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ABSTRACT An ultra-low power always-on keyword spotting (KWS) accelerator is implemented in 22nm
CMOS technology, which is based on an optimized convolutional neural network (CNN). To reduce
the power consumption while maintaining the system recognition accuracy, we first perform a bit-width
quantization method on the proposed CNN to reduce the data/weight bit width required by the hardware
computing unit without reducing the recognition accuracy. Then, we propose an approximate computing
architecture for the quantized CNN using voltage-domain analog switching network based multiplication
and addition unit. Implementation results show that this accelerator can support 10 keywords real time
recognition under different noise types and SNRs, while the power consumption can be significantly reduced
to 52µW.

INDEX TERMS Keyword spotting, approximate computing, bit-width quantization.

I. INTRODUCTION
The keyword spotting (KWS) system is a very widely
used always-on speech interface which is becoming pre-
vailing in human-machine interaction, especially for wear-
able devices, the Internet of Things, etc. Requirements of
ultra-low power and real-time processing are critical for
those battery-powered devices. In the past decades, deep
neural networks (DNN) have been shown to outperform tra-
ditional models (i.e., Hidden Markov models and Gaussian
mixture models) on a variety of speech recognition bench-
marks by a large margin, but its massive parameters and
computation produce too much power consumption. To over-
come the challenge, many DNN accelerators for ultra-low
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power speech recognition have been proposed in recent years.
Shah M., et al. proposed an energy-efficient DNN acceler-
ator for KWS implemented under 40nm TSMC technol-
ogy [1]. This work can support 10 keywords detection and
the power consumption is 11.12 mW. Price M., et al. pre-
sented an ultra-low power speech recognizer for both KWS
and complex speech recognition tasks, where the adopted
DNN is made up of three fully-connected (FC) layers and
the bit width of data and weight are both 16 bits. This
work can reduce the power to 7.78 mW @40MHz with
WER of 8.78% under TSMC 65nm low-power logic pro-
cess [2]. Bang S., et al. proposed a DNN accelerator which
can support voice wake-up function (one keyword recogni-
tion) with power consumption of 321 µW [3]. In Giraldo’s
work [4], they proposed an optimized DNN accelerator for
near-microphone KWS. This work is implemented in 65nm
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logic process and can support 10 keywords recognition with
power consumption of 18.3 µW. Yin S., et al. proposed a
CGRA named Thinker, which can support variant bit widths
computing of DNNs, and achieved 1.27 TOPS/W in energy
efficiency [5]. In Yin’s work [6], they first presented an
optimized Binary Neural Network (BNN) for speech recog-
nition, where the bit width of data and weight are both 1 bit.
In the computation of this BNN, 99% of operations are addi-
tions, and themultiplication operations are almost eliminated.
To further reduce the power consumption, an ultra-low power
DNN accelerator with approximate addition units is proposed
to process the calculation of each layer in the BNN. For low
background noise (SNR≥ 5dB), this work can support KWS
with ultra-low power consumption of 141µW.However, lim-
ited by the low recognition accuracy of BNN, this work can
only support one keyword recognition with low background
noise. In practical applications, changes of background noise,
and even small changes in the distance between the speaker
and the microphone, can cause the SNR of input speech
change dynamically. Therefore, the robustness of the KWS
system under various background noise is a very important
evaluation criterion [7].

In this paper, we propose an ultra-low power KWS acceler-
ator based on an optimized CNN with quantized data/weight
bit width, which is trained through the Google’s Speech Com-
mands database deployed with different types of noise and
SNRs. The proposed KWS system can support 10 keywords
recognition under different noise types and SNRs. To accel-
erate the CNN and make it energy efficient, we first per-
form a bit-width quantization method on the proposed CNN,
in order to reduce the data/weight bit width required by the
hardware computing unit without reducing the recognition
accuracy. Secondly, we propose an approximate computing
architecture for the quantized CNN using voltage-domain
analog switching network based multiplication and addition
units. Implementation results show that this accelerator can
support 10 keywords (‘‘yes’’, ‘‘no’’, ‘‘up’’, ‘‘down’’, ‘‘left’’,
‘‘right’’, ‘‘on’’, ‘‘off’’, ‘‘stop’’, ‘‘go’’, along with ‘‘silence’’
and ‘‘unknown’’) real time recognition under different noise
types (babble, white, pink, etc.) and SNRs (−5dB, 0dB, 5dB,
10dB, etc.), while the power consumption can be significantly
reduced from 583µW to 52µW. Compared to the state-of-
the-art KWS architectures, our work can achieve high energy
efficiency (52µW for low power consumption), while main-
taining high system capability (10 keywords for KWS) and
high system adaptability (SNR ≥ −5dB for supporting high
background noise).

The rest part of this paper is organized as follows. Some
related preliminary works are briefly discussed in section
II. Section III describes the KWS prototype system and
the optimized CNN with bit width quantization. In section
IV, we propose the energy-efficient approximate computing
approach for the CNN, including the voltage-domain analog
switching network based multiplication and addition units.
Finally, implementation results are analyzed in section V and
the paper is concluded in section VI.

II. PRELIMINARIES
A. NETWORK OPTIMIZATION APPROACHES FOR LOW
POWER KWS SYSTEM
For low-power speech recognition systems, the adopted DNN
for feature classification should be firstly optimized to reduce
the power consumption of data access and computation. The
conventional DNN optimization methods are pruning, encod-
ing and quantization, which are discussed in work [8]–[10].
In our previous work [11] and [12], we proposed several
compression methods with hybrid bit-width weights scheme,
which can save the memory storage of the typical DNN
networks, LeNet, AlexNet and EESEN by 7x∼8x. However,
for KWS systems, where the adopted DNNs are typically
compact networks customized for specific scenarios, these
conventional network compression approaches with pruning
and encoding, are likely to cause great accuracy loss. In Yin’s
work [6], they proposed a BNN for KWS, where the bit
width of data and weight are both 1 bit. Compared to typical
DNNs with 16 bit data/weight bit width, this BNN can signif-
icantly reduce the data/weight memory size and the load/store
power consumption. However, this BNN can only support one
keyword recognition with low background noise and is too
simple for complex speech recognition applications.

In our previous work [13], we have proposed a Binary
Weight Network (BWN) for KWS, where the reconfigurable
data bit width is 4/8/16 bits, and the weight bit width is 1 bit.
Compared to BNN, this BWN network can support 10 key-
words recognition under high background noise. However,
to support high recognition accuracy, we had to add a lot
of network layers and filters to the BWN network. In our
previous work [13], the BWN consists of 6 convolution layers
and 3 fully-connected layers. For these 6 convolution layers,
two of the convolution layers require up to 64 convolution
kernels, and two convolution layers require 32 convolution
kernels. Therefore, for the BWN, the hardware need to pro-
cess more calculations, which in turn causes extra power
consumption. In summary, for low-power speech recognition
systems, there are three advantages to quantize the data and
weight bit width of the DNNs: firstly, it can effectively reduce
the memory size and the data/weight access power consump-
tion [14]; secondly, the reduced data/weight bit width can
also effectively reduce the hardware resources and power
consumption of the computing units [15]; thirdly, for the
voltage-domain analog computing circuit, the analog noise
mismatches can also be reduced. For example, 6-bit data can
be encoded within 64 (26) voltage values, while 16-bit data
requires 65536 (216) voltage values for encoding. Therefore,
the DNN accelerator using voltage-domain analog computing
with 6-bit data encoding can achieve much more accuracy
than that with 16-bit data encoding.

In this work, we propose a bit-width quantization method
to reduce the data/weight bit width without reducing the
recognition accuracy.With the reduced data/weight bit width,
the hardware resources used to implement the CNN will
be also significantly reduced. This method can quantize the
CNN data and weight bit width bit-by-bit respectively, so that

VOLUME 7, 2019 186457



B. Liu et al.: Ultra-Low Power Always-On KWS Accelerator

the optimal data and weight bit width can be obtained within
a limited precision loss for specific application scenarios. The
optimized CNN consists of only 3 convolution layers and
2 fully-connected layers, and the data/weight bit width can
be quantized to 8/7 bits respectively, while the customized
CNN can support 10 keywords recognition under very low
background noise (SNR ≥ −5dB). The number of convo-
lution kernels for each layer is 32, 24 and 12. Therefore,
compared to the BWN proposed in our previous work [13],
the optimized CNN for KWS requires much less calculations,
and can be much more energy efficient.

B. ENERGY EFFICIENT APPROXIMATE COMPUTING FOR
CUSTOMIZED DNNS
In a typical DNN, the operation numbers of additions and
multiplications are almost the equal, however the power con-
sumption of multiplications can account for 96% of all [16].
Thus, a convincing idea to reduce power consumption for
processing DNNs is to improve the energy efficiency of
multiplication operations. In our previous work [17], we have
tried to replace most multiplication operations with addition
operations in the convolution layers. This approach can sig-
nificantly reduce the energy consumption of multiplication
operations in convolution layers for image recognition appli-
cations with low accuracy requirements. However, for speech
recognition applications, especially for KWSwith high back-
ground noise, this approach is not suitable and may cause a
great recognition accuracy loss. Despite of their high accu-
racy, standard Wallace-Tree based multiplication units have
problems in reducing area and energy consumption. Thus
approximate multiplication units are required to be adopted
in DNN processing because they can significantly improve
energy efficient with little cost in accuracy loss. In our pre-
vious work [18] and [11], we have proposed two digital
approximate multiplication unit architectures to reduce the
DNN computing power consumption. These two approxi-
mate multiplication units are customized for DNNs based on
the iterative logarithmic multiplication principle [19]. Com-
parison results show that these approximate multiplication
units can reduce the power consumption by about 50% with
negligible loss of recognition accuracy.

In this work, we propose a voltage-domain based analog
multiplication architecture to further reduce the power con-
sumption of the DNN processing. To the best of our knowl-
edge, this is the first voltage-domain approximate computing
architecture customized for low power KWS system. Com-
pared to the digital approximate multiplication architectures,
this work can significantly improve the energy efficiency of
the DNN with low data/weight bit width (8/7 bits respec-
tively), and reduce the power consumption from 583µW to
52µW.

III. TOP ARCHITECTURE OF KWS SYSTEM
A. SYSTEM ARCHITECTURE OVERVIEW
The KWS process adopted in our work mainly consists
of two parts: the input speech feature extraction based on

FIGURE 1. Top Architecture of the KWS Prototype System.

MFCC and the keywords classification based on CNN. The
feature extraction module is used for extracting the feature
values of the input speech. The output of feature extrac-
tion module is 26 Mel-scale Frequency Cepstral Coeffi-
cients (MFCC). The speech classification module classifies
the 26 MFCC output by the feature extraction and deter-
mines which keyword it is (or an unknown word). The fea-
ture extraction mainly includes the following approaches:
MFCC, linear prediction coding coefficient (LPCC) [20],
perceptual linear production (PLP) [21] and rasta-plp [22].
In Veton’s work [23], the advantages and disadvantages
of these approaches (MFCC, LPCC, PLP, rasta-plp and
other digital feature extraction approaches) are evaluated
by experimental comparative analysis. Experimental results
and comparisons show that MFCC is a good choice when
the background noise changes greatly or the SNR is low,
because of its high robustness and low computational
complexity.

In this work, we use a customized MFCC as the feature
extraction module. The feature extraction module consists of
a Pre-emphasis unit, an energy-based simple Voice Activity
Detector (VAD) unit, a framing unit, a 512-point FFT unit,
a 16-stage pipeline CORDIC based Amplitude unit and aMel
Filtering unit. The top architecture of the prototype KWS
system with the DNN accelerator integrated is as shown
in Figure 1. The top-level architecture consists of a system
controller implementedwithARM7TDMI, a KWSprocessor,
an 8Kbytes SRAM as system memory and several assistant
modules for system scheduling. All modules are AMBA2.0-
AHB-compatible and connected to a 32-bit AHB bus mod-
ule, used as the system bus. The KWS processor consists
of a MFCC module, a DNN accelerator, the controller, and
the data/weight/configure memory, which are 14/26/4Kbytes
SRAMs, respectively. The MFCC module is used to process
the feature extraction of the input speech, which consists of
a Pre-Emphasis module, a Framing module, a Mel filter, and
an Amplitude module. The DNN accelerator can be reconfig-
ured to process different layers of the CNN for the keywords
classification. The input speech signal is sampled at 16KHz,
and both modules in Figure 1 operate on frames of 40ms with
20ms step size.

This paper also trains a CNN for KWS. As shown
in Figure 2, the CNN is composed by three convolu-
tion (CONV) layers and two fully-connected (FC) layers,
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FIGURE 2. CNN Topology for KWS System.

several activation (ACT) layers and batch normalization (BN)
layers. The convolution kernel size of each CONV layer is
3 × 3, while the number of convolution kernels is 32, 24 and
12, respectively. The strides (X,Y) (X/Y represents the con-
volution strides of the speech feature in the frequency/time
domain, respectively) are as follows: (2, 2) for CONV layer
1; (1, 2) for CONV layer 2; (1, 1) for CONV layer 3. Each
CONV layer is followed by an ACT/BN Layer. The layers
used in our CNN are denoted as follows: CONV layer: the
input filter is a 3 × 3 × 32 three-dimensional matrix. The
value of each output neuron is y =

∑32
j=1

∑24
i=1 ωji·xji+bj.FC

layer: the input multi-dimensional matrix graph is expanded
into one-dimensional feature vectors by row or column, then
calculated with a matrix multiplication followed by a bias
offset to get the value of each output neuron. The formula
is:yj =

∑n
i=1 xi · ωji + bj. BN Layer: this operation is to

reduce the problem of slow convergence speed or ‘‘gradient
explosion’’ in training. The formula is:y = γ

x−µ
√
ε+σ 2

+ β.

Four parameters are represented respectively: meaning, µ;
variance, σ ; scale, γ ; offset, β. ACT Layer: we use ReLU
as the activation function of output neurons in each BN layer.
The formula is: y = max(0, x).

B. BIT-WIDTH QUANTIZATION APPROACH FOR CNN
BASED KWS SYSTEM
The quantization of weights and activation values is
very important for hardware implementation. Traditionally,
the trained weights and activation values are mostly fixed to
8bit/16bit, but this data compression method will inevitably
lead to the decrease of recognition accuracy. Based on the
principle of XNOR-Net quantization framework where the
bit width of data and weight are both 1 bit [24], we present
the CNN training and quantization methods to quantize the
weight and data bit width bit-by-bit, while avoiding recogni-
tion accuracy loss. The proposed CNN parameter quantiza-
tion method is as follows:

quantizek (xi) =
1

2k − 1
round(xi ∗ (2k − 1)) (1)

FIGURE 3. CNN Training Process with Data/Weight Bit width Quantization.

f (x) =
tanh(x)

2 ∗ max(|tanh(x)|)
+

1
2

(2)

wq = 2 ∗ quantizek (f (wni ))− 1 (3)

xq = 2 ∗ quantizek (f (xni ))− 1 (4)

where wi and xi are the i-th layer weight and activation
value parameters, k is the data bit width taken, quantizek (.)
and f (.) represent the quantization function and compression
function, and wq and xq are the corresponding quantization
results. Therefore, for xi, wi of any layer in network, there is
a quantized output real value (bi is the original floating point
offset):

zq = xq ∗ wq + bi (5)

zq =
{
2 ∗ quantizek (f (xni ))− 1

}
∗
{
2 ∗ quantizek (f (wni ))− 1

}
+ bi (6)

Figure 3 shows the quantization method of the CNN
adopted in this paper. At k bit width (k > 1), both the input
layer and the BN layer will be quantized simultaneously.
In fact, since the BN layer contains data compression process-
ing, the activation value quantification of the tanh function
can be discarded, and thus the compression function fc(.) can
be optimized as follows:

fc(.) =
w

2 ∗ max(|w|)
+

1
2

(7)

Throughout the quantification process, the input weights
are first compressed to the range of 0 to 1. The compressed
data is subjected to quantization process of the equations
(1) and (3). The weights are transformed to non-destructive
fixed-point numbers between [−1, 1]. In order to enable the
quantized weights to better approach the ideal value during
the training process, the proposed quantization method can
be adopted with a bit-by-bit mode. The first time of train-
ing does not directly use low bit width quantization, but
instead chooses high bit width quantization. The high bit
width weights are saved for re-training, and the quantization
bit width is reduced bit-by-bit during next training steps.
For example, the quantization bit width can be pre-quantized
from 8 bits, 4 bits to 2 bits and then finally quantized to
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FIGURE 4. KWS Accuracy with Different Date/Weight Width.

1 bit. In this way, the most advantageous point of the network
training can be quickly found, and the bit-by-bit quantization
can be performed at the most advantageous point, which can
improve both the accuracy of the training and the reliability
of the quantized weights.

The advantage of this method is that it can quantize the
CNN data and weight bit width bit-by-bit respectively, so that
the optimal data and weight bit width can be obtained within a
limited precision loss for a specific application scenario.With
the proposed quantization method, we can use the 8/7 bits
for data/weight bit width in the proposed KWS system, while
maintaining the system recognition accuracy. Figure 4 shows
the KWS recognition accuracy with different data/weight bit
width combinations under different background noises. The
comparison results show that compared with the data/weight
bit width of 6/5 bits and 4/3 bits, we choose the data/weight bit
width of 8/7 bits, which can make the KWS recognition accu-
racy not significantly decrease. Because in the analog multi-
plication operation based on voltage-domain signal, the input
digital data needs to be converted into the corresponding
analog voltage signal first. Besides, the bit width required
for the input signal directly determines the precision of the
analog multiplication computing. Therefore, by reducing the
data/weight bit width to 8/7 bits, we can maintain the com-
putational accuracy of the voltage-domain analog switching
network based multiplication which is proposed in the next
section.

IV. VOLTAGE-DOMAIN ANALOG SWITCHING NETWORK
BASED APPROXIMATE COMPUTING
CNNmainly consists of CONV layers, FC layers, ACT layers
and BN layers. All of these network layers require a lot of
multiplication and addition. However, the traditional standard
multipliers and adders have high latency and high power con-
sumption, which cannot meet the requirements of low power
consumption and high energy efficiency in the design of CNN
accelerator. However, DNNs have been proven to be naturally
fault-tolerant, and the calculation accuracy requirements for
various application scenarios, such as the KWS systems, are
also in large variations [25]. Therefore, we can use approx-
imate computing units with reduced power consumption to

FIGURE 5. Voltage-domain Analog Switching Network based
Multiplication Unit.

replace the traditional standard computing units adopted in
DNNs. In this section, we propose a voltage-domain analog
switching network based approximate computing architec-
ture to process the CNN efficiently.

A. DESIGN OF VOLTAGE-DOMAIN ANALOG SWITCHING
NETWORK BASED APPROXIMATE COMPUTING
As shown in Figure 5, the input voltage is passed
through the Sample/Hold (S/H) Buffer, and the weight
value in CONV/FC layers (or the coefficient factor value
in ACT/BN layers) is represented by a 7-bit coefficient
(D7D6D5D4D3D2D1), where D7 is the sign bit. This 7-bit
coefficient is used to control the switching signal in the circuit
to obtain the output voltage. The calculation process is as
shown in Equation (8).

VO = VIN
25D6+24D5+23D4+22D3+21D2+20D1

26
(8)

When the input voltage of the adaptive analog multiplica-
tion calculation array enters the analog multiplication calcu-
lation unit, the calculation unit control module combines the
convolution kernel size and the weight data to configure a
1-bit control signal and a 6-bit multiplication coefficient
value. The 1-bit control signal controls the operating mode of
each analog multiplication unit (the forward process mode,
ot the reverse process mode). The 6-bit multiplication coef-
ficient value controls the switches 1 to 6 to further adjust
the value of the coefficient. After selecting the operating
mode, the input voltage is stabilized by the sampling and
holding buffer circuit. After the input voltage is stabilized,
it is used as the input voltage of the six parallel switch
branches, and each switch has an independent branch. The
switch on each branch is connected in series with a capac-
itor corresponding to the value of the multiplication factor.
If the corresponding bit is 1, the switch is closed, and the
corresponding capacitor is charged; if the corresponding bit
is 0, the switch is open, and the corresponding capacitor is
discharged.
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FIGURE 6. Voltage-domain Analog Switching Network based Addition
Unit.

The analog multiplication unit uses a discrete time
switched capacitor circuit. Adjustable high-order narrow-
bandwidth programmable filter is based on the switching
circuit. The output voltage of the analog multiplication unit
can be obtained by controlling the closing of the six switches
by the digital circuit and superimposing the branch voltage
generated when the charging capacitor is charged on the
switching circuit. For example, when the input data is 51,
the digital signal is converted to an analog voltage value
Vin = 0.804V after passing through the DAC module. When
the working mode control signal D7 = 0, the working mode
is forward working. At the same time, if D6D5D4D3D2D1 =

010101, the equivalent capacitance between input and output
is 126C/43, the grounding capacitance of output is 53C/9,
the hardware coefficient is 0.332, and the corresponding
equation coefficient is 0.328. The accurate output voltage is
0.267V, and the output voltage calculated by equation (8) is
0.264V. After passing through the ADC module, the digital
output will be 17, which is the same as the result calculated
by equation (8).

As shown in Figure 6, to explain the implementation of
the analog adder in the current field, the filter size of 2 × 2
is taken as an example: the voltage signal generated by the
DAC is extracted (VT1 ∼ VT4) into a current signal through
the Gm unit (NMOS). The change in the input voltage causes
the current on the branch to change, and the current varying
in each branch is summed at the output node. Finally, the total
current is converted to an output voltage signal (VA) by the
output impedance. The diode-connected load is four times
larger than the input transistor to maintain the output DC
voltage. The analog addition is used to add the input voltage
variation. When the four coefficients are all 1, the gain of the
adder is 1/4. The load resistance can be increased by adding a
current source at the load to increase the gain of the addition.

Implemented and evaluated on TSMC 22nm technol-
ogy, with the threshold voltages of the NMOS and PMOS
transistors as 0.36V and −0.48V, the simulation results
of voltage-domain multiplication unit with fixed coeffi-
cient/input data are shown in Table 1 and Table 2 (at 25◦C TT
corner). The comparisons of the computing results with the
proposed voltage-domain analog switching network based
approximate multiplication units and the computing results
with standard multiplication units are shown in Figure 7 (for
different input voltages, i.e. the input feature data of each
CNN layer) and Figure 8 (for different coefficients, i.e. the

TABLE 1. Simulation Results of Voltage-domain Multiplication Unit With
Fixed Coefficient.

TABLE 2. Simulation Results of Voltage-domain Multiplication Unit With
Fixed Input Voltage.

network weights of each CNN layer), respectively. From
experimental results, it can be seen that the computing results
of the voltage-domain approximate multiplication units and
the standard multiplication units fit well, and the calculation
error is within 0.57%. As shown in Figure 9, the variation
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FIGURE 7. Comparisons of Voltage-domain Approximate Multiplication
and Standard Multiplication (With Fixed Coefficients).

FIGURE 8. Comparisons of Voltage-domain Approximate Multiplication
and Standard Multiplication (With Fixed Input).

of process corners has little effects on the outputs of the
proposed voltage-domainmultiplication units. There is a non-
linear corresponding relationship between the output voltage
of the proposed voltage-domain analog switching network
based addition unit and the computing result of the stan-
dard addition unit. The relationship curve for voltage-domain
addition unit and standard addition unit is shown in Figure 10.
The output voltage is divided into 26 segments, and the
voltage value in each segment corresponds to the computing
result of the standard addition unit. Since any voltage value in
one segment corresponds to the same computing result, there
may be some mismatches for the proposed voltage-domain
analog switching network based addition unit. As shown
in Figure 10, themaximum relative error rate, which is 0.75%,
is at the maximum slope point of the curve where the output
voltage is 0.4V. Similarly, there are mismatches in other
segments, but all of them aremuch smaller than themaximum
value of 0.75%, and the average relative error rate for all
segments is only 0.43%.

B. CUSTOMIZED DAC/ADC FOR PROPOSED
APPROXIMATE COMPUTING UNITS
The digital-to-analog converter (DAC) circuit designed in this
work is as shown in Figure 11. The input data (XIN ) is fed into
the columnDAC, which precharges the output signal (GRBL)

FIGURE 9. Effect of Different Process Corners on Variations of
Voltage-domain Multiplication Outputs.

FIGURE 10. Relationship Curve for Voltage-domain Addition Unit and
Standard Addition Unit.

terminal to analog voltage (VA). The DAC consists of a
cascaded PMOS constant current source composed of three
PMOS transistors and one NMOS transistor. The GRBL
terminal charging current duration is tON , and the current
duration is proportional to the input value XIN . In order to
maintain a linear correlation between tON with XIN , there
should be only one ON pulse in the circuit, avoiding mul-
tiple charging phases for each input. Therefore, we use the
following design methods: as shown in Figure 12(a), when
the input data is 6 bits, the three upper MSBs of the input
data XIN are used to select the first half of the charging pulse
width, while the three lower LSBs are to determine the second
half of the charging pulse width. An 8:1 multiplexer with
8 timing signals is shared to reduce the area overhead and
signal routing. This design method can generate an ON pulse
for each XIN . The 8:1 multiplexer shown in Figure 12(b)
determines the pulse width of the output tON by the input
value. The lower 3 bits of the 6-bit input value indicate the
pulse width of 0-7 tON . According to the values of the upper
3 MSBs and the lower 3 LSBs, the corresponding output
charging pulse is obtained, and then transmitted to the DAC,
thereby realizing the conversion from the digital signal to the
analog voltage signal.
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FIGURE 11. Customized DAC for Voltage-domain Approximate Computing.

FIGURE 12. Output Pulse Width Control for Voltage-domain Computing.

TABLE 3. Encoding Method for the DAC.

The Encoding Methods for DAC and Coefficients are
shown in Table 3 and Table 4, respectively. The decimal digit
input is converted to binary code X6X5X4X3X2X1, then it
is divided into (X6X5X4, X3X2X1) and converted to decimal
(Y2, Y1), The output analog voltage V can be calculated as
follows:

V =
7Y2 + Y1

56
(9)

TABLE 4. Encoding Method for the Coefficients.

FIGURE 13. ADC for Voltage-domain Approximate Computing.

As shown in Table 3, when the input data is 56 and 55,
the output voltage is the same. This is because when the
high-order digital Y2 is reduced, the low-control number Y1
is correspondingly increased. Since the relative error in this
case is very small, it does not affect the recognition accuracy
of the neural network for KWS.

In this work, we present a pipelined analog-to-digital
converter (ADC) with low-power and small-area overhead.
As shown in Figure 13, it mainly consists of multiple cas-
caded circuits, each of which includes a sample/hold (S/H)
amplifier, a low precision ADC, a DAC and a summing
circuit. The input analog signal is converted to a 3-bit digital
value by a 3-bit precision ADC. The digital value is the
upper 3 bits of the output data, and it is then converted into
an analog signal by the DAC. The S/H amplifier samples
the input analog signal and performs addition or subtraction
operations. The result is amplified and sent to the next stage
circuit for processing, thereby obtaining the lower 3 bits of
the output data.

The Voltage-domain analog switching network based
multiplication/addition unit and the DAC/ADC of the DNN
accelerator are customized with Cadence Virtuoso Tool. The
layouts of voltage-domain analog switching network based
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FIGURE 14. Layout of Voltage-domain Approximate Multiplication Unit.

FIGURE 15. Layout of Voltage-domain Approximate Addition Unit.

multiplication/additon unit and DAC are shown in Figure 14,
Figure 15 and Figure 16, respectively. In this work, the pro-
posed voltage-domain analog multiplication unit and the
DAC/ADC unit are all customized with fixed circuit struc-
tures and design parameters. These customized units can only
support multiplication and addition operations with fixed
data/weight bit width, For example, if the bit width of input
data is 5 bits, which are smaller than the bit width of the
voltage-domain analog multiplication unit, then the missing
high-order data bits must be padded with bit ’0’. In this case,
the computing accuracy of the voltage-domain analog multi-
plication unit remains the same. If the bit width of input data
is greater than the bit width of the proposed voltage-domain
analog multiplication unit, the input data cannot be converted
to the appropriate voltage value by the customized DAC
encoding. Analog circuits, especially the DACs/ADCs, are
susceptible to voltage fluctuations (such as voltage fluctua-
tions caused by device temperature variations). In this paper,
we analyze the effects of voltage fluctuations by testing the
process of input signals through DACs, analog multipliers,
and ADCs. When the power supply voltage of these analog
circuits is 0.9V, considering the influence on the circuit when
the voltage fluctuation range is 2% (in practical applications,
the voltage fluctuation is rarely more than 2%), the voltage
fluctuation range is 0.88V ∼ 0.92V. Figure 17 shows the
mismatches of the computing results with voltage-domain
multiplication caused by voltage fluctuations. The voltage
fluctuation causes the mismatches of the computing results
to increase, and the larger the value of the calculation
results, the larger the mismatches. However, since the data

FIGURE 16. Layout of Proposed DAC.

FIGURE 17. Mismatch of Voltage-domain Multiplication Caused by
Voltage Fluctuation.

distribution of DNNs basically obeys to the normal distribu-
tions: the density of the data near the smaller value is very
large, while the density of the data with a large value is very
small. In another word, the data with a large value has less
influence on the mismatches of the DNNs. The experimental
results show that the average accuracy loss is only 2.68%.
Since the CNN is inherently fault-tolerant, the calculation
results are mainly used to distinguish the differences between
different inputs, so the proposed voltage-domain computing
approach can fully meet the computational requirements of
the CNN for proposed KWS system.

C. APPROXIMATE PROCESSING ELEMENT ARRAY
As shown in Figure 18, the processing element array (PEA)
mainly includes a digital computing unit (DCU), an analog
computing unit (ACU), a DAC, an ADC and a global buffer.
The input data from MFCC, the weight data and the comput-
ing temporary/result data are all stored in the SRAM. When
the system controller enables the PEA, the global buffer reads
the input data and the weight data from the SRAM accord-
ingly. The DCU is composed of 4 × 4 Digital Process Ele-
ments (DPEs), each of which can perform digital multiplica-
tion and addition, and include a FIFO storage array. Input data
can be temporarily stored in the FIFO for data reuse. When
the DPE receives the input data, it performs a corresponding
multiply-and-accumulate operation. The output is transmitted
to the right and down DPEs in the next cycle, and the final
result is passed to the global buffer. The ACU is composed

186464 VOLUME 7, 2019



B. Liu et al.: Ultra-Low Power Always-On KWS Accelerator

FIGURE 18. PEA with Proposed Voltage-domain Approximate Computing
Units.

of 4 × 4 Voltage Process Elements (VPEs) for performing
the approximate computing based on voltage-domain analog
switching network.

When the PEA is configured to perform the approximate
computing, the input data is loaded from the buffer and
transferred to the FIFO array of the DAC in ACU. Then the
converted voltage from DAC is directly transmitted to the
VPE. The weights of CONV/FC layers (or the coefficient
factors for ACT/BN layers) are read from the shared mem-
ory and stored in the FIFO array of the VPE. Each VPE
contains a voltage-domain analog switching network based
multiplication/addition unit. The output voltage from VPE
is passed to the ADC module to obtain the output digital
data, and then the data is transferred to the global buffer.
The PEA module can dynamically configure the working
mode of the computing unit according to different calculation
requirements. Normally, the convolution kernel size is 3× 3,
in which case the PEA will use 3 × 3 computational units
DPEs or VPEs in the array to complete the calculation. When
the convolution kernel size is 2 × 2, the calculation unit
module can be configured to perform four sets of calculations
in parallel. When the convolution kernel size is greater than
4 × 4, the PEA module can be configured to complete the
calculation in several times.

The processing of convolution neural network is a data-
access-sensitive task that requires frequent access to memory
and there is a large amount of data interactions during convo-
lution operations. In order to reduce the bandwidth require-
ments and memory access delay, and improve the stability
of the data stream, a suitable data storage structure design
is needed. In this work, we use a 5-level hierarchical data
storage structure as shown in Figure 19. The Level4 memory
is the external main memory which is a DDR SDRAM, and
level3 memory is the pre-fetch buffer which is a on-chip
SRAM. Level2 memory is used as a data buffer between
the DNN accelerator and the external memory. It adopts a
FIFO structure and is composed of an External Data Storage
FIFO (ESDF) and an External Load Data FIFO (ELDF).
The ESDF is the data buffer when the output of the DNN

FIGURE 19. Hierarchical Data Storage Structure for Proposed KWS
Accelerator.

accelerator needs to be transferred to the external memory,
and the ELDF is used for the accelerator to read the input
data, which is then transmitted by the ELDF to each internal
storage structure of the accelerator. Level1 memory is used
to store the internal data of the PEA, including the input data,
the weights and the output data. Level0 memory is the data
register in the PEA. The level0 data register is tightly coupled
to the processing units DCU, ACU, and DAC/ADC. There are
4×4 register files in each DCU and ACU for the data routing
of DPEs and VPEs, respectively. Besides, the DAC and ADC
modules each contain a temporary register file.

V. IMPLEMENTATION RESULTS
The prototype system as shown in Figure 1 is implemented
and evaluated on TSMC 22nm ULL HVT transistor process
technology. The Voltage-domain analog switching network
based multiplication/addition unit and the DAC/ADC of the
CNN accelerator are customized with Cadence Virtuoso Tool
(version: IC6.1.7-64b.78), while the other digital modules are
described with Verilog HDL language and synthesized by
Synopsys Design Compiler (DC, version: J-2014.09-SP3).
The SRAM blocks and other digital modules are functional
with the logic supply voltage of 0.55V (with the working fre-
quency of 250KHz). The VPEs in ACU with voltage-domain
analog switching network based approximate computing are
functional with the logic supply voltage of 0.9V (with the
working frequency of 2.5MHz). The die layout of the proto-
type system is shown in Figure 20. The area of ACU andDCU
macro are 0.48×0.29 mm2, 0.49×0.27 mm2 (without mem-
ory), and thewhole prototype accelerator is 0.75mm2. For the
layout of ACU, the area of PEA is 0.18×0.18 mm2, which
accounts for 20% of the total area of ACU, the DAC/ADC
and other rest modules accounts for 80% of the total area
of ACU.

To evaluate the power consumption and recognition accu-
racy with the proposed approximate computing units, a ref-
erence design with standard multipliers and adders in DCU
module is also implemented. When the DCU module in
PEA is enable, the proposed CNN is working on stan-
dard computing mode; when the ACU module is enable,
the CNN is working on approximate computing mode
with proposed voltage-domain analog switching network
based multiplication and addition units. The timing and
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FIGURE 20. Die Layout of Proposed Prototype KWS System.

FIGURE 21. Power Breakdown in Standard/Approximate Computing
Mode.

power consumption are evaluated with Synopses HSIM
(version: K-2015.06) at 25◦C TT corner. The power
breakdown of the proposed KWS accelerator in stan-
dard/approximate computing mode is shown in Figure 21.
The power consumption of the KWS prototype system is
52µW in the approximate computing mode (with ACU)
and 583µW in the standard computing mode (with DCU).
In the approximate computing mode, the power consump-
tion of DNN accelerator with ACU is 41.3µW, of which
the power consumption of the VPEs accounts for 18%, and
the power consumption of the DAC/ADC and other rest
modules accounts for 82%. With the proposed approximate
computing, the power consumption of the prototype sys-
tem and the DNN accelerator is reduced by 11X and 14X,
respectively.

We use Google’s Speech Commands [26] as our training
and evaluating database. The chosen keywords are ‘‘yes’’,
‘‘no’’, ‘‘up’’, ‘‘down’’, ‘‘left’’, ‘‘right’’, ‘‘on’’, ‘‘off’’, ‘‘stop’’,
‘‘go’’, along with ‘‘silence’’ and ‘‘unknown’’. Table 5 shows
the recognition accuracy of proposed CNN based KWS
system under different background noise and computing
approaches, including: the software simulation based on
MATLAB using floating data/weight bit width, the KWS

TABLE 5. Recognition Accuracy Comparisons with Proposed Approximate
Computing.

prototype system using standard computing units, and the
prototype KWS system using proposed voltage-domain
analog switching network based approximate computing
units. The noise types include white, babble and pink, while
the SNR ratios include -5db, 0dB, 5dB, 10dB, 20dB and
clear (without background noise). As shown in Table 5, with
the proposed CNN data/weight quantization method, we can
reduce the data/weight bit width of the CNN from float to
8/7 bits, while the KWS recognition accuracy is reduced by
only less than 3%. Compared to the reference design with
standard computing units, the proposed approximate comput-
ing units can significantly reduce the KWS accelerator power
consumption by 11X, while the loss of recognition accuracy
is less than 1%.

Comparisons with other state-of-the-art KWS architec-
tures based on DNNs are shown in Table 6. InGiraldo’s work
(published in VLSI’19) [4], the DNN accelerator is proposed
for near-microphone KWS, where the background noise is
very low and can be ignored. In Yin’s work (published in
VLSI’18) [6] and our work, the DNNs adopted for KWS
contain both FC and CONV layers. The CONV layers can
effectively improve the recognition accuracy of KWS under
low data/weight bit width. In Yin’s work [6], the proposed
architecture is customized for a BNN where the bit width
of data and weights are both 1 bit. To further reduce the
energy consumption of the addition units, a digital approx-
imate addition architecture is also proposed. Benefiting from
the BNN network and the approximate addition architecture,
the power consumption of Yin’s work [6] can be reduced to
141µW. However, this work can only support one keyword
recognition under low background noise (SNR≥ 5dB). In our
work, we use the CNN for KWS system with data/weight
quantized as 8/7bits. Compared to Yin’s work [6], our work
can support 10 keywords recognition under high background
noise (SNR ≥ −5dB), while the power consumption can be
significantly reduced to 52µW.

For each frame of the speech input, the accelera-
tor proposed in Giraldo’s work (VLSI’19) [4]/ Shah’s
work (JSPS’18) [1]/ Yin’s work (VLSI’18) [6]/ OurWork
needs to process 115,380/ 2,103,255/ 11,074,048/ 2,101,824

186466 VOLUME 7, 2019



B. Liu et al.: Ultra-Low Power Always-On KWS Accelerator

TABLE 6. Comparisons with other KWS architectures.

multiplication and addition operations, respectively. The
power consumption of Giraldo’s work [4]/ Shah’s work [1]/
Yin’s work [6]/ OurWork is 18.3µW/ 11.2mW/ 141µW/
52µW, respectively. Therefore, the power consumption per
operation (for each DNN operation) of Giraldo’s work [4]/
Shah’s work [1]/ Yin’s work [6]/ OurWork is 0.159nW/
5.325nW/ 0.013nW/ 0.025nW, respectively. The energy
efficiency is 1/(power consumption per operation). With
the energy efficiency of accelerator proposed in Giraldo’s
work [4] as the normalization value 1X, the normalized
energy efficiency of Shah’s work [1]/ Yin’s work [6]/ Our-
Work can be calculated, which is 0.03X/ 12.23X/ 6.36X,
respectively.

Compared to the DNN used in our work, which consists
of 3 CONV layers (32/24/12 kernels of each layer) and 2 FC
layers (2,101,824 operations for each input speech frame),
the accelerator inGiraldo’s work [4] requires a much smaller
amount of computation (115,380 operations for each input
speech frame) and the hardware power consumption is low
(18.3µW). However, since the DNN used is very simple,
the KWS accelerator proposed in Giraldo’s work [4] can
only work in near microphone cases, where the background
noise can be ignored (SNR≈ ∞). Compared with Giraldo’s
work [4], the DNN used in our work has higher robustness
and fault tolerance (thus requiring much more computation),
and therefore can support high recognition accuracywith very
high background noise (even the SNR is −5dB). Compared
with the DNN used in Giraldo’s work [4], the operations
of the DNN used in our work is over 18X of the former,
however the power consumption of our work is only 2.8X of
the former, and the energy efficiency of our work is 6.36X of
the former. In Yin’s work [6], the DNN consists of 4 CONV
layers (64/32/64/32 kernels of each layer) and 2 FC layers.
For each input speech frame, the accelerator should process
11,074,048 DNN operations. The energy efficiency of the

accelerator in Yin’s work [6] is 1.92X better than our work.
In Yin’s work [6], the bit width of data and weights are both
only 1 bit, which can greatly reduce the power consumption
per operation, and therefore can obtain the highest energy
efficiency of all these works in Table 6. However, the DNN
with data/weight bit width of 1/1 bit will greatly reduce the
DNN robustness and fault tolerance for KWS, and therefore
it can support only one key word recognition. Experimental
results show that our work can achieve high energy effi-
ciency (52µW for low power consumption), while main-
taining high system capability (10 keywords for KWS) and
adaptability (SNR ≥ −5dB for supporting high background
noise).

VI. CONCLUSION
This paper proposed an energy-efficient DNN accelerator for
keyword spotting using convolution neural network (CNN)
and approximate computing. To accelerate the CNN and
make it energy efficient, we presented a bit width quantization
method to reduce the data/weight bit width required for the
CNN, and an approximate computing architecture for the
quantified CNN based on voltage-domain analog switching
network. This approximate computing can contribute a sig-
nificant decrease in energy consumption compared to those
with standard computing units. Implemented under TSMC
22nm CMOS technology, our work can support 10 keywords
real-time keywords recognition under different noise types
and SNRs with the power consumption of 52µW. Experi-
mental results show that our work can achieve high energy
efficiency, while maintaining high system capability and
adaptability.
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