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ABSTRACT Autonomous underwater vehicles (AUVs) are robots that require path planning to complete
missions in different kinds of underwater environments. The goal of path planning is to find a feasible path
from the start-point to the target-point in a given environment. In most practical applications, environments
have dynamic factors, such as ocean flows and moving obstacles, which make the AUV path planning more
challenging. This paper proposes an estimation of distribution algorithm (EDA) based approach, termed as
learning fixed-height histogram (LFHH) to solve path planning problems for AUVs in dynamic environment.
The LFHH uses a learning transformation strategy (LTS) to improve its accuracy and convergence speed.
Besides, a smooth method is employed to accelerate the speed of finding feasible paths. Moreover,
a planning window is adopted to help handle dynamic factors. LFHH is tested in both complex 2-D and
3-D environments with time-variant dynamic factors, and experimental results validate the effectiveness of
LFHH.

INDEX TERMS Autonomous underwater vehicles (AUVs), learning fixed height histogram (LFHH),
estimation of distribution algorithm (EDA), dynamic environments, path planning.

I. INTRODUCTION
Autonomous underwater vehicles (AUVs) are robots with
autonomous ability to work under the water [1]. Due to
their autonomous ability, AUVs have been widely adopted
to complete missions as a substitute for humans in many
extreme environments, such as submarine cable routing [2],
tracking a targeted isothermal layer [3], tracing chemical
flume [4], collecting data [5], monitoring missions [6], fol-
lowing mobile marine organisms [7], and inspecting subsea
cables [8]. Usually, AUVs should follow the path planned in
advance to preferably complete different kinds of missions.
However, the path may be changed in some complex envi-
ronments with dynamic factors. Therefore, to stably adapt
to different kinds of underwater environments, AUVs should
possess the ability of path planning, i.e., finding a feasible
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and suitable path in a given environment with the start-point
and target-point. In fact, when planning a path for AUV, there
are many constraints, such as safety, energy consumption,
traveling time, and dynamic factors in the environment [9].
These constraints make path planning more difficult.

In order to deal with the path planning problem for
AUV, many path planning approaches have been pro-
posed in recent years, which can be categorized into
graph search-based approaches [10]–[14], tree search-based
approaches [16], [17], artificial potential field (APF)-based
approaches [18]–[23], and evolutionary algorithms (EAs)-
based approaches [24]–[28]. In the graph search-based
approaches, Wang et al. [10] propose a hybrid A∗ algorithm
based path planner to handle path planning problems for
AUV in static 2-D environment. Kularatne et al. [11] apply
a graph search-based path planning algorithm in both static
and time-variant flow fields. Soulignac [12] proposes a
Dijkstra-like algorithm to address the path planning problem
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in the 2-D environment with ocean flows. The probabilis-
tic road map (PRM) proposed by Kavraki et al. [13] can
also be regarded as graph-search based algorithm. Later,
Saoud et al. [14] combine the PRM algorithm and Dijkstra
algorithm to plan path for sailboat. Based on exist works,
Karaman and Frazzoli [15] develop an improved PRM named
PRM∗ and obtain more promising performance. Besides the
graph search-based approaches, tree search-based approaches
have also been employed to handle path planning problems
for AUV. Karaman and Frazzoli [15] not only develop the
PRM∗ algorithm in their work, but also develop an improved
rapidly exploring random trees star (RRT∗) algorithm, which
can also be regarded as tree search-based algorithm. Later,
Cui et al. [16] adopt a multidimensional RRT∗ algorithm
to plan paths for multiple AUVs in the 3-D environment.
However, the ocean flows and obstacles are not considered.
Petres et al. [17] present a fast marching based approach to
plan paths for AUV, which also consider the ocean flows.
In the APF-based approaches, the original APF algorithm is
proposed by Khatib [18], and its variants have been widely
used to plan path for AUV [19]–[23]. Cheng et al. [19] use
the APF method to effectively avoid obstacles for AUV in the
2-D environment. Saravanakumar and Asokan [20] propose
a multipoint potential filed method to plan path for AUV in
the 3-D environment, and it is applicable for real-time imple-
mentation. Kelasidi et al. [21] propose a two-stage strategy
based on APF to plan path for underwater snake robots in
the 2-D environment. Saoud et al. [22] use the APF method
to plan path for autonomous ailing boats in the 2-D envi-
ronment. Besides, they have considered the ocean flows.
Chen et al. [23] propose an improved APF method to help
construct the intelligent mobile system for unmanned ships
in the 2-D environment.

In recent years, EAs-based approaches are widely used
to handle path planning problems for AUV in both 2-D
and 3-D environments. In [24], an improved particle swarm
optimization (PSO) based path planner is proposed for multi-
AUV cooperative problem in 2-D environment with ocean
flows. Cheng et al. [25] combine genetic algorithm (GA)
and dynamic programming to plan paths for AUV in static
3-D environment, which can satisfy navigation require-
ment. Zhang et al. [26] propose an adaptive differential evo-
lution (DE) algorithm to plan paths for AUV in static
3-D environment, and the obstacles are taken into account.
Mahmoudzadeh et al. [27] also adopt DE algorithm to plan
paths for AUV in dynamic 3-D environment. For the dynamic
factors, they take ocean flows and moving obstacles into
account. Zhou et al. [28] propose a hybrid PSO algorithm
to handle path planning problems for AUV in dynamic
3-D environment. Also, they have taken ocean flows into
consideration.

The above researches focus on only one kind of environ-
ment (i.e., either the 2-D environment or 3-D environment).
However, the 2-D environment (i.e., path planning on the sur-
face of the sea) and the 3-D environment (i.e., path planning

in the deep sea) are both necessary for practical application.
Therefore, different from existing works that only study
in 2-D or 3-D environment, this paper solves the path plan-
ning problem for AUV in both 2-D and 3-D environments.
More significantly, this paper takes the dynamic factors into
considerations in both 2-D and 3-D environments to make the
problemmodels closer to practical application. These consid-
erations make the path planning problem more complex and
more difficult. Therefore, an efficient path planning approach
that has a good ability for global search and dealing with
dynamic factors is in great need.

Being a kind of EAs, the estimation of distribution algo-
rithm (EDA) [29], [30] has been extensively studied in var-
ious optimization problems in real-world applications, such
as insurance investment planning [31], processing uncertain
capacitated arc routing problems [32], processing the uncer-
tain scheduling problem in the steelmaking industry [33], and
planning paths in driving system [34]. Planning paths for
AUV is also a kind of optimization problems and EDA may
be a promising solver. Different from GA or DE that uses
pairs of individuals to generate offspring via crossover, and
also different from PSO that individual updates by learning
from only itself and another individual, EDA uses a set of
promising individuals to construct a probabilistic model and
generates new individuals according to the model. Therefore,
EDA has a good diversity. Meanwhile, EDA can utilize more
global information frommore different promising individuals
of the whole population so that it has a good convergence
speed. For the optimization problem in dynamic environment,
it is important to find optimal solution fast and keep the
diversity while the environment changes. This way, EDA
may be more effective and promising for dealing with the
dynamic environments in the AUVpath planning because dif-
ferent individuals may compensate for each other to eliminate
the dynamic noise. Therefore, we consider the EDA-based
approach in this paper. Among the EDA family, a variant
named fixed-height histogram (FHH) algorithm has shown
good global search ability [41], being helpful to handle path
planning problems for AUVs. Therefore, this paper proposes
an improved FHH variant, termed as learning FHH (LFHH)
algorithm for AUV path planning in dynamic environments.
Different from FHH algorithm, the LFHH algorithm uses the
learning transformation strategy (LTS) to make individuals
learn from the best individual in the current population to
improve the accuracy of solutions and convergence speed.
Besides, a smooth method is employed into LFHH to find
feasible paths fast. During the evolutionary process, if a path
swerves sharply, that means the path is not feasible. The
smooth method can correct the path and this step can acceler-
ate the speed of finding feasible paths. In order to handle the
dynamic factors, a planning window is also employed into
LFHH. Specially, when the environment change occurs, only
paths inside the planning window are re-planned. Besides,
the planning window size can be dynamically changed if the
algorithm cannot find a feasible path with current planning

185434 VOLUME 7, 2019



R.-D. Liu et al.: Intelligent Path Planning for AUVs in Dynamic Environments: EDA-Based LFHH Approach

window size. The LFHH algorithm is tested in both 2-D and
3-D environments with time-variant dynamic factors, i.e., the
moving obstacles and the ocean flows. The experimental
results show that the proposed LFHH has an effective per-
formance while handling path planning for AUV in dynamic
environment. The contributions of this paper are shown as
follows.

1) We propose the LTS to make individuals learn from the
best individual in the current population. The LTS can
improve the accuracy of solutions and accelerate the
convergence speed.

2) A smooth method is employed into LFHH. Specifi-
cally, during the evolutionary process, if a path swerves
sharply, which means the path is not feasible. The
smooth method can correct the path and this step can
accelerate the speed of finding feasible paths.

3) A planning window with dynamic window size is
employed into LFHH to deal with the dynamic envi-
ronments. When the environment change occurs, only
paths inside the planning window are re-planned.
Besides, the planning window size can be dynamically
changed if the algorithm cannot find a feasible path
with current planning window size. This procedure can
cut down the time consumption while planning paths in
dynamic environment.

The rest of this paper is organized as follows. In Section II,
EDAs and its variants will be introduced. In Section III, the
problem formulation in both 2-D and 3-D environments will
be presented. In Section IV, the LFHH algorithm plans path
for AUV in dynamic environments will be presented in detail.
In Section V, a series of experiments will be implemented to
measure LFHH’s performance in both 2-D and 3-D environ-
ments. Conclusions will be given in Section VI.

II. EDA AND ITS VARIANTS
A. FRAMEWORK OF EDA
EDA is a member of EAs. Compared with other EAs
(e.g., GA [36] and DE [37], [38]), EDA does not have
crossover and mutation operations. Instead, EDA uses a set
of promising individuals to build a probabilistic model and
samples new individuals according to the model. The proce-
dures of EDA are as follows. First, randomly generate NP
individuals within the search space to form the population,
where NP is the population size. Then sort the individuals in
the population from good to poor (i.e., in an ascending order
for the minimum problem) according to their fitness values.
After that, EDA uses a set of promising individuals to build
a probabilistic model and samples new individuals according
to the model. Then fitness values of the new individuals are
calculated. After that, combine the new individuals and old
individuals to select top NP individuals with smaller fitness
values (i.e., for minimum problem) to form a new population.
Because of its evolutionary mechanism, EDA can make good
use of global information from various individuals (i.e., a set
of promising individuals) of the current population. The pro-
cedure of basic EDA is shown in Algorithm 1.

Algorithm 1 Procedure of Basic EDA
1: Begin
2: Initialize the population with size NP;
3: While (Terminate criteria is not satisfied)
4: /∗ Model building phase ∗/
5: Select S good individuals to build probabilistic

model;
6: /∗ Sampling phase ∗/
7: Use the probabilistic model to sample NP individ-

uals and calculate their fitness values;
8: /∗ Forming a new population ∗/
9: Form a new population by selecting top NP indi-

viduals from the combination set of NP new individuals
and NP old individuals;

10: End ofWhile
11: End

B. FHH
Tsutsui et al. [40] develop two kinds of histogram-based
EDAs. One is the FHH, whose histogram has the same height
and varies in width. The other one is fixed-width histogram
EDA, whose histogram has the same width and varies in
height. The two kinds of EDA variants are shown in Fig. 1.

FIGURE 1. Two kinds of EDA variants.

As this paper develops an improved FHH for the path
planning in AUV, we briefly describe the FHH algorithm
herein. First, FHH randomly generatesNP individuals to form
the initial population. Then the main steps of FHH during the
evolutionary process are described as follows:
Step 1)Model building phase. First, select top S individuals

from the population according to their fitness values. Then
construct histograms for each dimension according to these S
individuals. Without loss of generality, we take the jth dimen-
sion as an example. In order to construct the histogram, the jth

dimension values of the top S individuals will be copied into
an array arrayX. After that, these S values are sorted in an
ascending order, so that arrayX =[item1, item2, . . . , itemS ]
with item1 ≤ item2 ≤ . . . ≤ itemS . Then the histogram for
the jth dimension is constructed by using the information in
arrayX according to Eqs. (1)-(2) [41]. As shown in Fig. 1(a),
the histogram is formed by binNum bins. The problem is how
to determine the lower bound and upper bound of each bin.
The basic idea of FHH is that each bin contains almost the
same number of individuals. In order to implement this idea,
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the sorted arrayX can help to divide the S individuals into
binNum sets. Therefore, the lower bound lbound jk and upper
bound ubound jk of the k th bin are calculated as Eqs. (1)-(2),
respectively. Lower bound of the first bin and upper bound of
the last bin are set as the boundary xminj and xmaxj of the jth

dimension, respectively.

lbound jk =


xminj, if k = 1
(arrayXb(k−1)·S/binNumc−1
+arrayXb(k−1)·S/binNumc)/2, otherwise

(1)

ubound jk =

{
xmax j, if k = binNum

lbound jk+1, otherwise
(2)

Step 2) Sampling phase. In order to generate a new indi-
vidual, all its dimensions have to be sampled according to
their corresponding histograms. Take the jth dimension as an
example, a bin will be randomly selected from its histogram,
and a random number obeys the uniform distribution within
the lower bound and upper bound of this bin is generated as
the new dimension’s value. When all dimensions’ values are
generated, the individual is formed. NP new individuals will
be sampled according to the histogram model in this way.
After new individuals are sampled, their fitness values will
be calculated.
Step 3) Forming a new population. NP new individuals will

be merged with those NP individuals in the old population.
According to their fitness values, only top NP individuals are
selected from these combined 2 NP individuals to be the final
NP new individuals to form the new population.

III. PROBLEM FORMULATION
In some situations, AUV may work on the surface of the
sea. In other situations, it may also work in the deep sea.
We consider the path planning problem of AUV in both of
the above two kinds of environments in this paper. For these
two kinds of environments, the one on the surface of the
sea can be regarded as a 2-D environment, while the other
one in the deep sea can be regarded as a 3-D environment.
Moreover, dynamic factors are considered in both the two
kinds of environments to make our model more practical.
In each environment, a cost function is designed to evaluate
the quality of the path. The cost function is constructed
by considering the path’s length, safety, curvature, and the
degree of coping with ocean flows.

A. PROBLEM FORMULATION FOR 2-D ENVIRONMENT
In the 2-D environment, AUV works on the surface of the
sea. The environment on the surface of the sea is simpler
than that in the deep sea. In order to facilitate the description
for problem formulation, we name the horizontal axis and
vertical axis with label Y and label X , respectively, as shown
in Fig. 2. In the figure, the vortices represent ocean flows
and the circled areas represent obstacles. The AUV should
avoid colliding with obstacles. The positions of obstacles and
the center of vortices will change as time goes by. When the

FIGURE 2. The 2-D environment with ocean flows and obstacles.

change occurs, obstacles’ positions can be detected by AUV’s
sensors. Ocean flows are simulated by Eqs. (3)-(5), similar
to [39], as:

u (R) = −η
y− y0

2π (R− R0)2

1− e−
(
(R−R0)

2

ζ2

) (3)

v (R) = η
x − x0

2π (R− R0)2

1− e−
(
(R−R0)

2

ζ2

) (4)

Vc = (u, v) (5)

where Vc represents the velocity of current field, R = (x, y)
represents the 2-D spatial domain, R0 = (x0, y0) represents
the center of current vertex, η and ζ are fixed parameters
which are used to control the strength and radius of the
current vertex. In this paper, η and ζ are set as 2.0 and 1.2,
respectively.

In order to find a feasible path, a set of waypoints have to be
determined. Each waypoint is formed by X and Y positions.
In our problem formulation, the 2-D environment is split into
a number of bins by lines along the Y -axis (i.e., the horizontal
direction), and therefore only the X values in different Y
lines are needed to be optimized. As shown in Fig. 3, the
environment is split into 40 sections by 40 lines, each line’s
length is the same as the maximal value of the X -axis, and
it is also the same as the width of the 2-D environment. The
overlaps between obstacles and lines are unsafe areas. Every
waypoint is located on a safe position of one and only one
line. When all waypoints are found (i.e., the solid red circles
in all the lines), then a path is formed.

FIGURE 3. Split the 2-D spatial domain.

185436 VOLUME 7, 2019



R.-D. Liu et al.: Intelligent Path Planning for AUVs in Dynamic Environments: EDA-Based LFHH Approach

The fitness function of a path is defined as

Fcost = Clength + Ccurvature + Cblock + Ccurrent (6)

where Clength penalizes the path which is too long, Ccurvature
penalizes the path which swerves (i.e., change the moving
direction) sharply, Cblock penalizes the path which collides
with obstacles, and Ccurrent penalizes the path which cannot
adapt with ocean flows well. The optimization objective is
to minimize the fitness of the path as small as possible. The
items of this fitness function are illustrated by Eqs. (7)-(10)
and are described as follows.
Clength is defined as:

Clength = 1−
Lstart_target
Lpath

(7)

where Lstart_target represents the Euclidean distance between
start-point and target-point, and Lpath represents the length
of path which is found by path planning algorithm. Clength
ranges in [0, 1).
Ccurvature is defined as:

Ccurvature =


Nunable
Nall

+ 2, if Nunable > 0

0, otherwise
(8)

where Nunable is the number of path segments which beyond
AUV’s motion ability, and Nall represents the number of
path segments in one path. As shown in Fig. 4, if the angle
θ between two neighboring path segments is smaller than
T_theta, it is difficult for AUV to change the direction
smoothly. In this case, the path will be regarded as unsmooth,
and the number of Nunable will increases 1. T_theta is set as
π /6 in this paper, and its value may be different according to
different AUVs. Ccurvature ranges in 0∪(2, 3).

FIGURE 4. Angle between path segments.

Cblock is defined as:

Cblock =


Nblock
Nall

+ 2, if Nblock > 0

0, otherwise
(9)

where Nblock represents the number of path segments which
collide with obstacles. Cblock ranges in 0∪(2, 3).
Ccurrent is defined as:

Ccurrent =
1
Nall

Nall∑
n=1

αn − αmin

αmax − αmin
(10)

where αn is the angle between nth path segment and ocean
flows as illustrated in Fig. 5. The αmin and αmax represent the

FIGURE 5. The angles between path segments and ocean flows.

minimum and maximum angles, respectively. Ccurrent ranges
in (0, 1).

In the fitness function, Ccurvature and Cblock are critical
penal items. When Ccurvature and Cblock are equal to 0, that
means the path is feasible. Clength and Ccurrent are used to
improve the quality of paths for path planning algorithms.
The smaller they are, the better path is. Herein, if Fcost is less
than 2.0, that means the path is feasible.

B. PROBLEM FORMULATION FOR 3-D ENVIRONMENT
When dealing with the 3D environment, we only handle
ocean flows in the horizontal plane. Because of the motion of
earth, ocean flows are almost bi-dimensional [35]. As shown
in Fig. 6, spheres represent obstacles, and the curved surfaces
represent seabed. Ocean flows are similar to that in the 2-D
environment. The seabed of the 3-D environment is simulated
by a mathematical function as

Z = h · exp

(
−
(Y − y0)2 · a2 + (X − x0)2 · b2

2σ 2

)
(11)

where X ,Y ,Z represent the 3-D spatial domain. Parameters
x0 and y0 represent peaks’ positions in the seabed. Parameters
σ , a, and b control peaks’ shapes in the seabed. h represents
the height of peaks in the seabed.

FIGURE 6. The 3-D environments with obstacles and ocean flows.

In order to extract information from the 3-D environment,
the X -Y -Z cube is split into a number of sections along the
Y -axis. As shown in Fig. 7(a), the 3-D environment of Fig. 6 is
split into 40 sections, then a path in the 3-D environment
consists of a set of successive waypoints in all sections along
the Y -axis. In order to clearly present this procedure, only
three sections are shown in Fig. 7(a). The shape of the section

VOLUME 7, 2019 185437



R.-D. Liu et al.: Intelligent Path Planning for AUVs in Dynamic Environments: EDA-Based LFHH Approach

FIGURE 7. The profile section of the 3-D environment.

is formed by grids in X-axis and Z-axis, as shown in Fig. 7(b).
For each waypoint, the value of Y-axis is the index of the
section, while the values of X -axis and Z -axis are needed
to be optimized. The blue grids represent obstacles, and
the others represent safe areas. Besides, the obstacle areas
corresponding grids will be filled with 1, and the others will
be filled with 0. In each section, a waypoint will be found in
the safe areas, as the solid red circle shown in Fig. 7(b). When
all waypoints are found, a path is formed.

In this 3-D environment, we also use Eq. (6) as the fitness
function to evaluate the quality of a path the same as that in
the 2-D environment.

IV. LFHH FOR AUVs PATH PLANNING
A. SOLUTION ENCODING
A feasible path is made up by a set of waypoints with each
waypoint representing the positions of AUV along with the
path. For the LFHH algorithm, each individual represents
a solution (i.e., a path). Therefore, each dimension of the
solution represents a waypoint of the path (i.e., the X value
in the 2-D environment, or the X and Z values in the 3-D
environment).

The solution expressions in the 2-D environment and 3-D
environment are shown as Eq. (12) and Eq. (13), respectively,
where Dim represents the number of waypoints. No matter
in 2-D spatial domain or 3-D spatial domain, all solutions’
Y -axis values are initialized as {1, 2, . . . ,Dim}. The other
axis values (i.e., the X value in the 2-D environment, or the X
and Z values in the 3-D environment) are to be optimized by
the LFHH algorithm.

solution2D =
[
x1, x2, xDim

y1, y2, yDim

]
=

[
x1, x2, xDim

1, 2, Dim

]
(12)

solution3D =

 x1, x2, xDimy1, y2, yDim

z1, z2, zDim

 =
 x1, x2, xDim1, 2, Dim
z1, z2, zDim

 (13)

In the initialization, values of each dimension of a solu-
tion will be generated with the uniform distribution in their
corresponding spatial domains, except for the first and last
dimensions. The first and last dimensions of all solutions
are set as the start-point and target-point, respectively. Then

FIGURE 8. Perform LTS in the histogram.

all solutions’ fitness function values are calculated by using
Eq. (6). After that, solutions will be sorted from small to large
(i.e., from best to worst) according to their fitness function
values.

B. MODEL BUILDING OF LFHH
In the 2-D environment, histogram will be constructed for
each dimension in X -axis values. The model building phase
of LFHH algorithm is similar to FHH. The difference is
that we adopt the LTS to improve the solution accuracy and
convergence speed in LFHH algorithm. As aforementioned,
top S solutions will be selected from the current population
according to their fitness function values. Take the jth dimen-
sion as an example, values in jth dimension of these S good
solutions (i.e., X -axis values in individuals) will be copied
into arrayX.

Before constructing the histogram, the LTS is applied to
make the selected values close to the best solution’s jth dimen-
sion value. That means other solutions learn from the best
solution. The LTS is performed as

arrayX = itemi + λ ·
(
xbestj − itemi

)
(14)

where 1≤ i ≤ S, λ is a learning factor, xbestj represents the
best solution’s jth dimension value, itemi represents the ith

value in arrayX, and the size of arrayX is S.After completing
this learning transformation step, the array arrayX will be
sorted in an ascending order (i.e., from small to large). Then
the histogram of the jth dimension will be constructed by
using Eqs. (1)-(2), which is the same as FHH. As shown
in Fig. 8, the left histogram is the original one, the right
histogram is the one that employs LTS, and the gray bin
is related to xbest . After performing LTS, we can see that
the individuals will converge to the best individual to some
degree from Fig. 8.

In the 3-D environment, histograms in X -axis and Z -axis
of each dimension are constructed by following the same
procedure in the 2-D environment. Take one dimension as an
example, as shown in Fig. 9, the histogram in red color corre-
sponds to X -axis, and histogram in blue color corresponds to
Z -axis. The histogram in the 3-D environment is formed by
these two histograms.
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FIGURE 9. Histogram of one dimension in the 3-D environment.

C. SAMPLING NEW SOLUTIONS
In the 2-D environment, each dimension of a solution ran-
domly selects a bin from its histogram distribution con-
structed in the model building phase. Then LFHH uses the
uniform distribution to generate new values of this dimension
with the limitation of bin’s boundaries. When all dimensions
are generated, the new solution is formed. Then use Eq. (6)
to calculate its fitness value. These steps are the same as that
in FHH.

It should be noted that, in the every T th generation, LFHH
does not use the probabilistic model to sample new solutions
but uses a smooth method to generate new solutions. The
smooth method is performed on each old solution to try to
smooth the path. As illustrated in the left of Fig. 10, for the
waypoint pj, if its left path segment and right path segment
have significantly different lengths, the curvature of the two
path segments may be poor. In this case, if we can modify
the position of waypoint pj, the length difference of the two
path segments may be reduced, which is benefit for finding a
feasible and good path fast.

FIGURE 10. Procedure of smooth method.

Therefore, in the smooth method, for the jth waypoints of
the old solution (pj), if its left path segment is longer than
its right path segment, then pj will be set as the average
of pj−1 and pj. Otherwise, the pj will be set as the average
of pj and pj+1. The smooth process is shown as{

pj =
(
pj−1 + pj

)
/2, if lj1 > lj

pj =
(
pj + pj+1

)
/2, otherwise

(15)

where lj−1 and lj are the lengths of two left and right path
segments of pj, respectively.
In the 3-D environment, first, a grid is randomly selected

from the histogram as shown in Fig. 11(a). Then we judge
whether the grid is safe with the map information. As shown
in Fig. 11(b), if the grid is intersect with safe area, then it
will be regarded as a safe grid. Otherwise, a new grid will
be randomly selected until found the safe one. After that,
we use the boundary in X -axis and Z-axis of the select grid
to generate new values in X-axis and Z -axis, respectively.
When all the new dimensions are sampled, a new solution
is formed. Similar to that in the 2-D environment, every T th

generation, LFHH uses the smooth method to generate new
solutions. Then use Eq. (6) to calculate their fitness values.
This sampling method can make a good use of map informa-
tion and is helpful for finding safe waypoint in complex 3-D
environment.

FIGURE 11. Sampling from histogram in 3-D environment.

D. GENERATION OF NEW POPULATION
After the generation of the new solutions, we firstly combine
new solutions with old solutions. Then sort them from best
to worst based on fitness values. After that, we select the top
NP good solutions to form a new population. The procedure
of LFHH is shown in Algorithm 2.
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Algorithm 2 Procedure of LFHH
1: Begin
2: Initialize the population, and set up the start-point and

target-point; gen=1;
3: While (Termination criteria is not satisfied)
4: /∗ Sampling phase by smooth method ∗/
5: If gen%T == 0
6: Use smooth method to generate NP new solutions;
7: Go to Step 22;
8: End of If
9: /∗ Model building ∗/

10: Select top S good solutions based on fitness values;
11: For each dimension, use Eq. (14) to construct

arrayX;
12: Sort the arrayX from small to large;
13: Use Eq. (1) and Eq. (2) to construct histograms;
14: /∗ Sampling phase by probabilistic model ∗/
15: If environment is 2D spatial domain
16: Randomly select bins from histograms;
17: Sample new values to form new solutions;
18: Else
19: From the histogram grids select safe grids;
20: Sample new values from bins corresponding to safe

histogram grids to form new solutions;
21: End of If
22: Use Eq. (6) to calculate fitness value of solutions;
23: /∗ Generating new population ∗/
24: Combine the old and new solutions to select top NP

solutions as new population;
25: gen=gen+1;
26: End of While
27: End

E. HANDLING METHOD FOR ENVIRONMENT CHANGES
When the environment change occurs, AUV can use its sen-
sors to detect the positions of obstacles. Besides, the ocean
flows can be inferred with the help of onboard horizontal
acoustic Doppler current profiler. Then the environment map
can be updated according to the information acquired by sen-
sors. Besides, the current position of AUV is recorded as the
new start-point. The new target-point is set according to the
planning window size, as shown in Fig. 12. The region with
red boundary represents the planning window. That is, only
the paths in planning window are re-planned. The waypoint
of the global path which drops on the right boundary of the
planning window is recorded as the new target-point.

Based on the updated environment map, a new path is
planned by LFHH for AUV with the given planning window
size. First, a new population is randomly initialized with the
limitation of the planning window. Then LFHH performs its
evolutionary procedures to find a feasible path. If LFHH does
not find a feasible path in finite generations, then increase
the planning window size by one and use LFHH to re-plan
the path until finding a feasible path or the size of planning

FIGURE 12. Planning window in different spatial domains.

window cannot be increased. It should be pointed that the
right boundary of the planning window should be less than
or equal to the maximum size of environments. After LFHH
completes path re-planning, the global path is updated by
using the re-planned path in the planning window. Changing
the planning window size can make the path planner more
flexible and stable. It is helpful for providing more safe areas
for LFHH to find feasible paths.

F. PROCEDURES OF PATH PLANNING BY LFHH
Combining with the components mentioned above, the whole
procedures of path planning by LFHH are shown as follows.
First, use LFHH to plan a global path in the current environ-
ment. AUV will navigate along with the global path. When
AUV detects the change of environment, LFHH will be used
to plan a new path with the limitation of the planning window
in the current environment. After that, the global path will
be updated. Then AUV continues to navigate along with the
global path. These steps will be looped until AUV arrives at
the target-point. These procedures are shown as follows.
Step (1) Load the environment map.
Step (2) Use LFHH in Algorithm 2 to plan a global path.
Step (3) If there are no changes occur in the environment,

AUV will still navigate along the global path. Otherwise,
go to Step (4).
Step (4) If the environment changes, Use LFHH to re-plan

the path in the planning window. After that, use the new path
to update the global path.
Step (5) If AUV arrives at the target-point, then the algo-

rithm will stop. Otherwise, go to Step(3).

V. EXPERIMENTS AND COMPARISONS
In this paper, both 2-D and 3-D environments are simu-
lated in MATLAB. The 2-D environment is with the size
of 20 km × 40 km, and the 3-D environment is with the size
of 20 km × 40 km × 20 km. The 3-D environment has three
scenarios with different shapes of seabed. Ocean flows are
also taken into consideration in both 2-D and 3-D environ-
ments. All algorithms are implemented in C and executed
in the computers of the same configurations, i.e., Intel(R)
Core(TM) i7-7700 CPU 3.6GHz, 8GB RAM.

Dimensions of the two environments are respectively set
as 40 corresponding to 40 waypoints of a path (as shown
in Fig. 3 and Fig. 7(a)). The planning window size is
initialized as 20.We assume that the environment will change
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when AUV navigates for per 6 km. In our experiment,
the environment changes five times, resulting in six phases.
In each phase, the maximum generation is set as 100 and
300 for all algorithms in the 2-D environment and 3-D envi-
ronment, respectively. The average of cost function values
corresponding to 5 changes are calculated as the final results.
Besides, the values of each item in the fitness function and the
time consumption are also recorded. Positions of obstacles
follow the Gaussian distribution in 2-D environment, and
in 3-D environment follow the uniform distribution. Vortices’
center positions of ocean flows follow Gaussian distribution
in both two spatial domains.

The proposed LFHH algorithm compared with six algo-
rithms, i.e., FHH [40], FHH with LTS, EDA with Gaussian
distribution termed as EDA-G [42], an adaptive DE algo-
rithm [26], RRT∗ [15], and PRM∗ [15]. All evolutionary
algorithms use the same population size NP = 200. For the
LFHH algorithm, the learning factor λ and parameter T are
set as 0.08 and 5, respectively. The good solutions used to
construct histograms are selected with quantity S = 100.
Bins’ quantity binNum is set as 100. For the EDA-G, top S
good solutions are selected to construct the Gaussian distri-
bution model, where S = 100. Parameters α, β, and F0 of
the adaptive DE algorithm based path planner are set as 0,
0.4, and 0.6, respectively. For the details, please refer to [26].
For the RRT∗, the maximum iteration is set as 300, and the
radius centered in one tree node is set as 15. For the PRM∗,
the number of nodes Nodes_Num used to construct load map
is set as 300, and the rPRM is set as 15, which is used to
control the connection radius of PRM∗. Besides, PRM∗ uses
Dijkstra algorithm to find feasible path in the query phase in
this paper. Parameters of these seven algorithms are shown
in Table 1.

TABLE 1. Parameter settings of the seven algorithms.

All the algorithms independently run 30 times, and the
mean results are compared. The results in the bracket rep-
resent the standard variance, and the best results are marked
in boldface. Besides, we also make the Wilcoxon’s rank sum
tests [43] with a significant level α = 0.05. The symbols of
‘+’, ‘≈’, and ‘−’ means the LFHH performs significantly
better than, similar to, and significantly worse than other
algorithms.

A. EXPERIMENTAL RESULTS IN 2-D ENVIRONMENT
As shown in Table 2, LFHH algorithm can get feasible paths
(as Fcost is less than 2.0) in all tests. Besides, it has lower
time consumption in most tests with different start-points and

target-points. FHH, FHHwith LTS, EDA-G, adaptive DE and
RRT∗ cannot find feasible paths in most tests. The PRM∗ can
also find feasible paths in all scenarios. However, LFHH has
a lower time consumption compared with PRM∗. Besides,
LFHH performs better than PRM∗. Lower time consumption
is important for path planner when planning paths in dynamic
environments. From the results of FHH and FHH with LTS,
we can see that the LTS can make FHH get smaller Fcost .
The LTS can make individuals learn from the best individual
during the evolutionary process. Therefore, FHH with LTS
has a better performance compared with FHH. Besides, FHH
with LTS has a lower time consumption compared with FHH,
which indicates LTS can accelerate the convergence speed of
FHH. From the results of LFHH and FHH with LTS, we can
see that LFHH has a better accuracy and lower time con-
sumption. That is because a smooth method is employed into
LFHH to periodically correct paths which swerve sharply.
This method can accelerate the speed of finding feasible
paths. Therefore, LFHH can find a feasible path within the
finite generations, and there is no need to change the planning
window size frequently. If the size of planning window is
changed frequently, the time consumption will be too large
to be practical.

We select a group of results which is found by LFHH and
plot the path in a 2-D environment. As shown in Fig. 13, Path
in phase 1 is the global path. Paths in other phases with green
color are the re-planned paths, and paths with blue color are
the global paths.When the environment changes, the path can
adaptively change as the changing of environment. Besides,
only a part of old path is re-planned because of the planning
window. If we re-plan the whole old path, LFHH will need
more time to get new feasible path.

B. EXPERIMENTAL RESULTS IN 3-D ENVIRONMENT
For the 3-D environment, three different scenarios with dif-
ferent seabed shapes and obstacle positions are simulated.
In each scenario, two groups of tests are implemented with
different start-points and target-points. As shown in Table 3,
LFHH can find feasible paths in all scenarios. FHH, FHH
with LTS, EDA-G, adaptive DE, RRT∗, and PRM∗ cannot
find feasible paths in all scenarios. PRM∗ can find feasible
paths in the 2-D environment. However, in the 3-D environ-
ment, its performance becomes worse compared that in the
2-D environment. LFHH has a better performance in both
2-D and 3-D environments. It is shown that the PRM∗ is
less flexible than LFHH. From the results of FHH and FHH
with LTS, we can see that the LTS makes FHH run faster.
Meanwhile, the accuracy of FHH is also improved by LTS.
This is because the LTS can make individuals in current
generation learn from the best individual. From the results
of LFHH and FHH with LTS, we can see that LFHH has a
lower time consumption and higher accuracy. That means the
smooth method employed by LFHH can accelerate the speed
of finding feasible paths. Meanwhile, the time consumption
is also cut down. As shown in Table 3, LFHH has the low-
est time consumption in most cases, since LFHH can find
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TABLE 2. Fitness function values of paths in the 2-d environment.

TABLE 3. Fitness function values of paths in the 3-D environments.

FIGURE 13. Path found by LFHH in the 2-D environment.

feasible paths within the finite iterations. Therefore, the size
of planning window is changed only few times and this is
helpful to cut down time consumption.

Similar to that in the 2-D environment, we also select a
path found by LFHH and plot it in the 3-D environment,
shown in Fig. 14. When the environment changes, the path
can adaptively change as the changing of environment, since
a part of path is re-planned due to the planning window.

C. EFFECTS OF DIFFERENT COMPONENTS IN LFHH
In LFHH, the LTS, smooth method, and planning window are
the main components to plan path for AUV in dynamic envi-
ronments. Herein, we make comparisons to test the influence
of each component on the performance of LFHH.

1) THE EFFECTS OF LTS
In the 2-D environment, as shown in Table 4, LFHH and
LFHH without LTS have the similar performance, however,

LFHH has the lower time consumption in most cases. The
LTS can make individuals learn from the best individual in
the current population. This strategy can improve the con-
vergence speed of algorithm. Therefore, the LFHH has a
lower time consumption. In the 3-D environment, as shown
in Table 5, the performance of LFHH without LTS becomes
worse, especially in scenario 1 and scenario 3. Besides,
LFHH has a lower time consumption compared with LFHH
without LTS. Therefore, LFHH can also effectively handle
path planning problem even the environment becomes more
complex.

2) THE EFFECTS OF SMOOTH METHOD
In the 2-D environment, from the results of LFHH and LFHH
without smooth method in Table 4, we can see that the LFHH
has a better performance and lower time consumption. During
the evolutionary process, the smooth method can periodically
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FIGURE 14. Path found by LFHH in the 3-D environment.

TABLE 4. Components comparisons of LFHH in the 2-D environments.

TABLE 5. Components comparisons of LFHH in the 3-D environments.

correct paths which swerve sharply. This procedure can accel-
erate the speed of finding feasible paths. In the 3-D environ-
ment, as shown in Table 5, LFHH has a better performance
and lower time consumption compared with LFHH without
smooth method. The smooth method can also correct paths in
the 3-D environment likewise. Therefore, the smooth method
can accelerate the speed of finding feasible paths in both 2-D
and 3-D environments. The LFHH without smooth method
has a larger time consumption compared with LFHH. That is
because without smooth method LFHH cannot find feasible
path in current planning window, therefore, LFHH will fre-
quently change the planning window in order to find feasible
paths. If the planning window is frequently changed, the time
consumption will become higher.

3) THE EFFECTS OF PLANNING WINDOW
From the results in Table 4 and Table 5, we can see that
LFHH and LFHH without planning window have similar

performances in both 2-D and 3-D environments. How-
ever, LFHH has a lower time consumption in both 2-D and
3-D environments. That is because when the environment
changes, LFHH without planning window will re-plan the
rest of global path. Conversely, LFHH just needs to re-plan
a part of global path which is in the planning window. There-
fore, LFHH needs less time to re-plan path and it has a lower
time consumption compared with LFHH without planning
window. Lower time consumption is important for planning
path for AUV in dynamic environment and can guarantee the
real-time ability in some degree.

D. PARAMETERS TEST OF LFHH
In LFHH, parameter λ is the learning rate of LTS. Smaller λ
means individuals have smaller steps of moving toward the
best individual, while larger λ means individuals have larger
steps of moving toward the best individual. Parameter T can
control the rate of performing the smooth method. In this
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FIGURE 15. Parameters test in 2-D spatial domain.

situation, we take an investigation to the parameters λ and T .
We implement this investigation in both 2-D and 3-D spatial
domains. Besides, we also investigate the effects of popula-
tion size. We set the parameter λ from 0 to 0.09 with a step
length of 0.01, and from 0.1 to 1 with a step length of 0.1. For
parameter T , we set it from 5 to 20 with a step length of 5.
For the population size, we set it from 100 to 1000 with a step
length of 100. For each pair of parameters, we independently
run the algorithm for 30 times to get the results.

1) PARAMETERS IN 2-D SPATIAL DOMAIN
As shown in Fig. 15(a), when λ increases from 0.1 to 0.9 and
T = 5, the curve has an upward tendency, measuring the
performance being worse When λ increases from 0.01 to
0.09 and T=5, the curve has a fluctuant tendency, measuring
the performance being fluctuant. When λ = 0.08, the LFHH
has the best performance. As shown in Fig. 15(b), when T
increases from 5 to 20 and λ = 0.08, the curve has an
upward tendency and the performance of LFHH becomes
worse. Therefore, when λ = 0.08 and T = 5 LFHH has
the best performance. As shown in Fig. 15(c), when the
population size is set as 200, 300, and 800, LFHH can get
a better performance. However, larger population size will
involve heavy time consumption. Therefore, the population
size is set as 200 in this paper.

2) PARAMETERS IN 3-D SPATIAL DOMAIN
As shown in Fig. 16(a), when λ increases from 0.1 to 0.9 and
T = 5, the curve has an upward tendency and the perfor-
mance of LFHH becomes worse. When λ drops in [0.0, 0.1],
LFHH has a relatively better performance. Besides, when λ
increases in [0.0, 0.1], the curve has a fluctuant tendency.
When λ = 0.08, the LFHH has the best performance.
As shown in Fig. 16(b), when T increases from 5 to 20 and
λ = 0.08, the curve has an upward tendency. The larger

FIGURE 16. Parameters test in 3-D spatial domain.

the T is, the worse the LFHH is. Therefore, T = 5 and
λ = 0.08 is the best parameter combination of the LFHH.
As shown in Fig. 16(c), when the population size becomes
larger, the performance of LFHH becomes better. However,
larger population size is not good for cutting down the time
consumption. In this paper, to make the LFHH more con-
venient to be adopted for both 2-D and 3-D environments,
the population size is set as 200.

VI. CONCLUSION
In this paper, we propose an improved histogram-based EDA
variant termed as LFHH to handle path planning problems
for AUV in 2-D and 3-D environments with dynamic factors.
With the help of learning transformation method, the accu-
racy and convergence speed of LFHH is highly improved.
Besides, the smooth method makes LFHH find feasible paths
fast. Moreover, we use a planning window to handle the
dynamic factors. We compare LFHHwith other algorithms in
both 2-D and 3-D environments, and make sure they can find
similar number of waypoints of a path. As the experimental
results shown, LFHH has a stable performance to complete
path planning for AUV in both 2-D and 3-D environments.
It is expected that LFHH can adopt distributed technology
or parallel technology to make further efforts to cut down
the time consumption, and applications of LFHH can be
implemented in other optimization problems. Besides, it is
also expected that adopting LFHH in a real AUV to test its
performance in real world environments. Firstly, we plan to
implement our algorithm on a smaller AUV and then test it
in a pool in laboratory. Moving obstacles will be set on the
floor of the pool. Ocean flows can be simulated by the wave
generator. Then we can observe the performance of the AUV
to check out the availability of our algorithm. At last, we plan
to implement our algorithm on a normal AUV then test it in
seas.
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