=1

hi(ϕ(t))Kie(t) (7)

Ki are the control gain matrices.
Remark 1: The TS fuzzy model is a nonlinear system

described by a set of If-then fuzzy rules. The TS fuzzy rules
divided the nonlinear system into many local linear systems.
Each rule represents a subsystem. Comparing with the tradi-
tional nonlinear system model, the local linearized dynamic
model can be easily analyzed and designed bymodern control
theory.
Assumption 1: The error system (6) satisfies the following

condition

δ2
∫
∞

0
ωT (t)ω(t)dt −

∫
∞

0
eT (t)e(t)dt ≥ 0, (8)

where δ represents disturbance attenuation rate.
Lemma 1 [38]: For given symmetric positive definite

matrix Z , x is a continuously differentiable function x ∈
[p, q]→ Rn, we can obtain:∫ q

p
ẋT (v)Zẋ(v)dv ≥

1
q− p

=
T diag(Z , 3Z , 5Z )=

where

= =


x(q)− x(p)

x(q)+ x(p)−
2

q− p

∫ q

p
x(v)dv

x(q)− x(p)−
6

q− p

∫ q

p
%p,q(v)x(v)dv

,
%p,q(v) = 2(

v− p
q− p

)− 1.

Lemma 2 [39]: Suppose exist the symmetric matrices
M ∈ Rn×n, the following inequality holds for the givenmatri-
ces N1,N2 ∈ R2n×n, and any scalar α ∈ (0, 1): 1
α
M 0

∗
1

1− α
M

≥He(N1[I 0]+ N2[0 I ])

−αN1M−1NT
1 − (1− α)N2M−1NT

2 .

Remark 2: In this paper, we use the Bessel-Legendre
inequality. It encompasses the Wirtinger inequality. The
Bessel-Legendre inequality depends not only on x(t), x(t−τ ),∫ q
p x(v)dv, but also on the integral term

∫ q
p %p,q(v)x(v)dv.

Using the Bessel-Legendre inequality, we can obtain a less
conservative results.

III. MAIN RESULTS
In this paper, we divide the delay interval [0, τM ] into N
equivalent subintervals, where N > 0. [τk−1, τk ] represents
the k-th subinterval(1 ≤ k ≤ N ). We define τ̄ = τk −τk−1 =
τM/N , 0 = τ0 < τ1 < · · · < τN = τM .

Theorem 1: Coronary artery error system (7) is asymp-
totically stability by using the new designed controller for
any time-delay that satisfies 0 < τ (t) < τM , if there are
positive-definite symmetric matrices P1,P2,P3,Qk ,Rk (k =
1, . . . ,N ), matrices X ,Gi(i = 1, . . . , r),Nj,k (j = 1, 2; k =
1, . . . ,N ) of appropriate dimensions, and the scalars
β1, β2, δ, so that the following LMI hold:[

4 Nj
NT
j −R̂

]
< 0, (j = 1, 2) (9)

where

4 = 8−

N∑
k=1

He([N2,kN1,k ]3k ),

8 = 2eT1 P1eN+2 +2

+ eTN+2(
N∑
k=1

τ̄ 2Rk + τ 2MP3)eN+2 −3
T P̂33

+ 2[σX (−eTN+2 +
r∑
i=1

hi(ϕ(t))(AieT1

+BieTN+3 + e
T
N+4)−

r∑
i=1

hi(ϕ(t))σGieT1 ]

+ eT1 e1 − δ
2eTN+4eN+4

2 = diag{P2 + Q1,−Q1 + Q2, . . . ,

−QN−1 + QN ,−QN − P2,

4N+5︷ ︸︸ ︷
0, · · · , 0},

Nj = [Nj,1, . . . ,Nj,N ],

R̂ = diag{R̂1, . . . , R̂N },

P̂3 = diag{P3, 3P3, 5P3},

R̂k = diag{Rk , 3Rk , 5Rk},

σ = β1e1 + β2eN+2,

3 =

 e1 − eN+1
e1 + eN+1 − 2e3N+5
e1 − eN+1 − 6e5N+6

,
3k =

[
3k,1

3k,2

]
,

3k,1 =

 ek − eN+3
ek + eN+3 − 2eN+4+k
ek − eN+3 − 6e3N+5+k

,
3k,2 =

 eN+3 − ek+1
eN+3 + ek+1 − 2e2N+4+k
eN+3 − ek+1 − 6e4N+5+k

, (10)

The error system (6) is asymptotically stable, the control
gain can be calculated by Ki = X−1Gi.

Proof:We select Lyapunov function as

V (t) =
3∑
i=1

Vi(t) (11)
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where

V1(t) = eT (t)P1e(t) (12)

V2(t) =
N∑
k=1

∫ t−τk−1

t−τk
eT (ν)Qke(ν)dν

+

∫ t

t−τM
eT (ν)P2e(ν)dν (13)

V3(t) =
N∑
k=1

τ̄

∫
−τk−1

−τk

∫ t

t+ν
ėT (ϕ)Rk ė(ϕ)dϕdν

+ τM

∫ 0

−τM

∫ t

t+ν
ėT (ϕ)P3ė(ϕ)dϕdν (14)

Let us denote:

ξT = [e(t), u1, ė(t), e(t − τ (t)), ω(t), u2,

u3, u4, u5, u6, u7]

u1 = [e(t − τ1), . . . , e(t − τN )]

u2 = [
1

τ (t)− τ0

∫ t−τ0

t−τ (t)
eT (ν)dν, . . . ,

1
τ (t)− τN−1

∫ t−τN−1

t−τ (t)
eT (ν)dν]

u3 = [
1

τ1 − τ (t)

∫ t−τ (t)

t−τ1
eT (ν)dν, . . . ,

1
τN − τ (t)

∫ t−τ (t)

t−τN
eT (ν)dν]

u4 =
1
τM

∫ t

t−τM
eT (ν)dν

u5 = [
1

τ (t)− τ0

∫ t−τ0

t−τ (t)
%1,1eT (ν)dν, . . . ,

1
τ (t)− τN−1

∫ t−τN−1

t−τ (t)
%N ,1eT (ν)dν]

u6 = [
1

τ1 − τ (t)

∫ t−τ (t)

t−τ1
%1,2eT (ν)dν, . . . ,

1
τN − τ (t)

∫ t−τ (t)

t−τN
%N ,2eT (ν)dν]

u7 =
1
τM

∫ t

t−τM
%MeT (ν)dν

%k,1 = 2(
ν − (t − τ (t))
τ (t)− τk−1

)− 1, (k = 1, . . . ,N )

%k,2 = 2(
ν − (t − τk )
τk − τ (t)

)− 1, (k = 1, . . . ,N )

%M = 2(
ν − (t − τM )

τM
)− 1 (15)

Taking the derivative of V (t), we can get:

V̇ (t) =
3∑
i=1

V̇i (16)

where

V̇1(t) = 2eT (t)P1ė(t)
= 2ξT (t)eT1 P1eN+2ξ (t) (17)

V̇2(t) =
N∑
k=1

[eT (t − τk−1)Qke(t − τk−1)

− eT (t − τk )Qke(t − τk )]+ eT (t)P2e(t)
− eT (t − τM )P2e(t − τM )

= ξT (t)2ξ (t) (18)

V̇3(t) =
N∑
k=1

[τ̄ 2ėT (t)Rk ė(t)

− τ̄

∫ t−τk−1

t−τk
ėT (ϕ)Rk ė(ϕ)dϕ]+ τ 2M ė

T (t)P3ė(t)

− τM

∫ t

t−τM
ėT (ϕ)P3ė(ϕ)dϕ

= ξT (t)eTN+2(
N∑
k=1

τ̄ 2Rk + τ 2MP3)eN+2ξ (t)

−

N∑
k=1

τ̄

∫ t−τk−1

t−τk
ėT (ϕ)Rk ė(ϕ)dϕ

− τM

∫ t

t−τM
ėT (ϕ)P3ė(ϕ)dϕ (19)

Using Lemma 1 to the integral term in (19), we can get:

−τM

∫ t

t−τM
ėT (ϕ)P3ė(ϕ)dϕ

≤ −ξT (t)3T P̂33ξ (t) (20)

−

N∑
k=1

τ̄

∫ t−τk−1

t−τk
ėT (ϕ)Rk ė(ϕ)dϕ

= −

N∑
k=1

(τ̄
∫ t−τk−1

t−τ (t)
ėT (ϕ)Rk ė(ϕ)dϕ

+τ̄

∫ t−τ (t)

t−τk
ėT (ϕ)Rk ė(ϕ)dϕ)

6 −
N∑
k=1

(
τ̄

τ (t)− τk−1
ξT (t)3T

k,1R̂k3k,1ξ (t)

+
τ̄

τk − τ (t)
ξT (t)3T

k,2R̂k3k,2ξ (t))

= −

N∑
k=1

ξT (t)3T
k

 1
α
R̂k 0

∗
1

1− α
R̂k

3kξ (t) (21)

where

3k =

[
3k, 1
3k, 2

]
, αk =

τ (t)− τk−1
τ̄

According to (6), for any scalars β1, β2, and any appropri-
ate dimensional matrix X , we can get

2[β1eT (t)+ β2ėT (t)]X [−ė(t)+
r∑
i=1

hi(ϕ(t))(Aie(t)

+Bie(t − τ (t))+ ω(t)− Kie(t)] = 0 (22)
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which can be written as

2ξT (t)[σX (−eTN+2 +
r∑
i=1

hi(ϕ(t))(AieT1 + Bie
T
N+3 + e

T
N+4)

−

r∑
i=1

hi(ϕ(t))σGieT1 ]ξ (t) = 0 (23)

where Gi = XKi, σ = β1e1 + β2eN+2.
Combining(17)-(23),we can get the following inequality:

V̇ (t) ≤ ξT (t)(2eT1 P1eN+2 +2

+ eTN+2(
N∑
k=1

τ̄ 2Rk + τ 2MP3)eN+2 −3
T P̂33

+ 2[σX (−eTN+2 +
r∑
i=1

hi(ϕ(t))(AieT1

+BieTN+3 + e
T
N+4)−

r∑
i=1

hi(ϕ(t))σGieT1 ]

−

N∑
k=1

3T
k

 1
α
R̂k 0

∗
1

1− α
R̂k

3k )ξ (t) (24)

According to Assumption 1, in order to achieve the H∞
performance, we define

J (e(t), ω(t)) =
∫
∞

0
[eT (t)e(t)− δ2ωT (t)ω(t)]dt. (25)

Based on the zero initial condition, we can get

J (e(t), ω(t)) =
∫
∞

0
[eT (t)e(t)− δ2ωT (t)ω(t)

+ V̇ (t)]dt − V (t)|t→∞

≤

∫
∞

0
[eT (t)e(t)− δ2ωT (t)ω(t)+ V̇ (t)]dt

=

∫
∞

0
ξT (t)(8+5)ξ (t)dt (26)

where

8 = 2eT1 P1eN+2 +2

+ eTN+2(
N∑
k=1

τ̄ 2Rk + τ 2MP3)eN+2 −3
T P̂33

+ 2[σX (−eTN+2 +
r∑
i=1

hi(ϕ(t))(AieT1

+BieTN+3 + e
T
N+4)−

r∑
i=1

hi(ϕ(t))σGieT1 ]

+ eT1 e1 − δ
2eTN+4eN+4

5 = −

N∑
k=1

3T
k


1
αk
R̂k 0

∗
1

1− αk
R̂k

3k

From Lemma 2, we can get the following inequality

−

N∑
k=1

ξT (t)3T
k


1
αk
R̂k 0

∗
1

1− αk
R̂k

3kξ (t)

≤ −

N∑
k=1

ξT (t)3T
k ϒk3kξ (t) (27)

where

ϒk = He([M1,k M2,k ])− αkM1,k R̂
−1
k MT

1,k

− (1− αk )M2,k R̂
−1
k MT

2,k

We define

9 = 8−

N∑
k=1

He(3T
k [M1,kM2,k ]3k )

+αk3
T
kM1,k R̂

−1
k MT

1,k3k

+ (1− αk )3T
kM2,k R̂

−1
k MT

2,k3k . (28)

Denote 3T
kM1,k = N2,k and 3T

kM2,k = N1,k , we can get

9 = 4+

N∑
k=1

αkN2,k R̂
−1
k NT

2,k

+

N∑
k=1

(1− αk )N1,k R̂
−1
k NT

1,k

= αk (4+
N∑
k=1

N2,k R̂
−1
k NT

2,k )

+ (1− αk )(4+
N∑
k=1

N1,k R̂
−1
k NT

1,k ), (29)

where

4 = 8−

N∑
k=1

He([N2,kN1,k ]3k ).

According to (29), when 4 +
∑N

k=1 N2,k R̂
−1
k NT

2,k < 0 and
4+

∑N
k=1 N1,k R̂

−1
k NT

1,k < 0, we get9 < 0. Applying Schur
complement, the following inequality can be obtained[

4 N1

NT
1 −R̂

]
< 0, (30)[

4 N2

NT
2 −R̂

]
< 0, (31)

where

N1 = [N1,1, . . . ,N1,N ],

N2 = [N2,1, . . . ,N2,N ],

R̂ = diag{R̂1, . . . , R̂N }.

When (30) and (31) are satisfied, the error converges to zero
with the controller Ki = X−1Gi.
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FIGURE 1. The phase diagrams of the master and slave system without
the control input.

IV. SIMULATION
In this section, we demonstrate the effectiveness of our pro-
posed controller by the following two examples.
Example 1: Considering FMBCAS (3) and (5) with

time-varying delays and disturbances, the system parameters
are as follows:

A1 =
[
−0.15 1.7
−49.425 −0.35

]
, A2 =

[
−0.15 1.7
0.575 −0.35

]
,

B1 =
[

0 0
0.01 0.01

]
, B2 =

[
0 0

0.01 0.01

]
The membership value of the FMBCAS (3) and (5) is

h1(ϕ(t)) =
ϕ2(t)
100

,

h2(ϕ(t)) = 1−
ϕ2(t)
100

, (32)

Initial conditions value are xm(0) = (0.2, 0), xs(0) =
(−0.1, 0.2). The phase diagrams of the master-slave system
without the control strategy are shown in Fig 1. The trajectory
of the error systemwithout the control input is shown in Fig 2.
It is obvious that the slave system is not synchronized to
master system.

Choose τ (t) = 0.3+0.1sin(t), τM = 0.6, δ = 0.6, β1 =
1, β2 = 1,N = 2 and ζi = 0.3 cos(t), applying Theorem 1,

FIGURE 2. The trajectory of the error system without the control input.

FIGURE 3. The phase diagrams of the master and slave system with the
controller.

the state feedback control gains are

K1 =

[
8.9404 1.6967
−49.4119 8.6873

]
,

K2 =

[
8.8745 1.6967
0.5880 8.6873

]
,

Under the controller K1 and K2, the slave system and master
system is synchronized. It is shown in Fig 3. The error system
with the controller is displayed in Fig 4. From Fig 4, we can
find that with the time changes, the error system converges to
zero under the controller.
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FIGURE 4. The trajectory of the error system with the controller.

FIGURE 5. The phase diagrams of the master and slave system without
the control input.

Example 2: Considering FMBCAS (3) and (5) with
time-varying delays and disturbances, the system parameters
are as follows:

A1 =
[
−0.2 1.5
−49.425 −0.25

]
, A2 =

[
−0.2 1.5
0.575 −0.25

]
,

B1 =
[

0 0
0.03 0.03

]
, B2 =

[
0 0

0.03 0.03

]
The membership values, initial conditions and other parame-
ters are the same as Example 1.

The phase diagrams of the master-slave system without
the control strategy are shown in Fig 5. The trajectory of the

FIGURE 6. The trajectory of the error system without the control input.

FIGURE 7. The phase diagrams of the master and slave system with the
controller.

error system without the control input is shown in Fig 6. It is
obvious that the slave system is not synchronized to master
system. Applying Theorem 1, the state feedback control gains
are

K3 =

[
9.0204 1.4898
−49.3855 8.8119

]
,

K4 =

[
8.8228 1.4898
0.6139 8.8119

]
,

Under the controller K3 and K4, the slave system and master
system is synchronized. It is shown in Fig 7. The error system
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FIGURE 8. The trajectory of the error system with the controller.

with the controller is displayed in Fig 8. From Fig 8, we can
find that with the time changes, the error system converges to
zero under the controller.

The above results show that our control strategy has been
successfully applied in the synchronization of CAS.

V. CONCLUSION
The paper addresses the synchronization for the healthy and
diseased CAS with the time-delay based on T-S fuzzy model.
By constructing a fuzzy dynamic equation, themodel is closer
to the real CAS. By choosing the appropriate LKF and com-
bining delay-partitioning method, Bessel-Legendre integral
inequality, the Moon’s et al. inequality with convex analysis,
a new synchronization controller is obtained. The numerical
simulations of CAS elaborate the effectiveness of the pre-
sented synchronization control approach. Recently, interval
type-2 fuzzy control has been studied extensively [43]. In the
near future, the research on synchronization of CAS based on
interval type-2 fuzzy model will be considered.
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