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ABSTRACT Large-scale drone swarms are expected to play an important role in information acquisition,
rescue search and joint fire strikes. These swarms usually adopt a clustering structure to control formation
flight for fast and stable communication. Effective clustering can improve the transmission efficiency and
task execution ability of the network. On the basis of uniform clustering, we establish a model with the
number of unmanned aerial vehicles (UAVs) and the number of cluster heads (CHs) as variables to minimize
the communication latency. Using conditional criteria, the communication delay is minimized to solve
the relationship between the number of drones and the number of CHs, and this model is for clustering.
A simulation platform is built with OPNET to evaluate the impact of different numbers of CHs on the network
performance. According to the proposed scheme, the optimal number of CHs for 500, 300, 100 UAVs is 31,
24, 14, respectively. In the case of specific simulation parameters, these optimal numbers of CHs can achieve
excellent performance in terms of delay and packet loss rate. This result has value in drone swarms clustering
applications.

INDEX TERMS Drone swarms, formation flight, clustering method, communication delay.

I. INTRODUCTION
Drone swarms are the typical application on mobile ad hoc
networks (MANET) in the aviation field and are composed
of numerous UAVs [1]. With the development of intelli-
gent, low-cost and miniaturized UAVs, the application of
drone swarms has become an extremely important research
direction such as for coordinated reconnaissance and target
surveillance [2], [3]. A group of UAVs instead of one sin-
gle UAV leads to many advantages such as extending the
mission coverage, ensuring a reliable ad-hoc network, or
enhancing the operation performance [4]. A drone swarm
usually encompasses a control ‘, which includes three lay-
ers: 1) Sensor layer. It contains various sensors carried by
UAVs to collect raw data for specific targets. 2) Informa-
tion processing layer. It makes up of communication mod-
ule, which filters the useful information of the raw data
through the information exchange between the UAVs and
performs effective information fusion. 3) Decision-making
layer. According to information fusion, the current situational
awareness is formed, so that drone swarms can be accurately
controlled.
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In the 8 years from 2011 to 2018, the Strategic Capa-
bilities Office (SCO), the Defense Advanced Research
Projects Agency (DARPA) and the Office of Naval
Research (ONR) proposed the Perdix micro-UAV project,
the Distributed Battle Management (DBM) project, the Col-
laborative Operations in Denied Environment (CODE)
project, the Gremlins project, the System of Systems
Integration Technology Experimentation (SoSITE) project,
the Low-cost UAV Swarming Technology (Locust) project,
the Loyal Wingman project and the offensive bee colony
Offensive Swarm-Enabled Tactics (OFFSET) project. These
large-scale drone swarm projects cover scenarios such
as coordinated reconnaissance, target surveillance, inte-
grated relay of heaven and Earth, and saturated firepower
strikes [5], [6]. They have the ability to change opera-
tional modes; reduce operational costs; and improve oper-
ational flexibility, mobility, invulnerability, and strategic
position.

The factors of the operational environment are complex
and changeable, and combat chances are rare and fleeting [7].
Information and instructions need to be quickly transmitted
to each UAV for sharing and interaction. If information and
instructions do not arrive in time, the UAVs cannot respond
quickly to adjust to battlefield situations, which may lead to
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the failure of the entire mission and irreparable damage [8].
Therefore, minimizing the wireless communication delay
provides a basis on the drone swarms can complete their
specified tasks [9].

The real-time performance of wireless communication can
be considered in two aspects. First, the development of a new
wireless technology (5G), protocol standards and intelligent
hardware increases the bandwidth, signal transmission and
reception rates [10]. Second, ensuring low latency communi-
cation under the samewireless technology, protocol standards
and hardware level by the reasonable layout of the network
topology of drone swarms [11]. In [12], a tractable method
was proposed for the 3D deployment of drone base stations
and solved the problem of cell association with the goal
of minimizing the latency of drone users. The clustering
structure shown in Fig.1 is suitable for large-scale drone
swarms [13]. The self-organizing drone network forms a
plurality of clusters by a clustering algorithm [14], with each
cluster is composed of a cluster head (CH) and some cluster
members (CMs). These CHs form the high layer virtual back-
bone network and provide two critical functions: 1) direct
communication between cluster heads, and 2) medium for
cross-cluster communication. The CMs in the same cluster
communicate directly through one hop, but the data to be
transmitted between clusters are first sent to the CH, from
where they are sent to the CH of the cluster where the
destination node is located through the virtual backbone net-
work [15]. The CH then transmits to the destination node to
achieve cross-cluster communication.

FIGURE 1. Two layer cluster hierarchy of UAV swarms.

The rest of paper is organized as follows: The section II
introduces related work on clustering algorithms for drone
swarms. In section III, a new clustering method is proposed,
which involves conditional assumptions, process derivation,
application process and working frame. Section IV evaluates
the performance of our proposed method and section V con-
cludes the paper.

II. RELATED WORK
Drone swarms are characterized by high-speed mobile nodes
and dynamically changing topology [16]. Minimizing com-
munication delay by reasonable clustering is highly signifi-
cant to scientific engineering models and applications.

Currently, there are many clustering algorithms for
drone swarms, such as the lowest-ID, highest-degree and
weight-based clustering algorithms (WCA) [17]. In the pre-
vious two clustering algorithms, a node is elected as CH if it
has the lowest ID or the highest connectivity [18]. The WCA
is based on the use of a combined several parameters like the
node degree, distances with all its neighbors, node speed and
the time spent as a CH. For the same purpose, the authors
in [19] proposed a time division multiple access (TDMA)
system based on minimum ID clustering, which was applied
to increase the capacity management of wireless networks
in the vehicle-mounted ad hoc network. Alinci et al. [20]
studied some clustering schemes from different performance
indicators. In [21], a multihop clustering scheme is proposed
to improve the stability of the clustering of vehicle clusters.
In [22], a multi-parameter weighted clustering algorithm is
introduced to improve the clustering of drones, network sta-
bility and survival rate. Fahad et al. [23] proposed a clustering
algorithm based on gray wolf optimization, which can pro-
vide a robust routing protocol to ensure reliable information
transmission. In [24], a clustering algorithm based on ant
colony optimization for VANETs is proposed to extend the
lifetime of clusters. The work in MANET [25] developed
a clustering algorithm by proposing to use coalition game
theory, identifying coalitions to clusters and players to nodes,
where nodes take decision whether to leave or not their
current coalition based on the coalition values.

Due to the limited energy and computing power of a single
UAV, it is impossible for the UAV to guarantee the best
working state anytime and anywhere. On the one hand, some
experts are working to reduce the energy consumption of
drones. The work in [26] studied a novel cache-enabled UAV
framework in cloud radio access network that can meet the
mobile user’s quality-of-experience (QoE) requirement while
minimizing the transmit power of the UAVs. On the other
hand, more studies have been conducted on the impact of
residual energy and load balancing factors on communication
efficiency. To solve the problem of routing instability caused
by battery residual energy and nodes mobility, a proposed
scheme uses energy aware cluster formation and cluster head
election based on the glowworm swarm optimization algo-
rithm in [27]. In [28], limited battery energy and the high
mobility of UAVs represent two main problems, the authors
addressed these problems by means of efficient clustering.
First, the transmission power of the UAVs was adjusted to
save the energy consumption during communication. Sec-
ond, the K-means clustering algorithm was adopted for CHs
election to enhance the cluster lifetime and reduce the rout-
ing overhead. To optimize the number of clustering as well
as energy dissipation in nodes, a clustering algorithm by
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using multi-objective particle swarm optimization algorithm
is presented in [29], this method provides an energy-efficient
solution and reduces the network traffic. In [30], the authors
introduced the cluster head selection algorithms for FANET
to achieve stable connection of UAVs and reduction of energy
consumption. In [31], a center-based clustering algorithm is
proposed, where self-organized VANETs form stable clusters
and decrease the status change frequency of vehicles on
highways. In [32], the authors proposed a cross-layer based
lightweight reliable and secure multicast routing protocol for
MANET to solve route failures, link failures, packet losses
due to network overloading. The CHs are elected based on
residual energy, link stability, and remaining bandwidth.

Indeed, these studies have been done based on setting some
criteria to designate certain drones as CHs. In this paper,
a novel method based on uniform clustering is presented. The
focus of our work is realizing low latency communication by
adjusting the number of CHs. For the election criteria of the
CHs, it is possible to select any suitable algorithm among the
lowest-ID, highest-degree, weight-based and coalition game
clustering algorithms. With the development of technology
and increasing demand, the UAV cluster hardware load
computing power will become more powerful, the routing
algorithmswill becomemore intelligent, and the communica-
tion content will become more diverse. The model still have
strong universality and will meet the current and future UAV
needs.

III. METHOD CONSTRUCTION
A. CONDITIONAL ASSUMPTIONS
This paper is based on CH election and proposes a clustering
optimal value model from a mathematical point of view.
In this model, the input variable is the total number of drones,
and the output is the number of CHs, which can lower the
global network communication delay. The global network
communication delay divide the delay into several parts:
queuing delay, transmission delay and propagation delay.
Since the electromagnetic wave has the same speed in the air,
the distance between the source node and the destination node
is the same, so the propagation delay can be approximated as
a constant. The paper mainly consider the influence of the
queuing delay and transmission delay.

The clustering model needs to take into account both intr-
acluster and intercluster routing, which is an optimal balance
problem. The model considers the communication delay as
the only performance reference indicator to solve the cluster
optimal value problem in a large-scale UAV cluster using
a uniform clustering mode. As shown in Fig.2, the cross-
cluster communication model is derived from the following
definitions.

1) DEF 1:The total number of drones is N , the number
of CHs is n, the number of UAVs per cluster is N/n,
the global communication delay is T , the intracluster
communication (where both the source node and the
destination node are in the same cluster) delay is Ti,
and the intercluster communication (where the source

FIGURE 2. Two layer cluster hierarchy of UAV swarms.

node and the destination node are in different clusters)
delay is To;

2) DEF 2: The reception rate and transmission rate of all
drones are constants λbps and µbps, respectively.

3) DEF 3: The probability that any node of the UAV
cluster sends information to the other nodes is equal,
the size of the transmitted data packet is a constant
mbits, and the number of destination nodes is used to
represent the number of data packets;

4) DEF 4: Ci represents the ith cluster and CHi represents
the CHof the ith cluster in theUAV clustering structure.

5) DEF 5: S is a data sending node, and D is a data
destination node.

B. PROCESS DERIVATION
The global network delay of drone swarms includes intra-
cluster delay and intercluster delay. TDMA technology is
adopted at the MAC layer, the entire system bandwidth for an
interval of time is equally assigned to each drone. In addition,
we supposed that the chances of each UAV receiving the
message are equal, so the number of UAVs is used to represent
the traffic. Since the UAV sends data to UAVs other than
itself, the global traffic is N − 1, the intracluster traffic is
N/n− 1, and the intercluster traffic is N −N/n. The ratio of
the intracluster traffic to global traffic ηi is:

ηi =
N − n
n(N − 1)

(1)

The ratio of intercluster traffic to global traffic ηo is:

ηo =
n− 1
N − 1

·
N
n

(2)

S sends anm bits packet, the transmission rate atµbps, and
the network delay T is the sum of the queuing delay Tq and
the transmission delay Tt .

T = Tq + Tt (3)

1) QUEUING DELAY
In order to calculate Tq, an M/M/1 queue model [33] is
adopted to represent the queue length for a single UAV.
The average time spent waiting in the queue denotes the
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queuing delay. The queuing delay of drone swarms includes
intracluster queuing delay and intercluster queuing delay. The
model is characterized by the following assumptions:
(i) The reception rate according to a Poisson process with

parameter λbps, for t ≥ 0, the probability density
function is:

f (t) = λe−λt (4)

(ii) UAV service time, s, has an exponential distribution
with parameter µbps, for s ≥ 0, the probability density
function is:

g(s) = µe−µs (5)

And thus, by (4) and (5), the queue utilization, ρ = λ/µ
represents the average proportion of timewhich theUAV
is occupied. And ρ < 1 for the queue to be stable in a
drone.

(iii) UAVnodes follow the principle of FIFO data processing.
(iv) The buffer is of infinite size, and queue congestion is not

considered.
Proposition. The probability that there n packets in the

queue is:

Pn = ρn(1− ρ) (6)

FIGURE 3. The state in the queue process.

The state space diagram for the queue is shown as Fig.3.
In a steady state, the expected number of transitions from n-1
up to n must equal the number of transitions from n down
to n-1.

λPn−1 = µPn (7)

This is a geometric series, thus

Pn = ρnP0 (8)

To solve for P0, observe that
∞∑
n=0

Pn = 1 (9)

P0 = 1− ρ (10)

For each drone node, the expected number of packets in the
queue is:

Ld =
∞∑
n=1

(n− 1)Pn =
∞∑
n=1

(n− 1)ρn(1− ρ)

= ρ(1− ρ)
∞∑
n=1

(n− 1)ρn−1 =
ρ2

1− ρ

=
λ2

µ(µ− λ)
(11)

The queuing delay faced by each drone can be calculated
as below:

Td =
Ld
λ
=

λ

µ(µ− λ)
(12)

The intracluster queuing delay Tdi is:

Tdi = Td (13)

The intercluster queuing delay includes the delay from
S to CH3, the queuing delay from CH3 to CH2 and the
queuing delay from CH2 to D. Thus, the intercluster queuing
delay Tdo is:

Tdo = 3Td (14)

the queuing delay can be obtained as follows:

Tq = Tdi + Tdo =
4λ

µ(µ− λ)
(15)

2) TRANSMISSION DELAY
Tt represents the time drone takes to push the packets onto
the link, including intracluster transmission delay Tti and
intercluster transmission delay Tto.

Tt = Tti + Tto (16)

The intracluster transmission delay Tti is:

Tti =
m

µ/((N/n)− 1)
· ηi (17)

The intercluster transmission delay includes the transmis-
sion delay from S to CH3, the transmission delay from
CH3 to CH2 and the transmission delay from CH2 to
D. These values are m/(µ/((N/n) − 1)),m/(µ(n − 1))
and m/(µ/((N/n) − 1)),respectively. Thus, the intercluster
transmission delay Tto is:

Tto = (
m

µ(n− 1)
+ 2 ·

m
µ/((N/n)− 1)

) · ηo (18)

Combining (1), (2), (16), (17) and (18), the transmission
delay can be obtained as follows:

Tt =
nN (n− 1)2+2N (N−n)(n− 1)+(N−n)2

n2(N−1)
·
m
µ

(19)

3) NETWORK DELAY
By (3),(15) and (19),the global network delay can be
represented:

T = Tq + Tt

=
nN (n− 1)2 + 2N (N − n)(n− 1)+ (N − n)2

n2(N − 1)
·
m
µ

+
4λ

µ(µ− λ)
(20)

Because m, µ and λ are both constants,this article converts
the extreme points of T about n into the new function Y ,
where

Y =
nN (n− 1)2 + 2N (N − n)(n− 1)+ (N − n)2

n2(N − 1)
(21)
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FIGURE 4. Relationship between Y and the number of CHs. The horizontal axis (X axis) and the vertical axis (Y axis) represent the
number of CHs and the value of Y. According to III-A, The coordinate points marked by the box indicate that the minimum Y is achieved
when the number of CHs is at this value.

The first derivative of Y to n is found, and ∂Y
∂n = 0,

obtaining a total of three extreme points:

n1 =

√
8N + 1− 1

2
, n2 =

−
√
8N + 1− 1

2
, n3 = 1 (22)

n2 and n3 are invalid values, so the function has only one
valid extreme point n1. In addition, ∂

2 Y
∂n2

> 0, Y is a concave
function here, so is global communication delay T, and n1 is a
minimum value point. At this time, the global communication
delay is the smallest at this point, that is, the optimal number
of CHs. And we name it no.
Considering the actual clustering situation, the number of

CHs should be [2, N/2]. Taking N = 500, 300 and 100, draw
the relationship between Y and n by MATLAB, and mark the
effective extreme points.

The trends of the three graphs in Fig. 4 are exactly the
same. And the figures exhibit that when the numbers of nodes
N = 500, 300 and 100, the optimal numbers of CHs no = 31,
24 and 14 are the lowest points. The corresponding minimum
global communication delays are ( 58.89m

λ
+

4λ
µ(µ−λ) ), (

44.67m
λ
+

4λ
µ(µ−λ) ) and (

24.10m
λ
+

4λ
µ(µ−λ) ), respectively.

C. APPLICATION PROCESS
In section III-B, the clustering optimal number model of a
large-scale UAV cluster is obtained, but it should be noted
that N, n, and N/n in the model should be integers. The drone
swarms system continuously adjusts the optimal number of
CHs according to the change of the number of drones. When
the heuristic method is applied to the clustering of drone
swarms, the process operation is shown in Table.1.

When the total number of UAVnodes is known, the number
of cluster heads is calculated according to the model, and
rounding is performed to calculate the number of cluster
heads and the number of members per cluster. This minimizes
the global communication delay in the case of the number of
drones and optimizes network performance.

D. WORKING FRAME OF THE PROPOSED METHOD
Figure 5 depicts the workflow of proposed method in the
whole communication mechanism. When the drone swarms

TABLE 1. Operation flow.

generate communication requirements and need to trans-
mit data, the system obtains the current number of swarms
through information exchange statistics. Thus, the current
optimal number of CHs can be calculated according to the
proposed scheme. Then, these datagrams are separately trans-
mitted within the intracluster and intercluster based on the
division of the destination IP address. Finally, the drone
swarms complete the low latency data communication in the
current situation.

IV. PERFORMANCE EVALUATION
A. SIMULATION DESIGN
The paper uses OPNET 14.5 to certify the optimal clustering
number with ad hoc on-demand distance vector (AODV)
routing. In the case of a fixed number of drone swarms,
the different numbers of CHs and optimal clustering num-
ber of CHs are selected as simulation comparisons to show
that the clustering method has the lowest communication
delay. The simulation development steps using OPNET are
as follows:

1) Step 1: Design the node model and link model, and
build a wireless network simulation scenario.
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FIGURE 5. Flow chart for the proposed scheme.

2) Step 2: Set the simulation parameters and statistical
parameters.

3) Step 3: Perform parameter optimization simulation and
analyze the simulation results.

Fig.6 shows the clustering scene of a drone swarm built
by OPNET. The red hexagon represents a cluster. The mobile
nodes in the cluster denote the moving drones. Each cluster
randomly elects a node as the CH, and the CHs form the
internet backbone.

FIGURE 6. The clustering network scenario.

B. PARAMETER SETTINGS
To prove the correctness and adaptability of the clustering
method, the parameters and configurations of simulation

TABLE 2. Simulation scenarios setting.

scenarios are presented in Table 2. As shown in the second
row, we select N = 500, 300, and 100 as the number
of large-scale drone swarms. In the third row, these bold
numbers 31, 24, 14 represents the optimal number of CHs in
the presence of 500, 300, 100UAVs according to the proposed
method. Other numbers of CHs are chosen as the comparison.
We establish corresponding scenarios for five different CHs
with OPNET. After the parameters and configurations are set,
the communication delay and packet loss rate are selected
as the result statistics. Then, the simulation is performed for
each scenario for 30 minutes.

C. SIMULATION RESULTS
To analyze the performance of the proposed method, commu-
nication delay and packet loss rate are selected as statistical
results. In Fig.7 and Fig.8, the horizontal axis represents
30minutes of simulation time, and the vertical axis represents
communication delay and packet loss rate of the wireless
network, respectively.

1) Communication delay. It means the delay between the
first sent byte and the last received byte, which includes
transmission delay, process queue delay and propagation
delay. The simulation results show that the communication
delay increases rapidly with the start of the data transmis-
sion, and then decreases slightly after reaching the peak
value, gradually becoming but continuing to fluctuate within
a certain range. Minimizing communication delay is the
goal of the proposed method. According to the proposed
method, the optimal numbers of CHs are no = 31, 24, and
14 in the cases of N = 500, 300, and 100, respectively.
In Fig.7 (a), (b) and (c), it is evident that the optimal number
of CHs achieves the lowest communication delay after the
curves are stable. At the same time, the closer the number of
optimal CHs is, the lower the corresponding communication
delay, which suggests that the clustering model is a concave
function at the optimal number of CHs; that is, the clustering
method implements low latency communication. It is well
known that the more the number of drones, the longer the
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FIGURE 7. Delay comparison with different number of CHs. The curve for each color represents the communication delay that a different
number of CHs brings during the simulation.

FIGURE 8. Packet loss rate comparison with different number of CHs. The curve for each color represents the packet loss rate that a
different number of CHs brings during the simulation.

communication delay will be. Fig.7 (a), (b) and (c) also
demonstrate this phenomenon.

2)Packet loss rate. It refers to the ratio of the number of
data packet lost in the communication process to the num-
ber of data groups sent, which represents the integrity of
data from sending to receiving. The simulation results show
that the packet loss rate maintains the similar trend as the
communication delay. The packet loss rate increases rapidly
with the start of the data transmission, and then decreases
slightly after reaching the peak value, gradually becoming but
continuing to fluctuate within a certain range. According to
the method, the optimal numbers of CHs are no = 31, 24, and
14 in the cases of N = 500, 300, and 100, respectively. The
optimal number of CHs has the lowest packet loss rate after
the curves are stable. It can be concluded that the clustering
method guarantees low latency while also having a minimum
packet loss rate. Meanwhile, Fig.8 (a), (b) and (c) illustrate
that the packet loss rate becomes higher as the number of
UAVs increases.

V. CONCLUSION
This paper presents a low latency method based on uni-
form clustering for large-scale drone swarm. CHs play
an important role in managing intercluster and intraclus-
ter communication. In the proposed scheme, the relation-
ship between the number of CHs and communication delay
is derived by mathematical to determine the optimal clus-
tering model. By optimizing total number of CHs in the

network, the communication delay is minimized. Besides,
the novel method makes it compatible with any existing
clustering algorithm, and reduces the wireless communi-
cation delay by deriving an optimal number of CHs. The
effectiveness of the approach are exhibited with the help of
simulation results. Simulation results show that the method
can guarantee a low communication delay and low packet
loss rate, ensuring low latency communication as well as
a low packet loss rate during transmission. Moreover, this
method can dynamically guide drone swarms to perform
rapid clustering in real time. If some UAVs are destroyed
or temporarily added, causing changes in the number of
drone swarms, the model can still quickly calculate the
optimal number of CHs, thereby dividing and adjusting
the drone cluster to ensure real-time dynamic information
transmission. Overall, this method can ensure reliable and
low latency network communication and realize network
optimization management.
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