
Received October 26, 2019, accepted December 12, 2019, date of publication December 19, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960856

Indexing and Search of Order-Preserving
Submatrix for Gene Expression Data
TAO JIANG 1, BOLIN CHEN 2, JUNTAO LI 3, AND GUOYU XU 1
1School of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450046, China
2School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
3School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

Corresponding author: Tao Jiang (jiangtao@mail.nwpu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702161, Grant 61602386, Grant
61972320, Grant 91746115, and Grant 61602153, in part by the Key Research and Development and Promotion Program of He’nan
Province of China under Grant 182102210213, Grant 182102210020, and Grant 172102210171, in part by the Key Research Fund for
Higher Education of He’nan Province of China under Grant 18A520003, Grant 18A520015, Grant 19A413005, and Grant 18B510004, and
in part by the Natural Science Foundation of Shaanxi Province of China under Grant 2017JQ6008.

ABSTRACT Bicluster pattern discovery plays a key role in analysis of gene expression data. One vital model
of bicluster mining is Order-Preserving SubMatrix (OPSM), which finds similar tendency of some genes on
some conditions. Most of the OPSM discovery methods are batch mining techniques and not suitable for low
latency data query. To make data analysis efficient and effective, in this paper, we first propose a prefix-tree
based indexing method pfTree, then give an optimization technique pIndex that employs row and column
header tables to search the positive, negative and time-delayed OPSMs. Meanwhile, we present an online
sharing query technique to accelerate the frequent searches. Finally, we conduct extensive experiments and
compare our methods with the existing approaches. Experimental results demonstrate the efficiency and
effectiveness of the proposed methods.

INDEX TERMS Gene expression data, online sharing queries, OPSM, pfTree, pIndex.

I. INTRODUCTION
Genemicroarray technology gives the chances formonitoring
of the expression level of huge genes on many experiments
simultaneously. We always view the gene expression data,
which probed on gene microarrays, as an n × m matrix with
n rows (genes) and m columns (conditions), in which every
entry indicates the expression level of a specific gene on a
specific condition [1]–[7]. Table 1 shows an example matrix
for gene expression dataset, which contains five genes and six
experimental conditions. Existing clustering methods present
not so well performance on analysing gene expression data,
because most genes are closely co-expression only on some
but not all conditions, and are not necessarily expression at
the same or similar level. Hence, on this situation, biclus-
tering grows and becomes an useful model to mine impor-
tant clusters [8], [9]. Lately, one vital model in biclustering,
i.e., Order-Preserving SubMatrix (OPSM) [10], has been
accepted as a biologically meaningful cluster tool. Essen-
tially, an OPSM is a submatrix, in which all the rows shows

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

TABLE 1. (1) Raw gene expression data matrix. For clarity, we omit some
values in certain cells. (2) Permutation of raw data matrix in Table 1. In
essence, it first sorts the expression values of each gene increasingly.
Then, it replaces each expression value with column label.

the same rising up and dropping down trend on the columns,
for example, in Table 2, rows g1 and g2 show a growing
expression level on columns c1, c2, c3, c4, and c5. Meanwhile,
OPSM clustering model concentrates on the relative order of
conditions but not the absolute values. And OPSM consists
of several types, such as positive, negative, time-delayed
OPSMs. Table 2 presents some types of OPSMs mining from
Table 1. And Fig. 1 illustrates the expression level (y-axis)
of five genes under six experimental conditions (x-axis) in
four graphs. These genes belong to different functional cat-
egories. As shown in the figures, the genes exhibit positive,

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 184769

https://orcid.org/0000-0002-5145-6935
https://orcid.org/0000-0001-5507-2288
https://orcid.org/0000-0002-3288-4395
https://orcid.org/0000-0001-9960-1786
https://orcid.org/0000-0003-2491-7473

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

TABLE 2. Order-Preserving SubMatrix (OPSM) mining from the data
in Table 1. It only gives some biggest OPSMs in each type of OPSMs.

negative, time-delayed expression patterns, even though the
absolute expression levels under the same conditions are
different. With the decreasing of gene expression analysis
cost, it accumulates a lot of gene expression datasets and
OPSM mining results, but these datasets are not efficiently
employed by researchers, who have the experiences and can
use specific row or column keywords to search supporting
columns or rows. Thus, the problem OPSM search or query
is to retrieve some types of OPSMs based on column or row
keywords from a given data matrix, which plays a key part in
inferring gene coregulated networks, designing new types of
drugs, preventing diseases, and so on.

Most of the previous studies address the problem of OPSM
mining [11]–[14], few work is studied for OPSM query.
OPSM problem is first proposed by Ben-Dor [10]. Then, the
researchers give someOPSMminingmethods based on quan-
titative measures or qualitative measures [7]. And these meth-
ods find many types of OPSMs [15]–[18], such as OPSMs
with constant values, or coherent values. Meanwhile, the
scientists devise some OPSMmining tools, such as GPX [19]
and BicAT [20]. However, these tools have a common feature
that it uses an indirect way to give queried results, and the
indirect way is not efficient. Therefore, we want to present
a direct-way query tool. The most similar work with OPSM
query is presented in work [19], Jiang et al give an interactive
method, which can drill down and roll up, to facilitate OPSM
search.
OPSM query is similar to string matching problem [21],

[22], the similarity between the above two problems is to
find if there is a pattern string in a given string. KMP [21]
and BM [22] are two classic solutions in string problems.
They work for string matching without gaps, but do not work
well for OPSM query, which allows having gaps in a given
string. Therefore, none of these methods can be used directly
to solve the problem. However, OPSM clustering is based
on the increasing or decreasing order of columns, it make
the longest common subsequence method (LCS) [23] be the
appropriate model to find the specific OPSMs. Clearly, it is
necessary to build indexes to help OPSM queries. Prefix tree
and suffix tree are two common basic models, because the
former allows two strings to share the prefix, which saves the
spaces, we choose it as the basic model.

FIGURE 1. Diagram of OPSMs shown in Table 2. (a) Positive OPSMs,
(b) Negative OPSMs, (c) Time-Delayed Positive OPSMs, (d) Time-Delayed
Negative OPSMs.

It is a challenging work to devise a OPSM search tool on
a direct way. The reasons are as following. First, there are
huge amount of datasets. As the dropping of the expense on
analysing gene expression, gene expression data are increas-
ing at an unprecedented rate. Further, the analysis of gene
expression data produces a large number of OPSM data.
Second, how to design a general tool for two kinds of data.
It is generally known that, on the one hand, the mining time
of OPSM pattern on gene expression data is large, but the
search time of OPSMpattern fromOPSMdata is small, on the
other hand, the amount of gene expression data is small,
and that of OPSM dataset is large. Last but not the least,
memory capacity constraints make the index must be small
enough, the growing of datasets makes index update should
be efficient, and the quick response requirements of users
make the queries on the index must be fast and scalable.

To solve these problems mentioned above, firstly we pro-
pose a naive method called pfTree, which indexes the datasets
with prefix tree. Although the preliminary index reduces a lot
of redundant data, its query efficiency is not high. In order to
improve query efficiency, two header tables are added to the
pfTree and named it as pIndex. Both of these structures can
index two kinds of data, i.e., gene expression data and OPSM
data, and OPSMs can be queried directly on them, thus it
eliminates the process of mining OPSM from gene expres-
sion data. In this way, the advantages of both kinds of data
are utilized to improve the query performance. Next, pIndex
uses the row and column header tables to update the index
and query OPSMs. To further improve query performance,
two pruning methods are proposed to reduce the traversal
of useless branches. To reduce the excessive candidate set
of column keywords generated in the process of column
fuzzy query, a first element rotation method FIT is proposed,
which reduces the number of column keywords from m! to
m. Among the queries, we observe that some queries have
been frequently processed before and are time-consuming,
e.g., the time consumption of our test results in Section VI,

184770 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

especially when executing fuzzy queries, take more than one
second, thus an online sharing query technique is necessary to
proposed to reduce the cost of frequent and time-consuming
searches.

It applies two indexes pfTree and pIndex on two kinds of
datasets, i.e., gene expression and OPSM datasets. At the
same time, a lot of experiments have been done. The experi-
mental results show that both indexes have good compression
performance, and pIndex is more efficient in index update
and query. Furthermore, the two methods are implemented
on three platforms: single machine, Hadoop and Hama [24].
At the same time, they are also effective and scalable in index
creation, query based on different keywords or nodes. The
main contributions of this paper are as follows:

• It presents a basic method based on prefix tree, pfTree,
and an optimization method named pIndex with two
header tables of row and column.

• Index updating (insertion and deletion), multiple types
of OPSM query methods, and online sharing query
techniques are proposed. At the same time, the method
named FIT reduces the number of candidate keyword
sets, and several pruning methods for improving query
performance are given.

• The validity and scalability of the proposed method are
verified on three platforms: single machine, Hadoop
and Hama. It is proved that pIndex with/without online
sharing query method outperforms pfTree in processing
cost and query accuracy.

The rest of paper is organized as follows: Section II gives
preliminary concepts and presents the basic framework for
Order-Preserving SubMatrix indexing and search. Section III
presents a naive indexing method pfTree. Section IV illus-
trates the optimization indexing method pIndex, which con-
tains building and updating method and how to construct
header tables. Section V offers the exact and fuzzy queries
using header table based search paradigm, proposes FIT
strategy and pruning methods, describes the multi-types of
OPSM query approaches, and shows the online sharing query
strategy.We report empirical studies, and review related work
in Section VI and VII, respectively. Section VIII concludes
this study.

II. PRELIMINARIES
In this section, to keep the paper self contained, we introduce
the preliminary concepts, such as positive, negative, and time-
delayed OPSMs, and present some kinds of OPSM query
methods, finally outline an indexing framework to address
Order-Preserving SubMatrix query problems.
Throughout the paper, we use the following notations listed

in Table 3. If there are no specific notifications, we use row
and gene, column and experimental conditions interchange-
ably, due to they have the same meaning in this study.
Definition 1 (Order-Preserving SubMatrix (OPSM)):

Given a dataset D, i.e., a data matrix M, Mi(g, c) is a sub-
matrix of D, and g ⊆ G, c ⊆ C. If Mi is an order-preserving

TABLE 3. Notations used in the paper.

submatrix, then for each row in g, there exists a permuta-
tion that preserves the order ei1 ≺ ei2 ≺ . . . ≺ eij ≺
. . . ≺ eik or ei1 � ei2 � . . . � eij � . . . � eik ,
where (i1, . . . , ij, . . . , ik) is the permutation of the indexes of
columns c, i.e., the data values e are monotonically increas-
ing or decreasing with respect to the permutation of the
indexes of columns c.
Definition 2 (Positive Order-Preserving SubMatrix

(POPSM)): Given an OPSM Mi(g, c), if Mi is a positive
order-preserving submatrix, then for each row in g, there
exists a permutation that preserves the order ei1 ≺ ei2 ≺
. . . ≺ eij ≺ . . . ≺ eik or ei1 � ei2 � . . . � eij � . . . � eik .
Example 1: In Fig. 1(a), genes g1, g2, g4 have an increas-

ing order under conditions c2, c3, c4, c5, thus we say {{g1, g2,
g4}, {c2, c3, c4, c5}} is a Positive OPSM.
Definition 3: (Negative Order-Preserving SubMatrix

(NOPSM)). Given an OPSM Mi(g, c), if Mi is a negative
order-preserving submatrix, then for each row in gup (gup ⊆
g), there exists a permutation that preserves the order ei1 ≺
ei2 ≺ . . . ≺ eij ≺ . . . ≺ eik , and for each row in gdown
(gdown ⊆ g), there exists a permutation that preserves the
order ei1 � ei2 � . . . � eij � . . . � eik , where gup ∪ gdown =
g.
Example 2: In Fig. 1(b), genes g1, g2 have an increasing

order under conditions c1, c2, c3, c4, c5, but gene g3 has a
decreasing order under conditions c1, c2, c3, c4, c5, thus we
say {{{g1, g2}, {c1, c2, c3, c4, c5}}, {{g3}, {c5, c4, c3, c2, c1}}}
is a Negative OPSM (NOPSM).
Definition 4 (Time-Delayed Order-Preserving SubMatrix

(DOPSM)): Given an OPSMMi(g, c), if Mi is a time-delayed
order-preserving submatrix, then for each row in gforward
(gforward ⊆ g), there exists a permutation that preserves the
order ei1 ≺ ei2 ≺ . . . ≺ eij ≺ . . . ≺ eik , i.e., the data values
e are monotonically increasing with respect to the permuta-
tion of the indexes of columns cforward (ci1, . . . , cij, . . . , cik)
(cforward ⊆ c), and for each row in gdelay (gdealy ⊆ g), there
exists a permutation that preserves the order ei′1 ≺ ei′2 ≺
. . . ≺ ei′j ≺ . . . ≺ ei′k , i.e., the data values e are mono-
tonically increasing with respect to the permutation of the
indexes of columns cdelay(ci′1, . . . , ci′j, . . . , ci′k) (cdelay ⊆ c),

VOLUME 7, 2019 184771

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

where ci1− ci′1 = . . . = cij− ci′j = . . . = cik − ci′k = d, d is
the delayed time. When the data values e are monotonically
decreasing with respect to the permutation of the indexes of
columns, the definition is also held. And the former one is
Time-Delayed Positive OPSM (DPOPSM), the latter one is
Time-Delayed Negative OPSM (DNOPSM).
Example 3: In Fig. 1(c), genes g1, g2 have an increasing

order under conditions c1, c2, c3, c4, c5, and gene g4 has an
increasing order under conditions c2, c3, c4, c5, c6, but the
latter one has a time point delay, thus we say {{{g1, g2}, {c1,
c2, c3, c4, c5}}, {{g4}, {c2, c3, c4, c5, c6}}} is a Time-Delayed
Positive OPSM (DPOPSM). Similarly, in Fig. 1(d), {{{g1, g2},
{c1, c2, c3, c4, c5}}, {{g3}, {c6, c5, c4, c3, c2}}} is a Time-
Delayed Negative OPSM (DNOPSM).
Definition 5 (Exact Query on Genes (EQg)): Given a

dataset D and a subset of genes g = (gi, . . . , gj, . . . , gk),
exact query on g returns a subsets of conditions c =
(cx , . . . , cy, . . . , cz) above the length threshold τ in OPMSs
that contain all the items in g.
Definition 6 (Exact Query on Conditions (EQc)): Given a

dataset D and a subset of conditions c = (cx , . . . , cy, . . . , cz),
exact query on c returns a subsets of genes g =

(gi, . . . , gj, . . . , gk) above the size threshold δ in OPMSs that
contain all the items in c and keep the order of c.
Definition 7 (Fuzzy Query on Genes (FQg)): Given a

dataset D and a subset of genes g = (gi, . . . , gj, . . . , gk),
fuzzy query on g returns a subsets of conditions c =
(cx , . . . , cy, . . . , cz) above the length threshold τ in OPMSs
that contain a subset of the items in g above the size threshold
δ.
Definition 8 (Fuzzy Query on Conditions (FQc)): Given a

dataset D and a subset of conditions c = (cx , . . . , cy, . . . , cz),
fuzzy query on c returns a subsets of genes g =

(gi, . . . , gj, . . . , gk) above the size threshold δ in OPSMs that
contain a subset of c above the length threshold τ and need
not keep the order of c.
Definition 9 (Query Similarity (S)): Given a query key-

word list l and a query result r, the similarity between l and
r, denoted as S(l, r), is given by

S(l, r) =

|LCS(l, r)|
|l|

(if l has order constraint)

|l ∩ r|
|l|

(otherwise)
(1)

where |LCS(l, r)| is the number of items in the longest com-
mon subsequence between l and r, |l| is the number of items
in l, and |l ∩ r| is the number of common items between l
and r. And it will be used in Section VI for the evaluation of
accuracy.
Problem definition: Given a dataset D, the delayed time d ,

the size threshold δ, the length threshold τ , multiple types
of OPSM query is the process to search the OPSMs meeting
Definition 1 to 8.

The process of OPSM query is mainly divided into the
following three steps:

• Index construction and update: This is the most basic
part. It uses prefix tree to load two different kinds of data,
i.e., gene expression data and OPSM data. If several
genes have the same prefix, they share the prefix in the
tree and use the subsequent parts of these sequences as
subbranches of the prefix. Index updates include data
insertion and data deletion. It is an important task to
make index updating more convenient and efficient.

• Header table design: This is an auxiliary data structure.
It consists of two parts: (1) Row Header Table (RHT
for short), which is used to facilitate deletion of pIndex
index and OPSM query based on row keywords, and (2)
Column Header Table (CHT for short), which is used
to facilitate deletion of pIndex index and OPSM query
based on column keywords.

• Query processing: It includes two sub-steps: (1) Search,
which uses the row and column header tables to get
the branches where the experimental conditions are
located or the leaf nodes where the genes are located in
a bottom-up way. (2) Filter, which mainly calculates the
intersection of candidate sets in the previous step, and
detects whether the candidate results are larger than the
custom thresholds.

III. PFTREE
To design a compact and efficient index for OPSMqueries, let
us first examine an example Example 1. The row No. (gene
name) and column No. (experimental condition) of OPSMs
are listed in the first two and last two columns of Table 4,
respectively.

TABLE 4. An OPSM dataset as running example.

In the following, it takes the OPSM dataset as an example
to illustrate how to create an index, because each row in
the gene expression data can also be regarded as an OPSM.
A compact index can be created based on the following
observations:

• There are many repetitive fragments between OPSMs.
If each duplicate fragment is stored only once, many
unnecessary storage work can be avoided, and a lot of
valuable memory space can be saved at the same time.

• If several OPSMs have exactly the same sequence of
column labels, then these OPSMs can be merged into
one, and only the row labels need to be put together in
the merging process.

• If two OPSMs have the same prefix, then the same part
can be made up of a common prefix and different parts
can be made up of two branches.

184772 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

FIGURE 2. pfTree.

With these observations, we give an example to explain
how to construct a prefix tree of OPSMs, called pfTree, which
is a naive indexing method.
Example 4: Table 4 shows a sample OPSM dataset. This

dataset will be used as our running example. The procedure
of pfTree construction is plotted in Fig. 2.

In Example 4, initially, one may create the root of a tree,
labelled with ‘‘null’’. Next, the OPSM data set is scanned,
and the scanned first OPSM generates the first branch of
the tree: {c6, c3, c1, c8, c16}. Note that the inherent order of
each column label must be maintained, as this sequence is a
tendency for several genes that have a monotonically increas-
ing or monotonically decreasing expression under these col-
umn labels. The row labels {g1, g2, g5} is then placed in the
leaf node of the branch. For the second OPSM, since the
column labels {c6, c3, c1, c2, c8} share the prefix with the
column labels of the first OPSM, i.e., {c6, c3, c1}, only the
nodes {c2} and {c8} needs to be created, and are linked as child
nodes of nodes {c1} and {c2}, respectively. The row labels {g3,
g6, g9} are then placed in the leaf node of the branch. For the
column labels {c6, c2, c3} in the third OPSM, because it shares
nodes {c6}with the first two branches, it is necessary to create
two nodes {c2} and {c3} as child nodes of nodes {c6} and {c2},
respectively. The row labels {g7, g10, g11} is then placed in
the leaf node of the branch. For the forth OPSM {c3, c2, c16},
since it does not share the prefix with the first three OPSMs,
create a new branch {c3, c2, c16} and place the row labels {g4,
g8, g12} in the leaf node of the branch. For the last OPSM {c6,
c3, c1, c8, c16}, because it is identical to the first OPSM, there
is no need to create a new branch, just put the row labels {g4,
g6} in the leaf node of the branchwhich saves {g1, g2, g5}. The
method of creating pfTree refers to lines 6-7 in Algorithm 1.
From Example 4, we know that pfTree contains the com-

plete information of dataset, i.e., Lemma 1, and its size and
height are bounded by the amount of dataset and the longest
OPSM, i.e., Lemma 2.
Lemma 1: Given a gene expression data or an OPSM

dataset D, its corresponding pfTree contains the complete
information of D.
Lemma 2: The size of pfTree is bounded by the amount

of dataset D, and the height of the pfTree is bounded by the
longest row in dataset D.
Lemma 3: The upper boundary of the space complexity

of pfTree index is O(mn). The lower boundary of the space
complexity of pfTree index is O(m).

Algorithm 1 pIndex Construction
Input: OPSM or gene expression dataset D

1 treeRoot ← null;
2 while (opsm← D.nextLine()) 6= null do
3 rows← gene names in opsm; columns←

conditions in opsm; curNode← treeRoot;
4 for it in columns do
5 linkFlag← false;
6 if curNode does not have Child it then
7 curNode.addChild(it); linkFlag← true;

8 curNode← child it of curNode; gene frequency
of curNode adds the gene name number in rows;

9 if columnHeadTable does not contain it then
10 put key-value < it, curNode > to

columnHeadTable; set the back link of
curNode to be null;

11 else
12 itNode← get value by key it from

columnHeadTable;
13 while itNode has forward Link do
14 itNode← forward Link of itNode;

15 if linkFlag = true then
16 set forward link of itNode to be curNode;

set back link of curNode to be itNode;

17 set curNode to be final node of this branch; set the
gene names in curNode to be rows;

18 for row in rows do
19 if rowHeadTable has the key row then
20 add the value searching by key row from

rowHeadTable into nodeSet;
21 add curNode into nodeSet; put key-value

< row, nodeSet > into rowHeadTable;

Proof: When there are n completely different branches,
the space complexity is O(mn). When n row data are con-
structed in the same branch, the space complexity is O(m).

�
Through experimental verification later, it is found that

pfTree-based index deletion and OPSM query are not so
efficient, although they have good performance in index cre-
ation and insertion. In order to improve its performance, an
optimized indexing method pIndex is given in Section IV,
which utilizes row and column header tables to facilitate the
traversal of the prefix tree.

IV. PINDEX
pIndex construction includes three parts, which are pfTree
building, column header table building, and row header table
building. The pfTree building method has been shown in
Section III, therefore we only give the column and row header
table building approaches.

VOLUME 7, 2019 184773

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

FIGURE 3. pIndex.

Example 5 (pIndex Building): We use Table 4 and Fig. 3 as
an example. First, we create the root of pIndex. Then, scan the
dataset, we get the OPSM {{g1, g2, g5}, {c6, c3, c1, c8, c16}}.
Create nodes {c6}, {c3}, {c1},{c8}, {c16}, and use the latter
one as the child of the former one, respectively. Meanwhile,
add each column label to the column header table, and link
to the corresponding column node. Finally, add a leaf node
{g1, g2, g5}. In addition, we also add each row label to the
row header table, and link to the corresponding row node.
For the second OPSM {{g3, g6, g9}, {c6, c3, c1, c2, c8}}, due
to it has prefix nodes {c6}, {c3}, {c1} with the first OPSM,
it only needs to create nodes {c2}, {c8}, and uses {c8} as the
child of {c2}. Meanwhile, add column c2 to CHT, and make
c2 in CHT and node {c2} link to each other. Due to c8 is in
CHT, we make the node {c8} in the first branch and node
{c8} in the second branch link to each other. Finally, add the
leaf node {g3, g6, g9} to node {c8} in the second branch. For
the third one {{g7, g10, g11}, {c6, c2, c3}}, we create nodes
{c2} and {c3}, and make {c2} and {c3} as the child of {c6}
and {c2}, respectively. Meanwhile, let node {c2} in the second
branch and node {c2} in this branch link to each other, and
let node {c3} in the first branch and this branch link to each
other. Finally,add a leaf node {g7, g10, g11}. Next, it scans
the forth OPSM {{g4, g8, g12}, {c3, c2, c16}}, we create nodes
{c3}, {c2} and {c16}, and make the former one link to the latter
one. Meanwhile, the nodes {c3} and {c2} in the third branch
and {c16} in the first branch link to the nodes {c3}, {c2} and
{c16} in this branch, respectively. Finally, add a leaf node {g4,
g8, g12}. For the last OPSM {{g4, g6}, {c6, c3, c1, c8, c16}},
we need not create new nodes and add new column label to
CHT, only add the row No. g4 and g6 to the leaf node in the
first branch. In addition, add row No. g4 and g6 to RHT, and
make g4 and g6 link to node {g1, g2, g5, g4, g6}.
The method and rules for creating a column header table

are as follows: the order of column labels appeared in the col-
umn header table is determined by the top-down, left-to-right
order of the column labels in the prefix tree. Each element that
appears in the column header table is pointed to its position
in the first occurrence of the branch by a bidirectional link.
Later, if it appears in other branches, the nodes in the former
and latter branchwill point to each other through bidirectional
link. Continue in turn until no identical elements appear.
When the entire OPSM data is scanned, the OPSM prefix tree
indexwith column header table is established, which is shown

in Fig. 3. The method of creating the column header table is
shown in lines 9-16 of Algorithm 1. And column header table
can be used in pIndex deletion and queries on conditions c.
The method and rules for creating row header table are as

follows: the occurrence order of elements in row header table
is similar to that in column header table, that is, it is deter-
mined by the occurrence order of row labels from left to right
in the leaf nodes of prefix tree. In addition, linking manner
between similar elements in row header table is unlike that in
column header table, it places the nodes of the same element
in the row header table into a hash set. For convenience of
representation, one-way pointers are used in Fig. 3. Similarly,
when the entire OPSM data is scanned, the OPSM prefix tree
index with row header table is established, as shown in Fig. 3.
The method for creating row header table is shown in rows
18-21 of Algorithm 1. And row header table can be used in
pIndex deletion and queries on genes g.
In order to facilitate the update operation of pIndex, we give

the insertion and deletion methods of pIndex. Because the
insertion of pIndex is similar to the creation of pIndex, only
the deletion methods of pIndex are introduced here, including
deletion by row and by column.

Algorithm 2 pIndex Deletion by Rows
Input: gene names rows

1 for row : rows do
2 nodeSet ← get nodes from rowHeadTable by key

row;
3 for node in nodeSet do
4 if node number in nodeSet is more than 1 then
5 remove the node node in rowHeadTable by

key row;

6 else if node number in nodeSet is 1 then
7 remove the value in rowHeadTable by key

row;
8 else if node number in nodeSet is 0 then
9 break;

10 if gene name number in node is more than 1 then
11 delete the name from node by key row;

12 else if gene name number in node is 1 then
13 deleteNodesAndColums(node);

For pIndex deletion by rows, Algorithm 2 is given. First,
it gets the keywords of rows (gene names). For each row
keyword, it contains three operations: deleting from the row
header table, deleting tree nodes, and deleting from the col-
umn header. For the first step, it gets the leaf nodes from
the row header table (lines 1-2). Next, the number of leaf
nodes obtained is detected. If the number of nodes is 0,
the algorithm ends (lines 8-9). If the number of nodes is 1, the
node is deleted from the row header table (lines 6-7). If the
number of nodes is greater than 1, only the row (gene name)
is deleted from the row header table (lines 4-5). For the other

184774 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

two operations (lines 10-13), i.e., deleting nodes and deleting
columns, refer to Algorithm 3.

Algorithm 3 Delete Nodes and Columns
Input: nodes nodes

1 while node in nodes and node is not treeRoot do
2 decrease 1 form the frequency of node;
3 remove column ID in node from the child of its

parent;
4 tmp← node; node← the parent of node;
5 set the parent of tmp to be null;
6 if both the back link and forward link of tmp are not

null then
7 let the forward node of tmp and back node of

tmp point to each other;

8 else if the back link of tmp is not null and the
forward link of tmp is null then

9 let the back node of tmp do not point to tmp;

10 else if both the back link and forward link of tmp are
null then

11 remove tmp from the column header table;

12 else if the back link of tmp is null and the forward
link of tmp is not null then

13 set the back link of the forward node of tmp to
be null; put the forward node of tmp to column
header table instead of tmp;

14 if (1 < node.getFrequency) then break;

15 return pIndex;

Example 6 (pIndex deletion by rows): We use Table 4 and
Fig. 3 as an example, and employ {g7, g10} and {g7, g10,
g11} as the keywords respectively. When the keywords are
{g7, g10}, we only need delete g7, g10 from the leaf node and
RHT. When the keywords are {g7, g10, g11}, due to they are
in one branch, so we fetches the leaf node {g7, g10, g11} from
RHT. Since the support count of g7, g10, g11 are all one, we
remove them from the RHT. Then, we directly remove the leaf
node {g7, g10, g11}, and remove nodes {c3}, {c2}, {c6} with a
bottom-up manner. For node {c3}, we first make the node {c3}
in the first and forth branch link to each other, then remove
it from the child of node {c2}. And we use the same way to
remove {c2}. But for node {c6}, we need not to remove it,
due to it shares by other branches. Until now, we delete the
branches that contain the keywords above.

Next, the details of Algorithm 3 are introduced. First,
it checks whether the node is the root of the tree. If so,
the algorithm ends (line 1). Otherwise, the number of
branches that sharing the node is reduced by 1 (line 2).
Because the node to be deleted is in the leaf node, first the
node is deleted from its parent node, and then the parent
node of the node is set to null (lines 3-5). The deletion of
the node from the column header table is divided into four
cases. (1) If the node has forward and backward nodes, it is

necessary to make the forward and backward nodes point to
each other (lines 6-7). (2) If it only has a backward node,
the forward pointer of the backward node and the backward
pointer of the node need to be set to null (lines 8-9). (3) If
it has neither a backward node nor a forward node, it only
needs to delete the key-valve pair containing the node from
the column header (lines 10-11). (4) If it has only the forward
node, first set the backward pointer of the forward node to
empty, and then place the forward node in the column header
table to replace the current node (lines 12-13). Finally, if the
number of branches of the parent node sharing the current
node is greater than 1, the algorithm ends (line 14).

Algorithm 4 pIndex Deletion by Columns
Input: columns columns

1 key← the last item in columns;
2 node← get node from column header table by key;
3 while node is not null do
4 pNode← the parent of node;
5 count ← |columns| - 2;
6 while count is not smaller than 0 do
7 if the item in pNode is equal to the count item of

column then
8 count← count - 1;

9 if pNode is treeRoot then
10 break;

11 else pNode← the parent of pNode;

12 if count is not smaller than 0 then
13 put node into key node set keyNodes;

14 node← the forward node of node;
15 for one different node keyNode in keyNodes do
16 leafNodes← the leaf nodes in branches

containing keyNode;

17 for one different node leafNode in leafNodes do
18 for one gene name row in leafNode do
19 if gene name row is not in row header table

then
20 break;

21 else if the leaf node number containing row
is 1 then

22 remove row from row header table;

23 else if the leaf node number containing row
is more than 1 then

24 only remove the node leafNode;

25 deleteNodesColumns(leafNode); (Algorithm 3)

In order to delete pIndex by column keywords, it introduces
Algorithm 4. Because it traverses the prefix tree from bottom
to up, it first gets the last column keyword and the node posi-
tion of the column keyword in the column header table (lines
1-2). According to the pointer chain containing the same list

VOLUME 7, 2019 184775

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

of keywords, the related branches are detected whether they
contain all keywords. If so, record the currently traversed
nodes. Otherwise, the next branch is detected according to
the keyword pointer chain of the above columns (lines 4-14).
When the qualified traversed nodes are obtained, the leaf
nodes of the related branches are obtained according to the
above nodes (lines 15-16). Further, the elements in the rel-
evant branches and row header table are deleted according
to the leaf nodes in the bottom-up manner (lines 17-24).
Removal of related branches is performed by calling Algo-
rithm 3 (line 25). It should be noted that it is a recursive way to
find leaf nodes. For more details, please refer to Algorithm 5.

Algorithm 5 Find Leaf Nodes
Input: tree node node
Output: leaf nodes leafNodes

1 if node is leaf node then add node into leafNodes;
2 if node has child then
3 children← the children of node;
4 while child in children do findLeafNodes(child);

5 return leafNodes;

Example 7 (pIndex deletion by columns): We use Table
4 and Fig. 3 as an example, and employ c6, c3, c1 as key-
words. And use pIndex deletion by columns to delete the data.
Initially, it reverses the keywords, and gets c1, c3, c6. Then,
it searches column c1 in CHT, and traces the first branch in a
bottom-up way. And it finds c1, c3, c6 in the branch. Further,
it gets the leaf nodes {g1, g2, g4, g5, g6} and {g3, g6, g9}.
Finally, it firstly delete g1, g2, g5, g6, g9. Due to g4 in two
leaf nodes, it only deletes the link from node {g4, g8, g12} to
{g1, g2, g4, g5, g6}. Next, change the link in the CHT, except
{c6}, for nodes {c1}, {c2}, {c3}, {c8}, {c16}, it changes the links
to null, {c2} in the third branch, {c3} in the third branch, null,
{c16} in the forth branch, respectively. Then, it deletes column
labels c1 and c8 from CHT. Finally, it deletes nodes {g1, g2,
g4, g5, g6}, {g3, g6, g9}, {c16}, {c8}, {c1}, {c3} from the first
and second branches, respectively.
Lemma 4: The upper boundary of the space complexity of

pIndex is O(mn). The lower boundary of the space complexity
of pIndex is O(m+ n).

Proof: The row and column header tables will consume
O(n) and O(m) space, respectively. Based on Lemma 3, when
there are n completely different branches, the space complex-
ity isO(mn), and when n row data are constructed in the same
branch, the space complexity is O(m+ n). �

V. OPSM QUERIES
In this section, we explore the multiple types of OPSM
queries, which include positive, negative, and time-delayed
OPSM queries, based on pIndex with two header tables.

A. POSITIVE OPSM QUERIES
For row-based exact query EQg, the position of row keywords
in the index is first determined by row header table (lines 2-4).

Then, traverse the branches containing the row keywords in a
bottom-up manner (lines 5-9). Further, calculate the longest
common subsequence between branches that contain each
keyword once and only once (lines 13-20). Finally, it returned
the longest common subsequences that are larger than the
threshold τ (lines 21-23). For more detailed information,
please refer to Algorithm 6.

Algorithm 6 (EQg) Exact Query on Genes

Input: Gene name keywords g, Length threshold τ
Output: HashMap< g, set of conditions> result

1 for name in g do
2 if keyword name is not in row header table then
3 return null;

4 nodeSet ← get values from row header table by
name;

5 for node in nodeSet do
6 colList ← the branch containing node;
7 if (colList.length ≥ τ) then
8 add colList into fstLists;

9 put key-value <name, fstLists> to hashMap; clear
the items in fstLists;

10 if the gene number in g is 1 then return hashMap;
11 fstLists← get values from hashMap by g0;
12 flag← false;
13 for i← 1 to |g| − 1 do
14 if flag is true then
15 fstLists← resLists; clear resLists;

16 flag← true; secLists← get values by gi from
hashMap;

17 for out in fstLists, in in secLists do
18 lcs← LongestCommonSubsequence(out , in);
19 if lcs.length ≥ τ then
20 out ← lcs; add lcs into resLists;

21 if resLists.size() > 0 then
22 add key-value < g, resLists > into result;

23 return result;

Example 8 (Exact Query on Genes EQg): Take the data
in Table 4 and the pIndex index in Fig. 3 as an example to
illustrate the gene-based exact query (EQg) algorithm. Given
the gene name {g2, g3, g9}, and column threshold 3, the set
of experimental conditions containing the above genes was
queried. Firstly, the node links containing genes {g2, g3, g9}
are found in the row header table. Then the branches {c6, c3,
c1, c8, c16} containing gene g2, and the branches {c6, c3, c1,
c2, c8} containing genes g3 and g9 were obtained. Further,
the longest common subsequence {c6, c3, c1, c8} between the
above branches is calculated. Since the length is greater than
the threshold 3, it is the result.

Through the query process of Example 8, Rule 1 for prun-
ing query results is found.

184776 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

Rule 1 (Keyword No. based Pruning): For row and column
keywords in exact queries, in exact queries based on experi-
mental conditions, all column keywords must be included in
the branches they find. In exact query based on genes, leaf
nodes must contain all row keywords. If the condition is not
satisfied, then checking of the branch or leaf node can be
cancelled.

For column-based exact query EQc, the position of column
keywords in the index is first determined by the column
header table (lines 1-2). Then, starting with the branch node
where the keyword is located, the branch is traversed in a
bottom-up manner. It verifies that the branch contains all
column keywords, and check the consistency in the order of
these keywords in the branches (lines 4-12). If consistent,
return the branches containing more than the threshold δ
(lines 14-16). See Algorithm 7 for more details.

Algorithm 7 (EQc) Exact Query on Conditions
Input: Condition keywords c, Size threshold δ
Output: HashMap<c, set of genes> result

1 key← the last item in c;
2 node← get value from column header table by key;
3 if node is null then return null;
4 while node is not null do
5 pNode← the parent of node; count ← |c| - 2;
6 while count ≥ 0 do
7 if the count item in c is equal to item in pNode

then count ← count - 1;
8 if pNode is treeRoot then break;
9 else pNode← the parent of pNode;

10 if count < 0 then add node into nodes;
11 node← the forward node of node;

12 for inNode in nodes do
13 nameSet ← the leaf nodes in branches containing

inNode;
14 if nameSet.size() ≥ δ then
15 put key-value < c, nameSet > into result;

16 return result;

Example 9 (Exact Query on Conditions EQc): Take the
data in Table 4 and the pIndex index in Fig. 3 as an example
to illustrate the column-based exact query algorithm (EQc).
Given the experimental conditions c6, c3, c1, and row thresh-
old 3, query the gene sets containing the above experimental
conditions. Firstly, the link of nodes containing experimental
conditions c1, c3, c6 (reverse order of input keywords) is found
in the column header table. Then, branches {c6, c3, c1, c8, c16}
and {c6, c3, c1, c2, c8} containing experimental conditions c1
were obtained. These branches were then tested for inclusion
of experimental conditions c3 and c6. In results, the above
branches satisfy the conditions. Finally, gene set {g1, g2, g3,
g4, g5, g6, g9} is larger than the threshold 3. It is the query
result.

From Example 9, we find Rule 2 for pruning query results.

Rule 2. (Order based Pruning) For column keywords in
exact queries, the branch queried must contain all column
keywords, and the order of column keywords in the branch
must also be consistent with the order in which keywords are
entered. Otherwise, checking the branch is cancelled.
For fuzzy query based on genes FQg, the combination

of row keywords larger than row threshold δ is calculated
first (lines 1-2). Then, locate the branches containing each
row keyword combination, and compute the longest common
subsequence among the branches (lines 3-4). If it is greater
than the column threshold τ , it is returned as a result (line 5).
Algorithm 8 gives a more detailed query method.

Algorithm 8 (FQg) Fuzzy Query on Genes

Input: Gene name keywords g, Length threshold τ , Size
threshold δ

Output: HashMap<subset of g, set of conditions> result
1 for i← δ to |g| do
2 querySetLists← the combination of i items in g;

3 for querySet in querySetLists do
4 result ← EQg(querySet, τ);

5 return result;

Example 10 (Fuzzy Query on genes FQg): Take the data
in Table 4 and the pIndex index in Fig. 3 as an example to
illustrate the gene based fuzzy query algorithm FQg. Given
the gene name g2, g3, g9, row threshold 2 and column
threshold 3, the set of experimental conditions containing the
above genes was queried. Firstly, the combinations of row
keywords exceeding row threshold 2 were calculated, which
are {g2, g3}, {g2, g9}, {g3, g9}, {g2, g3, g9}, respectively. Then,
the branch {c6, c3, c1, c8, c16} containing gene g2, and the
branch {c6, c3, c1, c2, c8} containing gene g3 and g9 was
obtained. Further, the experimental condition sequence con-
taining the above gene name combinations was calculated.
The set of experimental conditions including {g2, g3}, {g2,
g9} and {g2, g3, g9} is {c6, c3, c1, c8}. The set of experimental
conditions containing {g3, g9} is {c6, c3, c1, c2, c8}. As the
lengths of the above experimental conditions are greater than
the threshold 3, all of them are the results.

For column-based fuzzy query FQc, first flip the order
of column keywords and take out the first element (lines
2-3). Then use the column header table to locate the branch
containing this element, and detect whether these branches
contain column keywords greater than the threshold τ (lines
4-20). If so, get the row label in the branch leaf node, and
check whether the number of rows is greater than the thresh-
old δ (lines 21-25). If so, return the column labels as keywords
and the corresponding row labels as values (lines 26-28).
Otherwise, continue to check whether other branches and
other elements satisfy the above conditions when they are
the first element (line 1). Note that the first element rotation
method FIT is used to reduce the number of column keyword
sets. Refer to Algorithm 9 for more details.

VOLUME 7, 2019 184777

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

Algorithm 9 (FQc) Fuzzy Query on Conditions
Input: Condition keywords c, Size threshold δ, Length

threshold τ
Output: HashMap<subset of c, set of genes> result

1 for i← 0 to |c| − 1 do
2 key← get value from column header table by ci;
3 if key is null then return null;
4 while key is not null do
5 add ci into list; node← the parent of key;
6 no← |c| − 2;
7 while no ≥ |c| − τ do
8 for it in c do
9 if it is equal to the item in node then
10 no← no− 1; add it to list; break;

11 if node is treeRoot then break;
12 else node← the parent of node;

13 if no < |c| − τ then
14 while node is not treeRoot do
15 for it in c do
16 if it is equal to the item in node then
17 no← no− 1; add it to list;

break;

18 node← the parent of node;

19 add key to nodes;

20 key← the forward node of key;
21 for inNode in nodes do
22 nameSet ← getNamesInLeaves(inNode);

23 if result has the key list then
24 add the values getting from result by list to

nameSet;
25 put key-value <list, nameSet> to result; clear

nameSet and list;
26 for res in result do
27 if |res.value| < δ then
28 remove the value res from result;

29 return result;

Example 11 (Fuzzy Query on Conditions FQc): Take the
data in Table 4 and the pIndex index in Fig. 3 as an example
to illustrate the column-based fuzzy query algorithm (FQc).
Given the experimental conditions c6, c3, c1, column thresh-
old 2 and row threshold 3, query the gene sets containing
the above experimental conditions. Firstly, use c1 as the first
element, and get branch {c6, c3, c1} which is above the length
threshold 2. Then, we fetch the gene name set {g1, g2, g3, g4,
g6, g9} which is above the size threshold 3. Further, we use c3
as the first element, and get branch {c6, c3} and {c6, c2, c3}
which are above the length threshold 2. Finally, we fetch the
gene name set {g1, g2, g3, g4, g6, g7, g9, g10, g11}. When using
c6 as the first element, there are no results. Now, we return
keyword sets and gene sets above as the results.

Lemma 5: The upper boundary of the time complexity of
First Item of column keyword roTation method FIT is O(mn).
The lower boundary of the time complexity of First Item of
column keyword roTation method FIT is O(m).

Proof: Due to there are m number of first keywords
and it uses column header table to locate the branches, when
the column keywords are in n completely different branches,
we get the space complexity is O(mn). When column key-
words are in the same branch, we get the space complexity
is O(m). �
Theorem 1: Let c1 and c2 be two subsequences of keywords

in c such that c1 is a subsequence of c2. For any OPSMs in
query results, support number s(c2) 6 s(c1).

Proof: It is sufficient to show that the theorem is true for
subsequences of column keywords whose length differ by 1,
i.e., |c2| = |c1| + 1. We can repeat argument to prove the
theorem for patterns of arbitray length. Let j be the column
that is in c2 but not in c1. Each subsequence of OPSM’s
column part that matches c1 can potentially be extended to
match c2 by inserting a column j. Therefore s(c2) 6 s(c1). �
Corollary 1: Let c1 and c2 be two subsequences of key-

words in c such that c1 is a subsequence of c2. c2 is frequent
only if c1 is frequent.

Algorithm 10 (GEQc) General OPSM Exact Query on
Conditions
Input: Condition keywords c, Size threshold δ, Delayed

time d
Output: HashMap<c, set of genes>result

1 result.add(c,EQc(c, δ)); //POPSM
2 cinverted ← the reverse order of c;
3 EQc(cinverted , δ); //NOPSM
4 for i← 1 to |d | do
5 col ← the sequence of c from ci to the end;
6 EQc(col, δ); //DPOPSM
7 verificate and delete false positive results;
8 result.add(col,EQc(col, δ));

9 for i← 1 to |d | do
10 col ← the sequence of cinverted from ci to the end;
11 EQc(col, δ); //DNOPSM
12 verificate and delete false positive results;
13 result.add(col,EQc(col, δ));

14 return result;

B. GENERAL OPSM QUERIES
Based on the Positive OPSM querymethod, we present a gen-
eral query method for multiple types of OPSM search, Algo-
rithm 10, which consists of Positive OPSM query, Negative
OPSM query, and Time-delayed OPSM query. When search-
ing the POPSMs, it invokes the Algorithm 7 EQc (line 1).
For the NOPSM queries, it firstly reverses the order of key-
words c, and gets inverted keywords cinverted , then it invokes
EQc (lines 2-3). For the DPOPSM queries, the delayed times

184778 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

of which are less or equal to d , firstly, it fetches the keywords
from ci to the end one, where 0 6 i 6 d , then it invokes EQc
(lines 4-8), finally it certificates and deletes the false positive
results. For the DNOPSM queries, the delayed times of which
are less or equal to d , firstly, it fetches the inverted keywords
cinverted from ci to the end one, where 0 6 i 6 d , then it
invokes EQc (lines 9-13), finally it certificates and deletes the
false positive results.
Example 12 (General Exact Query on Columns GEQc):

Given dataset shown in Table 1, and the column query
keywords c1, c2, c3, c4, please search POPSMs, NOPSMs,
DPOPSMs and DNOPSMs using the pIndex and query
method. And through searching, we get the POPSMs {{g1,
g2}, {c1, c2, c3, c4, c5}}, NOPSMs {{{g1, g2}, {c1, c2, c3, c4,
c5}}, {{g3}, {c5, c4, c3, c2, c1}}}, DPOPSMs {{{g1, g2}, {c1, c2,
c3, c4, c5}}, {{g4}, {c2, c3, c4, c5, c6}}}, DNOPSMs {{{g1, g2},
{c1, c2, c3, c4, c5}}, {{g5}, {c6, c5, c4, c3, c2}}}. The OPSMs
are shown in Table 2.

C. ONLINE SHARING QUERIES
Due to there are a lot of repeated OPSM queries, and some
queries will consume a long response time and waste many
computing resources. To accelerate the repeated and frequent
searches, we introduce an online-sharing query method.
Firstly, we find the repeated queries Qr . Then, we find

the queries Qt whose response time is above a threshold t .
Further, we compute the intersection between Qr and Qt ,
denoted by Q. If there are enough spaces, we save all the
results Q in the memory. If not, for each q ∈ Q, we find the
top-k results and save in the memory. Based on the intuition
that the more repeated times and the longer response time,
the more likely to be stored, we give the criteria finding top-k
results, shown in equation (2).

R(q) =
Cntq
Cntmax

× α +
Timeq
Timemax

× β (2)

where R(q) is the ranking score of query q, and the big-
ger score the higher rank; Cntq denotes the repeated times
of query q, Cntmax represents the maximum times in the
repeated querysQr , Timeq denotes the response time of query
q, Timemax represents the maximum time in the repeated
querys Qt , α and β are the weight in the score of ranking,
and α + β = 1.

VI. EXPERIMENTAL EVALUATION
This section mainly evaluates the effectiveness and scala-
bility of the proposed indexing methods, query approaches,
and optimization techniques with existing methods. We will
compare themethods on a singlemachine and distributed pro-
cessing systems. The experimentsmainly verify the following
aspects:
• The indexes pIndex and pfTree nearly have the same

index size, and the compact ratio is close to 0.98 when
the number of conditions is smaller.

• On single machine, although pfTree performs well on
index building and index insertion, pIndex outperforms

TABLE 5. Details of the gene expression datasets.

pfTree by 1 to 2 orders of magnitude in various cases
on index deletion, EQg, EQc, FQg and FQc. Meanwhile,
the exact and fuzzy query methods EQg, EQc, FQg and
FQc with online sharing query technique have a better
performance than those without online sharing query
technique.

• On distributed processing systems, e.g., Hadoop and
our modified Hama platform [24], the indexing method
pIndex and query methods also show better scalability
than existing methods.

• We also test the behaviours (scalability and accuracy)
of multiple types of OPSM query method and online-
sharing query technique.

Datasets:We use two kinds of datasets in our experiments:
real datasets [25] shown in Table 5 and a series of synthetic
datasets. Most of our experiments have been performed on
the real datasets since it is the source of real demand. Note
we should sort the expression values in each row in an
increasing or decreasing order, and replace each value with
column label (index). In essence, it changes the real number to
sequence data. Further, all the tests are based on the sequence
data.
Platform: All our experiments are performed on 1.87GHz,

16GBmemory, Inspur servers running Ubuntu 12.04. pIndex,
pfTree, query methods and other techniques are implemented
in Java language and complied with Eclipse 4.3. And the ver-
sions of Hadoop and Hama are 0.20.2 and 0.4.0, respectively.

A. EVALUATION ON SINGLE MACHINE
1) PINDEX VS PFTREE
First, we evaluate the size of pfTree and pIndex. As mentioned
earlier, both pfTree and pIndex indexes index data based on
prefix tree. Although pIndex index includes auxiliary data
structure, i.e., row and column header tables, this auxil-
iary structure only needs a small amount of memory space,
so there is a common compression ratio. Fig. 4(a) shows the
compression ratio of the two indexes in the process of having
four different columns (6, 11, 24, 50 columns) and increas-
ing the number of rows from 1000 to 12000. The curves
in the figure clearly show the fact that the fewer columns,
the higher compression ratio. In addition, it also shows a
hidden attribute: index compression is basically independent
of the change of row number, that is, when the number of rows
keeps growing, the index compression ratio does not change
significantly.

VOLUME 7, 2019 184779

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

FIGURE 4. Indexing performance on a single machine.

The size of indexes pfTree and pIndex has been verified.
Here, the performance of pfTree and pIndex indexes in the
creation process is evaluated. Fig. 4(b) and (c) show the
creation time when two methods index datasets of different
rows and columns, respectively. As shown in the figure, in the
process of index creation, pfTree takes less time to index
under all row and column conditions than pIndex, because
pIndex takes extra time to create row and column header
tables. Although the performance of pIndex on index creation
is not as good as that of pfTree, the performance of pIndex
is significantly better than that of pfTree in other subsequent
tests.

Similar to the time-consuming situation of index cre-
ation, when inserting 10 to 2000 rows into pfTree and pIn-
dex indexes with fixed columns (200 columns) and 6 to
202 columns with fixed rows (100 rows), pfTree also takes
less time than pIndex indexes. For more details, refer to
Fig. 4(d) and (e).
Fig. 4(f), (g), (h) and (i) show the scalable performance of

removing some data from the pfTree and pIndex indexes. This
test uses 10k rows of data inD6 in Table 5 as index data. If not
specified later, the number of rows and columns in the data
used is |G| = 10k and |C| = 202, respectively. First, test
the time consumption of deleting 5 gene (row) sets from the
index. As can be seen from Fig. 4(f), the time consumption
of pfTree index on deletion increases from 754ms to 2449ms,
while that of pIndex increases from 20ms to 256ms. The
growth trend and time consumption of pIndex are signifi-
cantly smaller than that of pfTree. Next, we delete the index by
100 row keywords on 5 different datasets (|G| = 10k , varying
column numbers |C|). As shown in Fig. 4(g), the run time of
pfTree dramatically increases from 206ms to 819ms, while
that of pIndex increases from 14ms to 67ms. Similarly, when
five sets of experimental conditions (columns) are deleted
from the index, as shown in Fig. 4(h), the deletion time of
pfTree index is reduced from 1154ms to 1007ms, while that

of pIndex is decreases from 535MS to 99Ms. The decreasing
trend of pIndex is obviously larger than that of pfTree. Finally,
we delete the index by 4 column keywords on 6 different
datasets (|G| = 10k , varying column numbers |C|). In Fig.
4(i), the run time of pfTree increases from 26ms to 1077ms,
while that of pIndex increases from 16ms to 247ms. The
increasing speed of the latter one is slower than the former,
thus the proposed method has good performance.

2) EQ/FQ ON PFTREE/PINDEX/SQUERY
Next, we evaluate the scalability performance of EQ and
FQ on pfTree, pIndex, and online sharing query technique
(sQuery for short). In the following, we call the three meth-
ods above as EQ/FQ-pfTree, EQ/FQ-pIndex, and EQ/FQ-
sQuery, respectively.

The first test is the exact query performance based on
row (gene) keywords (EQg). Three compared methods are
EQg-pfTree, EQg-pIndex, and EQg-sQuery. As shown in Fig.
5(a), the running times of three methods are nearly three
horizontal lines, but the running time of EQg-pfTree is more
than 30 times of the other methods. Further, the running time
of EQg-pIndex is nearly 2 times of EQg-sQuery. When the
same query is performed on six different datasets (that is,
the index data is six different data), as shown in Fig. 5(b),
the running time of EQg-pfTree is more than 35 times of
EQg-pIndex. And the running time of EQg-sQuery is only
half of that of EQg-pIndex. The test demonstrates the effi-
ciency of row header table and the scalability of EQg-pIndex
and EQg-sQuery.

The second experiment is the fuzzy query performance
based on row (gene) keywords (FQg). Three compared
methods are FQg-pfTree, FQg-pIndex, and FQg-sQuery.
Fig. 5(c) and (d) show the performance of fuzzy query based
on row (gene) keywords on different number of row keywords
and datasets respectively. The running time of FQg-pfTree
increases greatly, while the running times of FQg-pIndex and
FQg-sQuery are both basically a horizontal line. And FQg-
sQuery has better performance than FQg-pIndex. Overall,
in both cases, FQg-pIndex performs 70 to 360 times (and
8 to 130 times) better thanFQg-pfTree. AndFQg-sQuery only
consumes half of that of FQg-pIndex. The test demonstrates
the efficiency of row header table and the scalability of FQg-
pIndex and FQg-sQuery.

The third test is the exact query performance based on
column (experimental condition) keywords (EQc). Three
compared methods are EQc-pfTree, EQc-pIndex, and EQc-
sQuery. As shown in Fig. 5(e), when the index data is D6
and the number of column keywords increases from 2 to
6, the performances of EQc-pIndex and EQc-sQuery are
much better than EQc-sQuery except for the case of key-
word 2. The potential reason is that when there are fewer
keywords, EQc-pfTree traverses fewer tree nodes, so the
performance is better than the other two methods when the
number of keywords is 2. Then we test the performance when
indexing six different kinds of data and executing the same
exact query based on columns. As shown in Fig. 5(f), the

184780 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

FIGURE 5. Query performance on a single machine.

performance ofEQc-pIndex is 1 to 9 times that ofEQc-pfTree.
And the performance of EQc-sQuery is nearly 2 times that
of EQc-pIndex.

The fourth test is the fuzzy query performance based
on column (experimental condition) keywords (FQc). Three
compared methods are FQc-pfTree, FQc-pIndex, and FQc-
sQuery. As shown in Fig. 5(g), when the index data isD6 and
the number of column keywords increases from 2 to 6, the
running time of FQc-pfTree increases sharply, but the running
times of FQc-pIndex and FQc-sQuery are both basically a
horizontal line. Then we test the performance when index-
ing six different data and executing the same column based
fuzzy query. In Fig. 5(h) the response time of FQc-pfTree
increases from 120ms to 33589ms, while the time of FQc-
pIndex increases from 176ms to 3265ms, and that of FQc-
sQuery increases from 88ms to 1633ms. The growth trend
and execution time of FQc-pIndex and FQc-sQuery are far
less than that of FQc-pfTree. Finally, the performance of the
same fuzzy query based on six column keywords is tested
when only the threshold of column keywords is changing,
on datasetD6, and the same fuzzy query based on six column
keywords is executed. As shown in Fig. 5(i), the performance
of FQc-pIndex is 461 to 759 times that of FQc-pfTree. And
FQc-sQuery outperforms nearly 2 times that of FQc-pIndex.
This test proves that the column header table and the first
element rotation method (FIT) play an important role in the
query process, and also shows that FQc-pIndex and FQc-
sQuery have good scalability in the query based on column
keywords.

3) GEQ VS EQ
This subsection tests the behaviours of five query meth-
ods. The query methods include (1) exact query of positive
OPSMwith condition keywords based on pfTree index (EQc-
pfTree), (2) fuzzy query of positive OPSM with condition
keywords based on pIndex index (EQc-pIndex), (3) general
query of negative OPSM with condition keywords based on

pIndex index (GEQc-nega), (4) general query of positive
and delay OPSM with condition keywords based on pIndex
index (GEQc-posi-delay), (5) general query of negative and
delay OPSMwith condition keywords based on pIndex index
(GEQc-nega-delay). Due to general query of positive OPSM
with condition keywords based on pIndex index (GEQc-posi)
is nearly same with EQc-pIndex, so we do not give the results
of theGEQc-posimethod.When testing theGEQc-posi-delay
and GEQc-nega-delay, we use d = 1 as the step length of
delayed time.

FIGURE 6. Performance of GEQc on a single machine.

First, we give the search times of all the query methods
when varying the numbers of column keywords. Note that
the indexing dataset isD6, which has 10k rows. The response
time is shown in Fig. 6(a). When the numbers of column
keywords increase from 3 to 7, the search times of EQc-
pfTree decrease from 830ms to 800ms, the response times
of EQc-pIndex reduce from 480ms to 45ms, that of GEQc-
nega drop from 210ms to 45ms, that of GEQc-posi-delay
decrease from 270ms to 50ms (except the condition 3, that
is 1900ms), that of GEQc-nega-delay reduce from 210ms to
50ms (except the condition 3, that is 1800ms). Because the
keyword number of GEQc-posi-delay and GEQc-nega-delay
is less than other methods, which leads more candidates,
it will spend more time. However, this situation becomes less
obvious with the increasing of column keyword number. This
experiment demonstrates that the behaviours of the methods
based on pIndex is better than that based on pfTree.
Next, we give the search times of all the query meth-

ods on 6 different datasets, when conduct the same query
(4 column keywords, except KiWi [12] method). Note that
the numbers of 6 different datasets are 10k . The response
time is shown in Fig. 6(b). With the increasing of column
keyword number, the response time of EQc-pfTree query
method increases exponentially, while the other four methods
remain in a certain time range. The details are as follows: the
response time of EQc-pfTree query method increased rapidly
from about 25ms to about 820ms, the query response time of
EQc-pIndex and GEQc-nega methods is basically the same
(from about 10ms to about 70ms. On datasetD6, the response
time of the former is slightly higher, about 260ms.), the query
response time of GEQc-posi-delay and GEQc-nega-delay
methods is basically the same, and slightly higher than
that of EQc-pIndex and GEQc-nega methods, which grad-
ually increases from about 20ms to 220ms. Because KiWi
approach is amethod ofminingOPSMs from gene expression
data in batches, there is no list of keyword options, so we
adopt its default setting. KiWi runs the longest time on D2

VOLUME 7, 2019 184781

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

FIGURE 7. Sharing query performance on a single machine.

datasets (109 ms), shorter on D3 and D1 datasets (47ms and
31ms, respectively), and shortest on D4, D5 and D6 datasets
(about 16ms). The experiment proves that the methods pro-
posed in this paper have better behaviours on efficiency and
scalability.

4) EQ/FQ WITH ONLINE-SHARING TECHNIQUE VS EQ/FQ
WITHOUT ONLINE-SHARING TECHNIQUE
This subsection evaluates the performances of two class
of methods, query based on online-sharing technique and
query without online-sharing technique, on exact or fuzzy
query. We call these methods EQg-sQuery, EQg-pIndex,
FQg-sQuery, FQg-pIndex, EQc-sQuery, EQc-pIndex, FQc-
sQuery, FQc-pIndex for short. To show the results more
clearly, we assume that the memory is large enough to test the
optimal performance of the proposed methods. Thus, it can
cache all the repeated and time-consuming results.

Firstly, we compare the behaviours of EQg-sQuery and
EQg-pIndex. As shown in Fig. 7(a), we vary the numbers
of row keywords from 2 to 6, the run time of EQg-pIndex
increases from 11ms to 22ms, but that of EQg-sQuery is
nearly one horizontal line, it spends about 0ms.
Secondly, we test the behaviours of FQg-sQuery and FQg-

pIndex. As shown in Fig. 7(b), we vary the numbers of row
keywords from 3 to 7, the run time of FQg-pIndex increases
from 32ms to 156ms, but that of FQg-sQuery is nearly one
horizontal line, it also spends about 0ms.
Thirdly, we evaluate the behaviours of EQc-sQuery and

EQc-pIndex. As shown in Fig. 7(c), we vary the numbers of
column keywords from 2 to 6, the run time of EQc-pIndex
decreases from 1919ms to 95ms, but that of EQc-sQuery
drops from 19ms to 0ms, which is nearly one horizontal line.
Finally, we give the behaviours of FQc-sQuery and FQc-

pIndex. As shown in Fig. 7(d), we vary the numbers of col-
umn keywords from 2 to 6, the run time of FQc-pIndex drops
from 3835ms to 2348ms, but that of FQc-sQuery decreases
from 27ms to 0ms, which also is nearly one horizontal line.

B. EVALUATION ON SINGLE MACHINE, HADOOP AND
HAMA
In the next experiments, we take pIndex method as an exam-
ple to show its performance on single machine (SM for

FIGURE 8. Performance on SM, Hadoop and Hama.

short), Hadoop and Hama (2 nodes) platforms. Because the
performance of pIndex on a single machine has been given
in detail, this section only shows its performance in index
creation, exact query based on column keywords (EQc), fuzzy
query based on column keywords (FQc), etc.
Fig. 8(a) and (b) show the time taken by pIndex building

on varying rows and columns, respectively. As shown in
the two figures, the performance of pIndex on Hadoop and
Hama platforms is 2 to 6 times of that on SM platforms,
no matter whether the row number changes or the column
number changes. In Fig. 8(b), the performance of pIndex on
Hadoop is significantly better than that on Hama. The reason
is that the data has the chance to be skewed onHama platform,
andHadoop can use its own small filemechanism to solve this
problem.
Fig. 8(c) and (d) show the time consumption of exact query

based on column keywords (EQc) under different number
of keywords and different data. When the index data is D6
and the number of column keywords increases from 2 to
6, the performance of column keyword based exact query
(EQc) on Hadoop and Hams platforms is more than twice
that of single machine (SM). When testing its performance
of executing the same query on six different kinds of data,
the performance of column keyword based exact query (EQc)
on Hadoop and Hama platforms is also two to three times of
that on a single machine.
Fig. 8(e) and (f) show the scalability of fuzzy query

based on column keywords (FQc) on three platforms. When
the index data is D6 and the number of column keywords
increases from 2 to 6, as shown in Fig. 8(e), the performance
of column keyword based fuzzy query (FQc) on Hadoop and
Hama platforms has the same superior performance, which
is 2 to 3 times of that on a single machine (SM). Next,
we continue to test the performance of FQc, when only the
threshold of the column keywords is changing, on dataset
D6 and executing the same fuzzy query based on six column

184782 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

keywords. As shown in Fig. 8(f), similar to the former exper-
iment, the performance on Hadoop and Hama platforms has
the same superior performance, both of which are two to three
times of the performance on a single machine.

Finally, the scalability of index and query methods
based on pIndex is evaluated under different cluster nodes.
As shown in Fig. 8(g), when the number of cluster nodes
increases from 2 to 8, the creation time of index in the case
of 4 (or 8) nodes is one forth times of that in the case of 2 (or
4) nodes, and Hadoop and Hama platforms show almost the
same excellent performance. Similarly, as shown in Fig. 8(h),
when it performs a fuzzy query of six column keywords
(FQc), its query performance in the case of 4 (or 8) nodes
is twice that in the case of 2 (or 4) nodes. Through this exper-
iment, we know that pIndex has good scalability. Although
pIndex takes more time to create indexes than pfTree, it can
be solved by using distributed parallel platform.

C. ACCURACY
The motivation of this test is to check weather the proposed
methods can find the biggest OPSMs based on row/column
keywords. We test the search performance on two real
datasets [26]. And the evaluation criteria is defined in Def-
inition 9. One real dataset is Arabidopsis Thaliana dataset,
the other one is Saccharomyces Cerevisiae dataset. On the
former one dataset, we conduct 14 exact queries based on
genes. Based on the criteria, we get the recall ratios of
conditions, which is shown in Table 6. The biggest ratio is
86.7% for the 3× 15 size of OPSM, i.e., it gets 13 conditions
from 15 ones. The smallest recall ratios is 20.0%. From the
14 searches, the recall rate of 3 queries is more than 80.0%,
that of 7 queries is more than 70.0%, and that of of 10 queries
is more than 50.0%. On the latter one dataset, we conduct
12 exact queries based on genes and get the recall ratios of
conditions, which is shown in Table 7. Based on the criteria,
we get the recall ratios of conditions. The biggest ratio is
94.1% for the 6× 17 size of OPSM, i.e., it gets 16 conditions
from 17 ones. The smallest recall ratios is 10.0%. From the
12 searches, the recall rate of 3 queries is more than 70.0%,
that of 4 queries is more than 40.0%.

VII. RELATED WORK
Query-based biclustering method comes from the field of
bioinformatics, and its application object is gene expression
data [27]. Firstly, users provide functional related or co-
expressed seed genes based on experience, and then use the
seed to guide the search space pruning or biclustering mining
search. Jiang et al. [19] design an interactive and visual tool
called Gene Pattern eXplorer (GPX) for gene pattern mining,
which can drill down and roll up. And it facilitates the OPSM
search from the massive results. Dhollander et al. [28] pro-
pose a Bayesian query-driven biclustering framework named
QDB, to answer the specific question of interest to a biologist.
They recruit genes with similar expession profiles as the
seeds to find a significant subset of experimental conditions.

TABLE 6. Search on Arabidopsis Thaliana dataset.

TABLE 7. Search on Saccharomyces Cerevisiae dataset.

Zhao et al. [29] improve the QDB framework, and develop
ProBic, a query-based biclustering strategy based on prob-
abilistic relational models to extract high quality biclusters
even in the presence of noise or when dealing with low
quality seed sets. To answer specific questions of interest
and incorporate prior knowledge and expertise from the user,
Alqadah et al. [30] introduce a novel Query Based Bi-
Clustering algorithm, QBBC, using a new formulation that
combines the advantages of low-variance biclustering tech-
niques and Formal Concept Analysis. Wang et al. [31]
apply the longest common subsequence (LCS) framework to
selected pairs of rows in an index matrix derived from an
input data matrix to locate a seed for each bicluster to be
identified. Li and Su [32] introduce a biclustering algorithm
called BicGO to recognize complicated biclusters submerged
in large scale datasets (matrix). Jiang et al. [33] proposes
two constrained OPSM query methods, which exploit user
defined constraints (must-link, cannot-link, interval, count) to
search relevant OPSMs from two kinds of indexes introduced.
Further, to reduce the index size of the methods in [33] and
obtain much more accurate query relevancy, they proposes
two types of OPSM indexing and constrained query meth-
ods based on Signature and Trie in [34]. Jiang et al. [35]
presents and implements a prototype system for OPSM
queries, which is called OMEGA (Order-preserving sub-
Matrix mining, indExinG and seArch tool for biologists).

VOLUME 7, 2019 184783

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

It uses Butterfly Network based BSP model to mine OPSMs
in parallel [24]. Further, it builds index based on prefix-
tree associated with two header tables for gene expression
data or OPSM mining results. Then, it processes exact and
fuzzy queries based on keywords [36]. Themain difference of
our contributionwith respect to (w.r.t.) our previouswork [36]
is that here we support queries of multiple types of OPSMs
w.r.t. positive OPSM queries. The second difference is that
our current proposal ensures, when needed, online sharing
queries for the repeated and frequent searches. The third dif-
ference is that we rewrite the paper, use much more examples
to explain the approaches, add some experiments, and prove
and guarantee the validity of the proposed methods in theory.
In this study, we study the problems of OPSM queries. Due
to its challenging nature, few previous work has been done on
this topic.

VIII. CONCLUSION
To tackle the problems that Order-Preserving SubMatrix min-
ing methods have longer latency and do not support many
kinds of OPSM mining, the paper designs a new method
from the perspective of data management. We present an
indexing method called pIndex, which uses two header tables
to accelerate the search behaviours. Further, we give some
query methods, such as exact/fuzzy query on rows/columns,
which support the search of positive, negative, and time-delay
OPSMs. To reduce the cost of the repeated and frequent
queries, we explore the online sharing query strategy for
the follow-up OPSM queries. Experiments demonstrate that
these techniques are efficient to speed up the query process
and can give accuracy results. Note that, although our exper-
iments are run on gene expression data, the method proposed
in this paper can be utilized widely in many application
domains beyond gene expression data analysis.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
for their thoughtful comments, which helped to improve the
quality of the article. This article was presented in part at
the 20th International Conference on Database Systems for
Advanced Applications (DASFAA 2015).

REFERENCES
[1] S. C. Madeira and A. L. Oliveira, ‘‘Biclustering algorithms for biological

data analysis: A survey,’’ IEEE/ACM Trans. Comput. Biol. Bioinformat.,
vol. 1, no. 1, pp. 24–45, Jan./Mar. 2004.

[2] L. Parsons, E. Haque, and H. Liu, ‘‘Subspace clustering for high dimen-
sional data: A review,’’ ACM SIGKDD Explor. Newslett., vol. 6, no. 1,
pp. 90–105, Jun. 2004.

[3] S. Busygin, O. Prokopyev, and P. M. Pardalos, ‘‘Biclustering in data
mining,’’ Comput. Oper. Res., vol. 35, no. 9, pp. 2964–2987, 2008.

[4] F. Yue, L. Sun, K. Wang, Y. Wang, andW. Zuo, ‘‘State-of-the-art of cluster
analysis of gene expression data,’’ Acta Automatica Sinica, vol. 34, no. 2,
pp. 113–120, 2008.

[5] H. P. Kriegel, P. Kroger, and A. Zimek, ‘‘Clustering of high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and cor-
relation clustering,’’ ACM Trans. Knowl. Discovery Data, vol. 3, no. 1,
pp. 1–58, 2009.

[6] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong, ‘‘A survey on enhanced
subspace clustering,’’ Data Mining Knowl. Discovery, vol. 26, no. 2,
pp. 332–397, 2013.

[7] T. Jiang and Z. Li, ‘‘A survey on local pattern mining in gene expression
data,’’ J. Comput. Res. Develop., vol. 55, no. 11, pp. 2343–2360, 2018.

[8] J. A. Hartigan, ‘‘Direct clustering of a data matrix,’’ J. Amer. Statist. Assoc.,
vol. 67, no. 337, pp. 123–129, 1972.

[9] Y. Cheng and G. M. Church, ‘‘Biclustering of expression data,’’ in Proc.
8th Int. Conf. Intell. Syst. Mol. Biol.(ISMB), Edmonton, AB, Canada, 2000,
pp. 93–103.

[10] A. Ben-Dor, B. Chor, R.M.Karp, and Z. Yakhini, ‘‘Discovering local struc-
ture in gene expression data: The order-preserving submatrix problem,’’ in
Proc. 6th Annu. Int. Conf. Comput. Biol. (RECOMB), Washington, DC,
USA, 2002, pp. 49–57.

[11] L. Ji and K. L. Tan, ‘‘Mining gene expression data for positive and
negative co-regulated gene clusters,’’ Bioinformatics, vol. 20, no. 16,
pp. 2711–2718, 2004.

[12] B. J. Gao, O. L. Griffith, M. Ester, H. Xiong, Q. Zhao, and S. J. M.
Jones, ‘‘On the deep order-preserving submatrix problem: A best effort
approach,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 2, pp. 309–325,
Feb. 2012.

[13] Q. Fang, W. Ng, J. Feng, and Y. Li, ‘‘Mining order-preserving submatrices
from probabilistic matrices,’’ ACM Trans. Database Syst., vol. 39, no. 1,
2014, Art. no. 6.

[14] Y. Xue, Z. Liao, M. Li, J. Luo, Q. Kuang, X. Hu, and T. Li, ‘‘A new
approach for mining order-preserving submatrices based on all common
subsequences,’’ Comput. Math. Methods Med., vol. 2015, May 2015,
Art. no. 680434.

[15] Y. Yin, Y. Zhao, B. Zhang, and G. Wang, ‘‘Mining synchronous and asyn-
chronous co-regulated gene clusters from time series microarray data,’’
Chin. J. Comput., vol. 30, no. 8, pp. 1302–1314, 2007.

[16] Y. Zhao, G. Wang, Y. Yin, and G. Xu, ‘‘A novel approach to revealing pos-
itive and negative co-regulated genes,’’ J. Comput. Sci. Technol., vol. 22,
no. 2, pp. 261–272, 2007.

[17] Y. Zhao, J. X. Yu, G. Wang, L. Chen, B. Wang, and G. Yu, ‘‘Maximal
Subspace Coregulated Gene Clustering,’’ IEEE Trans. Knowl. Data Eng.,
vol. 20, no. 1, pp. 83–98, Jan. 2008.

[18] G. Wang, L. Yin, Y. Zhao, and K. Mao, ‘‘Efficiently mining time-delayed
gene expression patterns,’’ IEEE Trans. Syst., Man, Cybern. B. Cybern.,
vol. 40, no. 2, pp. 400–411, Apr. 2010.

[19] D. Jiang, J. Pei, and A. Zhang, ‘‘GPX: Interactive mining of gene expres-
sion data,’’ in Proc. 30th Int. Conf. Very Large Data Bases (VLDB),
Toronto, ON, Canada, 2004, pp. 1249–1252.

[20] S. Barkow, S. Bleuler, A. Prelić, P. Zimmermann, and E. Zitzler,
‘‘BicAT: A biclustering analysis toolbox,’’ Bioinformatics, vol. 22, no. 10,
pp. 1282–1283, 2006.

[21] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, ‘‘Fast pattern matching in
strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jul. 1977.

[22] R. S. Boyer and J. S. Moore, ‘‘A fast string searching algorithm,’’Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[23] L. Bergroth, H. Hakonen, and T. L. Raita, ‘‘A survey of longest common
subsequence algorithms,’’ in Proc. 7th Int. Symp. String Process. Inf.
Retr. (SPIRE), A Curuna, Spain, Sep. 2000, pp. 39–48.

[24] T. Jiang, Z. Li, Q. Chen, Z.Wang,W. Pan, and Z.Wang, ‘‘Parallel partition-
ing and mining gene expression data with butterfly network,’’ in Proc. 24th
Int. Conf. Database Expert Syst. Appl. (DEXA), Prague, Czech Republic,
2013, pp. 129–144.

[25] BroadInstitute: Datasets.Rar and 5Q Gct File.Gct. Accessed:
Mar. 20, 2019. [Online]. Available: http://www.broadinstitute.org/
cgi-bin/cancer/datasets.cgi

[26] Arabidopsis Thaliana and Saccharomyces Cerevisiae. Accessed:
Oct. 21, 2019. [Online]. Available: https://sop.tik.ee.ethz.ch/bimax/

[27] Q. Zou, X. B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen, ‘‘Survey
ofMapReduce frame operation in bioinformatics,’’ Briefings Bioinformat.,
vol. 15, no. 4, pp. 637–647, Jul. 2014.

[28] T. Dhollander, Q. Z. Sheng, K. Lemmens, B. D. Moor, K. Marchal, and
Y. Moreau, ‘‘Query-driven module discovery in microarray data,’’ Bioin-
formatics, vol. 23, no. 19, pp. 2573–2580, 2007.

[29] H. Zhao, L. Cloots, T. V. Bulcke, Y. Wu, R. D. Smet, V. Storms,
P. Meysman, K. Engelen, and K. Marchal, ‘‘Query-based biclustering of
gene expression data using probabilistic relational models,’’ BMC Bioinf.,
vol. 12, Dec. 2011, Art. no. S37.

184784 VOLUME 7, 2019

T. Jiang et al.: Indexing and Search of OPSM for Gene Expression Data

[30] F. Alqadah, J. S. Bader, R. Anand, and C. K. Reddy, ‘‘Query-based
biclustering using formal concept analysis,’’ in Proc. SIAM Int. Conf. Data
Mining (SDM), Anaheim, CA, USA, 2012, pp. 648–659.

[31] Z. Wang, G. Li, R. W. Robinson, and X. Huang, ‘‘UniBic: Sequential row-
based biclustering algorithm for analysis of gene expression data,’’ Sci.
Rep., vol. 6, no. 1, 2016, Art. no. 23466.

[32] G. Li and Z. Su, ‘‘BicGO: A new biclustering algorithm based on global
optimization,’’ unpublished.

[33] T. Jiang, Z. Li, X. Shang, B. Chen, W. Li, and Z. Yin, ‘‘Constrained Query
of order-preserving submatrix in gene expression data,’’ Frontiers Comput.
Sci., vol. 10, no. 6, pp. 1052–1066, 2016.

[34] T. Jiang, Z. Li, X. Shang, B. Chen, W. Li, and Z. Yin, ‘‘Constrained
Query of order-preserving submatrix based on signature and trie,’’ J. Softw.,
vol. 28, no. 8, pp. 2175–2195, 2017.

[35] T. Jiang, Z. Li, Q. Chen, Z. Wang, K. Li, andW. Pan, ‘‘OMEGA: An order-
preserving submatrix mining, indexing and search,’’ in Proc. Eur. Conf.
Mach. Learn. Princ. Pract. Knowl. Discovery Databases (ECML/PKDD),
Porto, Portugal, 2015, pp. 303–307.

[36] T. Jiang, Z. Li, Q. Chen, K. Li, Z. Wang, and W. Pan, ‘‘Towards order-
preserving submatrix search and indexing,’’ in Proc. 20th Int. Conf.
Database Syst. Adv. Appl. (DASFAA), Hanoi, Vietnam, 2015, pp. 309–326.

TAO JIANG received the Ph.D. degree fromNorth-
western Polytechnical University, Xi’an, China.
He is currently a Lecturer with the School of Com-
puter and Information Engineering, HenanUniver-
sity of Economics and Law, Zhengzhou, China.
His interests include biological data mining, big
data management, and information retrieval.

BOLIN CHEN received the Ph.D. degree from the
University of Saskatchewan, Saskatoon, Canada.
He is currently an Associate Professor with the
School of Computer Science, Northwestern Poly-
technical University, China. His current research
interests include bioinformatics, computational
and systems biology, data mining, and data man-
agement.

JUNTAO LI received the B.S. and M.S. degrees in
applied mathematics from Henan Normal Univer-
sity, China, in 2001 and 2004, respectively, and the
Ph.D. degree in control theory and control engi-
neering from Beihang University, China, in 2010.
Since 2011, he has been an Associate Professor
with Henan Normal University. His research inter-
ests include statistical machine learning, bioinfor-
matics, and complex system modeling.

GUOYU XU received the Ph.D. degree from PLA
Information Engineering University, Zhengzhou,
China. He is currently a Lecturer with the School
of Computer and Information Engineering, Henan
University of Economics and Law, Zhengzhou.
His interests include network information security
and cryptography.

VOLUME 7, 2019 184785

	INTRODUCTION
	PRELIMINARIES
	PFTREE
	PINDEX
	OPSM QUERIES
	POSITIVE OPSM QUERIES
	GENERAL OPSM QUERIES
	ONLINE SHARING QUERIES

	EXPERIMENTAL EVALUATION
	EVALUATION ON SINGLE MACHINE
	PINDEX VS PFTREE
	EQ/FQ ON PFTREE/PINDEX/SQUERY
	GEQ VS EQ
	EQ/FQ WITH ONLINE-SHARING TECHNIQUE VS EQ/FQ WITHOUT ONLINE-SHARING TECHNIQUE

	EVALUATION ON SINGLE MACHINE, HADOOP AND HAMA
	ACCURACY

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	TAO JIANG
	BOLIN CHEN
	JUNTAO LI
	GUOYU XU

