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ABSTRACT This paper presents an online ascent trajectory optimization algorithm based on optimal control
and convex optimization without accurate initial guesses. Due to the high complexity of space systems,
exceptional cases such as engine failures may happen during the flight. In these cases, the dynamical model
greatly changes and the nominal trajectory is infeasible. Thus, online trajectory optimization and replan
should be considered when accurate initial guesses cannot be given. In this paper, the ascent trajectory
optimization problem of launch vehicles is formulated as a Hamilton two-point boundary value problem
(TPBVP) according to the optimal control theory. The control vector is expressed as a function of costate
variables and the terminal condition is given according to the orbital constraint of the launchmission. In order
to solve the TPBVP rapidly and accurately without accurate initial guesses, a convex approach is presented.
Firstly, the flip-Radau pseudospectral method is applied to convert the continuous-time TPBVP into a finite-
dimensional equality constraint. Then, successive linearization is applied to formulate the problem as a
series of iteratively solved second-order cone programming (SOCP) subproblems. Considering the accuracy
and robustness of the algorithm, trust-region and relaxation strategy are applied. The convex trajectory
optimization can be solved by Interior Point Method (IPM) automatically. Simulation results in the case
of thrust loss are presented to show the accuracy, efficiency and robustness of the algorithm.

INDEX TERMS Launch vehicle, optimal control, convex optimization, initial guess, terminal constraints.

I. INTRODUCTION
With the development of space engineering, the requirements
of reliability and intelligence of the vehicles under different
launch missions is becoming increasingly higher. However,
the increasing complexity of the space system causes a higher
probability of emergencies, such as Proton-M in 2014, LM-V
in 2017. In these cases, the dynamical model changes greatly
and the nominal trajectory becomes infeasible. Therefore,
the trajectory needs to be replanned automatically according
to the orbital mission, which is called onboard trajectory
planning [1]. Without ground support, the onboard trajec-
tory planning should be both accurate and rapid. Consider-
ing the unpredictability of the emergency during the flight,
the robustness of the algorithm when the initial guess is inac-
curate needs to be improved. In this paper, a convex approach
to solve the optimal control problem of ascent trajectory is
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presented for online trajectory planning. The proposed tech-
nology can also be applied to the missions of space station,
mannedmoon landing and deep-space exploration to improve
reliability.

In general, the ascent trajectory planning problem of
launch vehicles [2]–[4] and ground vehicles [5] can be
formulated as an optimal control problem. Based on the
dynamical model, the velocity and position of the vehicle
are presented as functions of the thrust vector, which is
always defined as the optimal variable. The objective of
the optimization for this problem can be maximum-energy,
minimum-time or minimum-fuel-consumption. Other con-
straints including the initial condition, path constraint, and
terminal orbital constraint also need to be considered as part
of the optimal control problem, multiobjective constrained
trajectory optimization problem is studied in [6]. The optimal
control of ascent trajectory with complex constraints and high
nonlinear dynamics is a great challenge for onboard optimiza-
tion. In general, the indirect [7]–[10] and direct [11] methods

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 186491

https://orcid.org/0000-0003-4421-3000
https://orcid.org/0000-0001-7925-2400
https://orcid.org/0000-0001-9279-479X
https://orcid.org/0000-0002-5044-6292
https://orcid.org/0000-0002-8885-6721


Y. Li et al.: Optimal Control of Ascent Trajectory for Launch Vehicles

are mainly applied to solving the optimal control problems.
As for the indirect method, the optimal control problem is
converted into Hamilton two-point boundary value problems
(TPBVP) based on the Minimum Principle. Because of the
optimal condition with multiple constraints, the TPBVP is
always very complex and highly sensitive to the initial guess.
Therefore, the convergence and robustness of the optimiza-
tion algorithm based on the indirect method is always unsat-
isfactory. Stochastic method has been applied to solve the
TPBVP under uncertain conditions [12], [13], but for the
extreme conditions such as engine failure, the study is very
few. Another widely applied method for trajectory optimiza-
tion is the direct method, which transforms the trajectory opti-
mization into a nonlinear programming problem (NLP) [11]
and solves it by NLP algorithms. However, the computational
time of general NLP algorithms is too long, which cannot
meet the onboard real-time requirement. And it is well known
that the NLP algorithms are easily trapped in local optimum.

In recent years, convex optimization techniques have been
widely studied [14], [15]. As a subclass of convex opti-
mization, second-order cone programming (SOCP) problems
can be solved in polynomial time with no need for initial
guesses supplied by users based on the interior-point method
(IPM) [15], which is very appealing to onboard optimiza-
tion applications. However, most optimization problems in
practice do not have the specific form required in SOCP.
That is, the objective function should be linear, subject to
linear equality constraints and second-order cone inequal-
ity constraints [15]. Most researchers focus on transform-
ing nonconvex optimal problems into problems within the
convex framework, which is called convexification. Several
techniques have been successfully applied such as lossless
convexification [16]–[19] and successive convexification.
However, due to the accuracy and trust-region constraint of
the successive convexification, the global optimization of the
solution cannot be guaranteed. The convex optimization tech-
niques have been successfully applied in powered landing
vehicles [20], rockets [21]–[22],UAVs [23], spacecrafts [24],
high-speed atmospheric vehicles [25], etc. [26], [27].

In order to solve the optimal control problem of ascent tra-
jectory, especially under emergencies without accurate initial
guesses, this paper presents a convex approach to solve the
TPBVP transformed from the original trajectory optimization
problem. Based on the dynamical model and optimal control
theory, the differential equations of state and costate vari-
ables are given. To guarantee the optimality of the solution,
the optimality condition is also considered in the differential
equations. As for terminal constraints, five orbital elements
are considered except the true anomaly, and the equality
constraints are expressed in the perifocal coordinate system
for convenience. Then, the optimal control problem of ascent
trajectory is transformed into a free-final-time TPBVP, which
is highly nonlinear. In order to solve the TPBVP accurately
and efficiently, especially under emergencies without accu-
rate initial guesses, a convex approach is proposed. Firstly,
the TPBVP is discretized by the flip-Radau pseudospectral

method and converted into a series of equality constraints.
Then, successive convexification is used to handle the non-
convexity. In addition, the trust-region and relaxation strategy
are employed to improve the accuracy and robustness of
the algorithm. The algorithm proposed in this paper can be
applied to the online ascent trajectory replanning in case of
emergencies without accurate initial guesses.

This paper is organized as follows. In Section II, the opti-
mal control problem of the ascent trajectory is described in
detail, and the TPBVP is given. In Section III, the continuous-
time TPBVP is transformed into a series of iteratively
solved finite-dimensional convex optimization subproblems
by diecretization and successive convexification techniques.
In section IV, simulations are carried out to demonstrate the
robustness, efficiency and accuracy of the presented algo-
rithm. In Section V, conclusions are drawn.

II. OPTIMAL CONTROL PROBLEM FORMULATION
In this section, a brief description about the dynamical model
of launch vehicles is presented as the preliminary. Then, the
optimal control problem of ascent trajectory is formulated in
detail. Finally, the TPBVP of ascent trajectory optimization
is given.

A. DYNAMICAL MODEL
In this paper, we formulate the equations of motion of launch
vehicles in the Earth Center Inertial Coordinate System [28].
The dimensionless equations can be expressed as follows:

ṙ = V

V̇ = −
1

‖r‖3
r+

T
mg0

Ib

ṁ = −
T

g0Isp
·

√
R0
g0

(1)

where r and V ∈ R3 are the dimensionless inertial position
and velocity vectors, respectively;m is the mass of the launch
vehicle. g0 represents the gravitational acceleration magni-
tude on the surface of the Earth. Isp represents the specific
impulse of the engine. The distance is normalized by R0(the

radius of the Earth at equator), the time by
√
R0
/
g0, and

the velocity by
√
R0g0 [28]. As the thrust magnitude of the

rocket engine T is constant, Ib is the unit vector of body axes
satisfying:

‖Ib‖ ≡ 1 (2)

The trajectory optimization problem of launch vehicles
is defined as an optimal control problem to achieve the
minimum fuel consumption. As the mass flow is constant,
the optimal ascent problem can be treated as a minimum-time
problem:

min J = tf (3)

where tf is the flight time.
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B. HAMILTONIAN FUNCTION
In this paper, the mass of the vehicle is treated as a prescribed
function of time instead of a state variable. Based on the
optimal control theory, the Hamiltonian function is defined
as:

H = pTr V + p
T
V

(
−

r

‖r‖3
+

T
mg0

Ib

)
+ µ

(
ITb Ib − 1

)
(4)

where pr and pV ∈ R3 are the costate vectors, andµ is a scalar
constraint multiplier.

According to the first order necessary conditions for the
optimal control problem, the differential equations of the
costate variables are:

ṗr = −
∂H
∂r
=

1

‖r‖3
pV −

3pTV r

‖r‖5
r

ṗV = −
∂H
∂V
= −pr (5)

C. OPTIMALITY CONDITION
Considering the maximum principle of the Hamiltonian func-
tion, the optimality condition is:

H
(
pr , pV , r

∗,V∗, I∗b, t
)
= max

Ib
H
(
pr , pV , r

∗,V∗, Ib, t
)
(6)

where the superscript ‘‘∗’’ represents the solution of the
optimal control problem. The optimality condition can also
be expressed as:

∂H
∂Ib
= 0 (7)

Based on (4), we have

∂H
∂Ib
=

T
mg0

pV + 2µIb = 0 (8)

which yields

Ib = −
T

2µmg0
pV (9)

According to the optimal control theory [28], the optimal
body axes (thrust vector) direction should be along the direc-
tion of pV , which is

Ib =
pV∥∥pV∥∥ (10)

D. TERMINAL CONDITIONS
As for the optimal control problem of ascent trajectory,
the terminal conditions include orbital insertion conditions
and transversality conditions. For most launch missions,
the orbital insertion conditions include orbital elements
which depend on the final position and velocity. Orbital ele-
ments include the semi-major axis, eccentricity, inclination,
longitude of the ascending node, argument perigee and true
anomaly [a, e, i, �, ω, f ] [29]. Except for some fixed injec-
tion point tasks, the true anomaly is always ignored.

In this paper, the terminal constraints are expressed in the
perifocal coordinate system for convenience. Considering the
accuracy of the orbital plane, the following constraints must
be ensured:

[0, 0, 1]T rf = 0

[0, 0, 1]TV f = 0 (11)

where the subscript ‘‘f ’’ represents the final value, rf and
V f are the final position and velocity vector in the perifocal
coordinate system.

For orbital launch missions, the final position must be on
the target orbit. According to the ellipse equation, the final
position vector rf must satisfy:(

rfx + c
)2

a2
+
r2fy
b2
− 1 = 0 (12)

where b is the semi-minor axis and b = a2
(
1− e2

)
, c is the

distance from the center of earth to the center of ellipse orbit
and c = ae.

Differentiating (12) yields:(
rfx + c

)
Vfx

a2
+

rfyVfy
a2
(
1− e2

) = 0 (13)

This equation is also the constraint of the direction of the final
velocity.

Finally, considering the conservation of angular momen-
tum, we obtain:

rfxVfy − rfyVfx − h = 0 (14)

where h =
√
a
(
1− e2

)
is the required magnitude of angular

momentum.
As for a circular target orbit, the terminal constraints

(12)∼(14) can be replaced by the following equations:

r2fx + r
2
fy − a

2
= 0

rfxVfx + rfyVfy = 0

V 2
fx + V

2
fy −

√
1
/
a = 0 (15)

The orbital insertion conditions for entering the target orbit
of space vehicles are (11)∼(14) or (11)&(15). In this paper,
those conditions are expressed as:

ψ
(
rf ,V f

)
= 0 (16)

Besides the orbital insertion conditions, the following
transversality conditions must also be satisfied:

pf =
∂φ

∂xf
+ ξT

∂ψ

∂xf
(17)

H
(
pr , pV , r

∗,V∗, I∗b, t
) ∣∣tf = ∂φ

∂tf
(18)

where ξ is a constant multiplier vector. pf =
[
prf , pVf

]
and xf =

[
rf ,V f

]
. ∂ψ
∂xf

is shown in appendix. (17) can be
formulated as a equality constraint of pf and xf . φ is the
performance index.
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E. TWO-POINT-BOUNDARY-VALUE PROBLEM
In conclusion, the optimal control problem of ascent
trajectory is transformed into a free-final-time two-point-
boundary-value problem (TP 1) including differential equa-
tions of state and costate variables, optimality conditions,
initial and terminal conditions:

TP 1:

ṙ = V

V̇ = −
1

‖r‖3
r+

T
mg0

pV∥∥pV∥∥ (19)

ṁ = −
T

g0Isp
·

√
R0
g0

ṗr =
1

‖r‖3
pV −

3pTV r

‖r‖5
r (20)

ṗV = −pr
x (t0) = x0 (21)

ψ̄
[
x
(
tf
)
, p
(
tf
)]
= 0 (22)

where the variable x = [r,V ]. (21) is the inertial constraints
and (22) is the terminal conditions. ψ̄ includes orbital inser-
tion conditions ψ and transversality conditions (17)&(18).

III. CONVEXIFICATION ALGORITHM
In this section, in order to solve TP 1 reliably and efficiently, a
convex approach is adopted. Firstly, the flipped-Radau pseu-
dospectral method is employed to discretize the problem into
a finite-dimensional problem. Then the discretized problem
is transformed into a series of convex subproblems. Those
subproblems can be solved by IPM and the solution will be
convergent during the iteration.

A. PSEUDOSPECTRAL DISCRETIZATION
In Section II, the optimal control problem of ascent trajec-
tory is transformed into a TPBVP. However, because of the
differential equations of state and costate variables, the opti-
mization problem is an infinite-dimensional one that is dif-
ficult to be solved by numerical methods. Discretization is
a commonly used method to transform the continuous-time
optimal control problem into a series of finite-dimensional
problems. The detailed discussion about discretization meth-
ods and the selection of optimal variables can be found in
[30]. In this paper, considering both efficiency and accuracy
of the algorithm, the flip-Radau pseudospectral method is
applied to convert (19) and (20) into a series of zero finding
problems. The discretization equation of the state and costate
variables is:

N∑
j=0

Dijx̄
(
τj
)
−
tf
2
f
[
x̄
(
τj
)]
= 0, (i = 1, . . . ,N ) (23)

where D is the flip-Radau pseudospectral differentiation
matrix [31]; tf is the flight time; f is the right-hand side of
the differential dynamic equations (19) and (20), τ is the
collocation points in the domain (−1, 1]. N is the number

TABLE 1. Parameters of the mission.

TABLE 2. Deviations of terminal orbital elements.

of the collocation points. x̄ is state and costate variables
including r, V , m, pr and pV
Considering that τ is defined in the domain (-1,1], the time

domain
[
t0, tf

]
is mapped into [−1, 1] in the discretization as

τ =
2 · t − tf − t0

tf − t0
, t ∈

[
t0, tf

]
(24)

B. IMPROVED SUCCESSIVE CONVEXIFICATION
Now, the optimal control problem of ascent trajectory is
transformed into a series of zero finding problems (22) and
(23). In general, Newton method is adopted to solved these
equations. However, Newton method requires accurate ini-
tial guesses for both state and costate variables. In general,
the costate variable do not have any physical meaning, but
the ascent trajectory is highly sensitive to the costate vari-
able. This difficulty leads to algorithm divergence during the
iteration by Newton method when the physical trajectory is
greatly different from the nominal one. In this paper, convex
optimization is employed to solve the zero finding problems
without accuracy initial guesses.

The zero finding problems (22) and (23) are treated as
nonlinear (nonconvex) equality constraints by convex opti-
mization. In order to handle the nonconvexity, the first–order
Taylor series expansion is used to approximate nonlinear
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FIGURE 1. Curve of height.

FIGURE 2. Curve of velocity.

FIGURE 3. Curve of thrust acceleration.

functions (22) and (23):

2D
(
x̄k +1x̄

)
− tf

[
f
(
x̄k
)
+
∂f
(
x̄k
)

∂ x̄
1x̄

]
− f

(
xk1,u

k
1

)
1tf = 0 (25)

ψ̄
(
x̄f
)
+
∂ψ̄

(
x̄f
)

∂ x̄f
1x̄f = 0 (26)

x̄k+1 = x̄k +1x̄

tk+1f = tkf +1tf (27)

where 1x̄ and 1tf are the optimal variables. Considering
the accuracy of linearization, the ‘‘trust-region’’ constraint is
introduced:

1x̄ ≤ εx
1tf ≤ εt (28)

At the beginning of the iteration, the initial solution always
cannot satisfy the constraints (25) and (26) strictly consid-
ering the accuracy of linearization and initial guesses, even
if the solution of the optimal control problem exists in fact,
which is called ‘‘artificial infeasibility’’ [35]. In this case,
there is no feasible solution of (25), (26) and (28), and the
iteration cannot continue.

In order to avoid artificial infeasibility, the relaxation vari-
ables δx and δψ are introduced, (25) and (26) are relaxed as
[32]:

2D
(
x̄k +1x̄

)
− tf

[
f
(
x̄k
)
+
∂f
(
x̄k
)

∂ x̄
1x̄

]
− f

(
xk1,u

k
1

)
1tf = δx (29)

ψ̄
(
x̄f
)
+
∂ψ̄

(
x̄f
)

∂ x̄f
1x̄f = δψ (30)

where ∂f (x̄)
∂ x̄ is the linearized matrix, which is shown in

Appendix. ∂ψ̄(x̄f )
∂ x̄f

can be calculated by numerical methods.
The magnitudes of δψ and δx are considered in the objec-

tive function:

min J =
∥∥δψ∥∥+ ‖δx‖ (31)

Specific implementation steps are as follows:
1) Set k = 0, and select initial state and costate variables

x̄0, p00 and t
0
f based on the nominal trajectory. Give the trust

region parameters εx , εt and the accuracy requirement param-
eters ε, εδ .
2) Solve the convex subproblems (29), (30) and (31) by

IPM, and calculate the update amount of the optimal vari-
ables.

3) Check the convergence condition:

‖1x̄‖ < ε,∥∥δψ∥∥+ ‖δx‖ < εδ (32)

If the convergence condition is satisfied, go to step 4, other-
wise, set k = k + 1 and return to step 2.
4)The optimization problem is solved. The optimal vari-

ables are found to be x̄∗ = x̄k , t∗f = tkf .
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FIGURE 4. Curve of thrust vector.

IV. SIMULATIONS AND RESULTS
In this section, simulation verification is carried out by taking
the last stage of the flight phase for a launch vehicle as the
research object. In case of thrust loss, the numerical results
are obtained to demonstrate the effectiveness and robustness
of the proposed algorithm. In this case, the trajectory will be
greatly different from the nominal one, without accurate ini-
tial guesses, traditional numerical methods based on Newton
method cannot solve the TPBVP. In this paper, based on con-
vex optimization, the optimal control problem is solved by the
CVX [33] solver of MATLAB. For comparison, the solution
obtained by GPOPS-II is given [34]. All numerical simula-
tions in this paper are performed on a laptop with Intel Core
i7 CPU 2.80GHz, and the MATLAB version is 2017a.

Parameters of the launch vehicle are as follows. The initial
mass in the last stage is 54328kg; the thrust magnitude is
460kN; the effective exhaust velocity is 3000m/s. Parame-
ters of the mission in the numerical experiment are listed
in Table1 and Table2. The variables contained in this section’s
figures and tables are with respect to the Earth Centered
Inertial coordinate system.

We assume that the thrust magnitude decreases by 15% and
the rate of mass flow also decreases by 15% at the beginning
of the flight, which means the effective exhaust velocity does
not change. In this experiment, the number of collocation
points isN = 50, the trust region parameters εx = 0.05, εt =
0.02, and required accuracy parameters ε = 10−5, εδ =
10−6. In addition, the initial guess of state variables r0 and
V0 is given based on the nominal trajectory, and the initial
guesses of costate variables are p0r = 0, p0V = V0/∥∥V0

∥∥.
As shown in Figure 1 ∼ Figure 4 and Table 2, because

of the thrust loss, the trajectory obtained by the algorithm is
greatly different from the nominal trajectory, but the vehicle
still can settle into the nominal target orbit accurately. And
the solution of the present algorithm is identical to that of the
traditional optimization method. Similar simulation results
can be obtained based on different launch vehicles and launch
missions in case of thrust loss, which demonstrates the accu-
racy and robustness of the algorithm proposed in this paper.

By the initial guess based on the nominal trajectory,
the presented algorithm converges within seven iterations.

In each iteration, it takes about 0.3 ∼ 0.5 seconds to
solve the convex optimization problem. It takes a CPU
time of 77.98 seconds to achieve convergence by traditional
method, and 3.21 seconds by proposed algorithm, which is
only 4.1% of GPOPS-II’s. Simulation results indicate satis-
factory convergence of the presented algorithm, and this algo-
rithm has great potential for onboard vehicle applications.

V. CONCLUSION
This paper presents an online ascent trajectory optimization
algorithm for launch vehicles based on optimal control and
convex optimization. Firstly, the optimal control problem of
ascent trajectory based on the nondimensional dynamical
model is formulated in detail. In order to solve the optimal
control problem efficiently without accuracy initial guesses,
a convex approach is proposed. Discretization, successive
convexification and relaxation strategy are applied to improve
the computational performance. In particular, this algorithm
proves to enjoy strong robustness when the condition is
greatly different from the nominal one without good initial
guesses. Thus, this algorithm has potential applications in
onboard trajectory optimization and re-planning for launch
vehicles with no accurate initial guess under emergencies.
In our follow-up work, we will extend the proposed algorithm
by exploring the uncertainty during the flight of launch
vehicles.

APPENDIX
The partial derivative of terminal constraint ∂ψ

∂xf
is:

1.For an elliptical target orbit

∂ψ

∂xf
=

[
∂ψ

∂r
∂ψ

∂V

]

=



0 0 1 0 0 0
0 0 0 0 0 1

2
(
rfx + c

)
a2

2rfy
b2

0 0 0 0

Vfx
a2

Vfy
b2

0
rfx + c
a2

rfy
b2

0

Vfy −Vfx 0 −rfy rfx 0
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2.For a circular target orbit

∂ψ

∂xf
=

[
∂ψ

∂r
∂ψ

∂V

]

=


0 0 1 0 0 0
0 0 0 0 0 1

2rfx 2rfy 0 0 0 0
Vfx Vfy 0 rfx rfy 0
0 0 0 2Vfx 2Vfy 0


The linearized matrix

∂f (x̄)
∂ x̄

is:

∂f (x̄)
∂ x̄

=

[
∂ ṙ
∂ x̄

∂V̇
∂ x̄

∂ṁ
∂ x̄

∂ ṗr
∂ x̄

∂ ṗV
∂ x̄

]T
∂ ṙ
∂ x̄
=

[
03×3 I

3×3
03×7

]
,

∂V̇
∂ x̄
=

[
∂V̇
∂r

03×3
∂V̇
∂m

03×3
∂V̇
∂pV

]
,

∂ṁ
∂ x̄
=

[
01×7

]
∂ ṗr
∂ x̄
=

[
∂ ṗr
∂r

03×7
∂ ṗr
∂pV

]
,

∂pV
∂ x̄
=

[
03×7 I

3×3
03×3

]
where

∂V̇
∂r
=


−

1

‖r‖3
+

3r2x
‖r‖5

3rxry
‖r‖5

3rxrz
‖r‖5

3rxry
‖r‖5

−
1

‖r‖3
+

3r2y
‖r‖5

3ryrz
‖r‖5

3rxrz
‖r‖5

3ryrz
‖r‖5

−
1

‖r‖3
+

3r2z
‖r‖5


,

∂V̇
∂m
=


−

TpVx
m2g0

∥∥pV∥∥
−

TpVy
m2g0

∥∥pV∥∥
−

TpVz
m2g0

∥∥pV∥∥



∂V̇
∂pV
=

T
mg0



1∥∥pV∥∥ − p2Vx∥∥pV∥∥3 −
pVxpVy∥∥pV∥∥3 −

pVxpVz∥∥pV∥∥3
−
pVxpVy∥∥pV∥∥3

1∥∥pV∥∥ −
p2Vy∥∥pV∥∥3 −

pVypVz∥∥pV∥∥3
−
pVxpVz∥∥pV∥∥3 −

pVypVz∥∥pV∥∥3
1∥∥pV∥∥ − p2Vz∥∥pV∥∥3



∂ ṗr
∂r
=


−
3pVxrx
‖r‖5

−
3
(
pTV r+ pVxrx

)
‖r‖5

+
15pTV rr

2
x

‖r‖7

−
3pVyrx
‖r‖5

−
3pVxry
‖r‖5

+
15pTV rrxry
‖r‖7

−
3pVzrx
‖r‖5

−
3pVxrz
‖r‖5

+
15pTV rrxrz
‖r‖7

−
3pVxry
‖r‖5

−
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