
Received November 19, 2019, accepted December 9, 2019, date of publication December 18, 2019,
date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960522

Marking Key Segment of Program Input
via Attention Mechanism
XING ZHANG , CHAO FENG , RUNHAO LI , JING LEI , AND CHAOJING TANG
School of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Corresponding author: Chao Feng (chaofeng@nudt.edu.cn)

ABSTRACT Key segment of a program input is the specific part of the input that has significant affect on
the execution of target function. Marking key segment plays an important role in software security analysis.
Traditional dynamic analysis methods can not mark the key segments correctly because of control flow
dependency problem. The root cause of such problem is that implicit flow analysis method cannot cover all
the behavior of the code fragment in a branch, especially when the code snippet contains unexpected jump
behavior. The neural network can learn to fit the behavior of the program with proper training data. In this
paper, we introduce the attention based neural network to mark the key segments of program input accurately
and efficiently. We propose an attention based two-parts network structure and map program inputs into the
target code execution by such network. Then we propose a two-step training method to train our network
to calculate the importance of each input component on the execution of target function. Finally, we mark
the key segments by statistical analysis method. We implement such method and develop a key segment
marking tool AttentionMark . Experiments on four real-world software show that AttentionMark outperforms
NeuralTaint and traditional dynamic analysis tool in key segment marking.

INDEX TERMS Taint analysis, symbolic execution, software vulnerability, neural network, key segment
marking, deep learning.

I. INTRODUCTION
Analyzing the relationship between the execution of program
function and program input plays an important role in soft-
ware analysis research. Many applications process complex,
highly structured inputs. Small changes in some segments
of the input can induce correspondingly large changes of
target function execution times of the program. And in this
paper, we call the specific components of a program input
that have a significant effect on the execution of target
function as key segment. Marking key segment of a user
input is important in a number of software security research
areas, like fuzzing technique, malware detection and program
understanding.

Taint analysis and symbolic execution are two popular
analysis method to mark the key segments of the program
input [2]. Thesemethodsmonitor code as it executes by preset
rules and performs precise analysis with run-time informa-
tion. Taint analysis method explores the relationship between
user inputs and program execution information with taint
propagation rules. And symbolic execution reasons about the

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

behavior of a program on user input by building and solving
logical formulas.

Marking key segment needs to deal with both information
flow and control flow of the target program. Traditional
analysis methods have made great progress in information
flow analysis and applied widely in software analysis and
security area. However, some programs with control flow
dependency structure would cause the under taint problem,
and both taint analysis and symbolic execution method may
suffer from low accuracywhile analyzing such program. Such
problem is called control flow dependency problem [1].
In order to analyze the control dependency flow, implicit
taint analysis method is proposed by many researchers [2].
Recent research applies the static analysis method to generate
Control Flow Graph(CFG) to add extra taint to the variables
belong to the tainted branch [3]–[5]. Despite that under taint
problem is resolved to a certain extent, the extra taint may
cause the over taint problem which also reduce the analysis
accuracy. Although a lot of effort is being spent on improving
under taint and over taint weakness, the efficient and effective
method has yet to be developed.

There are two critical reasons that causing low accuracy of
implicit analysis method. 1 is that the rules preset by human

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 183877

https://orcid.org/0000-0002-7730-9212
https://orcid.org/0000-0003-0884-5457
https://orcid.org/0000-0003-2129-9665
https://orcid.org/0000-0002-5838-5826
https://orcid.org/0000-0002-9025-2791

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

experience can not distinguish all code fragments of condi-
tional jumps accurately; 2 is that the instruction/basic block
level analysis method can not describe the macro behavior
of a function that has predominant influence on the control
flow,e.g. function like _exit(0). Section III gives a motivate
example to illustrate the problem.

Neural network has strong versatility, and theoretically
it can fit all functions [7], [9]. With enough inputs and
labels, neural network can learn the relationship between the
input and output by appropriate training. The relationship
is represented as the trained neural network itself, which
is not understandable to human. Recently, neural network
explainable technique gives insight the internal operation and
behavior of neural networks [10]. NeuralTaint [35] applied
gradient method to mark key segments. NeuralTaint maps
program inputs into execution times of target function by
neural network and then extract the gradient of target input
from fitted network, finally mark the key segments with
gradient information.
NeuralTaint can overcome the control flow dependency

problem and has higher analysis accurate rate than traditional
methods. However, NeuralTaint suffers over-fitting problem
and gradient based explainable method has saturation prob-
lem [50]. Therefore, NeuralTaint has low analysis accurate
and stability problem. Since program inputs are sequence
data and attention mechanism [11] is an explainable method
for neural networks that processing sequence data. Atten-
tion mechanism based network can directly assign impor-
tance score to the inputs for a given output. Consequently,
we propose a key segmentmarkingmethod based on attention
mechanism network and develop a key segment marking
tool AttentionMark . Instead of improving the fitting accuracy
of network, we adopt attention based network to locate the
specific part of program input which can affect the execution
of target function.

In this paper, we generate large amount of program inputs
with mutate algorithm. Next we propose a two-parts atten-
tion based neural network and a two-step training method
to train the network for multiple rounds. The attention net-
works are extracted from the fitted networks and together
with statistical analysis method we can achieve accurate key
segment marking. By comparing with traditional dynamic
analysis tools and NeuralTaint we verify the effectiveness of
AttentionMark . Experiment results show that AttentionMark
consistently outperforms traditional dynamic analysis tools
and NeuralTaint in control flow taint analysis by a wide
margin both in term of analysis accuracy rate.

In summary, the main contributions in this paper are listed
as follows:

1) We utilize the attention mechanism in key segment
marking and propose a two-parts attention based neural
network structure. The two-parts network is divided into
attention layer and regression layer which is different from
traditional seq2seq [8] network, thus can fit in with the
need of the program input and execution times output of the
network.

2) We introduce two-step training method to train a
well-fitted attention network. Traditional seq2seq network
improves the fitting ability of network by attention mecha-
nism and the explainable of the network is not always work-
ing. Instead of improve the fitting ability of network, we adopt
the two-step training method to improve the explainable abil-
ity of our network.

3)We propose a statistical analysismethod to achieve accu-
rate key segment marking. Over fitting and fitting error are
inevitable during training and thus the relevance calculated
by attention layer may be inaccurate. We utilize multiple
relevance score of rounds and epochs network to achieve
accurate key segment marking.

4) We design and implement AttentionMark to mark key
segments of program input. Experiments on several popular
file formats processing software shows that AttentionMark
can achieve accurate key segment marking and outper-
forms than traditional analysis tools and gradient based tool
NeuralTaint .

The rest of the paper is organized as follows. In Section II,
we describe previous research efforts related to this paper.
We give a motivate example in section III and give our
approach in Section IV, and Section V provides implemen-
tation details. We present the experiments in Section VI.
Section VII concludes this paper.

II. RELATE WORK
Related research on program analysis and neural networks
recently develops rapidly. Dawn Song [31] firstly realizes
the recognition of function boundaries on machine-code level
through neural networks. This method is the first to apply
artificial intelligence techniques to the field of software vul-
nerability analysis. EKLAVYA [32] implements the iden-
tification of function parameters based on deep learning.
NEUZZ [33] uses gradient-guide input generation method to
increase the efficiency of fuzzing process based on surrogate
neural network. NeuralTaint [35] marks the key segments by
gradient-based explainable method of neural network. These
works indicate that neural network can learn the relationship
between network input and output without any program inter-
nal information.

A. DYNAMIC TAINT ANALYSIS
Currently, dynamic taint analysis tools are mainly divided
into application-aware analysis tools and system-wide anal-
ysis tools. Application-aware taint methods analyze at a
high speed, which is often used in vulnerability discovering.
TaintScope [34], Dowser [36], BORG [37], VUzzer [38] and
Angora [39] applied application-aware pure information flow
analysis to improve fuzzing efficiency. System-wide taint
analysis tools usually depend on the virtualized platform
QEMU [40], which can effectively analyze the taint spreading
process input into the system kernel. This method has higher
accuracy, but suffers from lower speed and more complex
implementation, thus not widely used. BitBlaze [41] and
PANDA [42] are two main system-wide taint analysis tools
to deal with explicit information flow.

183878 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

B. DYNAMIC SYMBOLIC EXECUTION
Similar with taint analysis method, dynamic symbolic exe-
cution is mainly divided into application-aware methods
and system-wide methods. System-wide symbolic execution
tools are hardly used as a result of complicated structure and
difficult development. S2E [30] is a system-wide platform
for analyzing the properties and behavior of software sys-
tems based on QEMU, it uses selective symbolic execution
and relaxed execution consistency models to scale to large
software.

C. ATTENTION BASED NEURAL NETWORK
Attention mechanism has been widely adopted in neural
based NLP networks. Attention mechanism can improve the
fitting accuracy of the networks and give an explanation
of the relationship between input vector and output vec-
tor. Attention layer equipped by the network can calculate
the relevance scores of input tokens that denote the impor-
tance of component to the output vector. Bahdanau et al.
[11] first introduces the attention mechanism into the net-
works of machine translation. And recently attention mecha-
nism not only applied in NLP translation task. Wang et al.
[48] formalized self-attention as a non-local operation to
model the spatial-temporal dependencies in video sequences.
Zhang et al. [46] applies the self-attention mechanism with
GAN [47] to generate images that have fine details. How-
ever, no related work is applied in binary software analysis.
We expand the usage of attention mechanism in control flow
taint analysis.

Dynamic taint analysis and symbolic execution relies on
heavy-weight program analysis techniques with nontrivial
instrumentation overheads. On the contrary, AttentionMark
marks the key segments of user input by attention mech-
anism without any expensive program analysis techniques.
Thus AttentionMark provides a new way to overcome the
difficulties in traditional dynamic binary analysis methods.

III. A MOTIVATE EXAMPLE
In order to give a vivid introduction of key segments marking,
the weakness of traditional analysis method and the effective-
ness of our method, we utilize a brief example to explain.

A. EXAMPLE CODE
Code 1 below is a brief code fragment example. The program
gets first three components of program input as x1, x2 and
x3. The program will exit if x1 is not ‘a’, y is a temporary
variable and target_function() is executed onlywhen x3 is ‘c’.
From the code, we can see that the content of x1 and x3 has
significant influence on the execution of target_function().
In this paper, for a program input like ‘‘aXc’’, we call x1
and x3 as the key segments of ‘‘aXc’’ on the execution of
target_function().

In order to analyze the relationship between user input and
the execution of target_function() in Code 1, both taint anal-
ysis and symbolic execution set the flag registers in line12 as

Algorithm 1 Example Code
Input: x1← the 1st component of program input

x2← the 2nd component of program input
x3← the 3rd component of program input

1: y = ‘0’
2: if x1 != ‘a’ then
3: _exit(0)
4: end if
5: if x2 == ‘b’ then
6: y = ‘1’
7: other_function()
8: end if
9: if x3 == ‘c’ then
10: y = ‘d’
11: end if
12: if y == ‘d’ then
13: target_function()
14: end if

the sink point. Taint analysis checks the taint information of
the flag registers to address the key segments and symbolic
execution examines the logical formulas of the symbolic
memory of the flag registers to locate the key segments.

Explicit analysis method deals with pure data information
flow. Since code in line9 ∼ 13 contains control depen-
dency structure and explicit analysis method occurs under
taint problem [1]. The flag registers in line12 contains no
taint or symbolic formula after analyzed by explicit anal-
ysis method. For traditional symbolic execution tools with
SMT/Z3 solver.When the program reaches target_function(),
symbolic execution method checks the symbolic memory
of flag registers in line12, since temporary variable y is
assigned with ‘d’ which is constant value in line10 and y
contains no symbolic variable. That is, symbolic execution
method collects nothing due to such control flow dependency
structure. Such structure is first introduced in [1] which is a
classic control flow dependency structure, that is, traditional
symbolic execution tool can not deal with Code 1.
Implicit taint analysis method applies the static analysis

method to generate Control Flow Graph(CFG) to add extra
taint to the variables belong to the tainted branch [3]–[5].
In this case, line6 and line10 will add extra taint mark, thus
the flag registers in line 12 contains taint from x3. Due to the
relationship between line5 ∼ 8 and line9 ∼ 11 in CFG, some
algorithms may add x2 as the taint source of the flag registers
in line12 [2], [5], and others may not [3], [4]. That is, implicit
analysis method may occur over taint problem [1].

From the code, x1 has great influence on the execution
of target_function(), because target_function() will not be
executed if x1 value is not ‘a’. Such scenario often occurs
when the program checks whether the header of user input
is illegal. However, current implicit and explicit analysis
method can not mark x1 as the key segment. The execution
of one function may related to several branches through the
whole control flow from the entry to the target function.

VOLUME 7, 2019 183879

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

TABLE 1. Example Data-set.

Such feature makes it difficult for traditional dynamic anal-
ysis method to mark the key segments correctly and com-
pletely. The root cause of such problem is that neither static
analysis nor extra propagation rules can not identify the spe-
cific behavior of every code fragment belongs to one branch
correctly. Especially the code snippets which behaves like
exit and goto instructions that can change the control flow.
Therefore, under-taint and over-taint often occur in implicit
analysis method [6].

B. SOLUTION
The overall idea of our work is that we map the program
input into the execution times of target function with attention
based neural network, then extract the attention network to
calculate the relevance score of every input component and
use statistical analysis method to get the key segments from
the program input.

For the Code 1, suppose we get the input ‘‘adc’’,
target_function() is the target function for analysis. We want
to mark the key segments of ‘‘adc’’ that can affect the exe-
cution of target_function(). We utilize the attention based
network to mark the key segments of ‘‘adc’’.

First, we construct the data-set. The network input is
the program input, the label data is the execution times
of target_function(). And the example data-set is shown
in Table 1.
Second we construct a network with attention mechanism

in Figure 1. Each input vector multiply a weight factor then
calculate together and get a eigenvector. The eigenvector is
then sent to neural network to calculate the execution times
of target_function(). The network is a simplified version of
a traditional attention based seq2seq back-end network. The
input component contributes more to the output when such
component’s weight vector α is larger.
The weight factors α1, α2 and α3 are initialized with aver-

age value 0.33. And the data-set in Table 1 is sent into the
network to train the network. The first and third component
of the input change from ‘a’ and ‘c’ to other bytes causes
the output changes from 1 to 0, and the change of second
component of the input has no affect on the output. So after
training, the weight factors α1, α2 and α3 may be α1 =
0.48, α2 = 0.04 and α3 = 0.48 when the fitted network
calculates input ‘‘adc’’. Since α1 and α3 is obvious larger
than α2, we can mark the first and third component as the
key segments of input ‘‘adc’’.

FIGURE 1. Example network.

FIGURE 2. An overview of our approach.

Neural network directly analyzes the relationship between
the execution of program function and program input which
means that the network ‘‘simulates’’ the process of the exe-
cution of program through training. The attention mechanism
can show the specific contribution of each input component
to the output by numerical value, thus our approach can
overcome control flow dependency problem and mark key
segments accurately.

The rest of this paper introduces the detail solution of
key segment marking method based on neural network with
attention mechanism.

IV. OVERVIEW OF OUR APPROACH
Figure 2 presents a high level overview of our approach.
Given a program input that can trigger the target function,

183880 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

our approach can mark the key segment of such
input.

A. DATA-SET CONSTRUCTION
Unlike traditional taint analysis, the key segment marking
method based on neural network requires training before ana-
lyzing. Data-set construction is the first consideration before
training neural network. There are three main problems in
data-set construction, which are network input/output, data
source and network input embedding.

The network input is program input and label is the exe-
cution times of target function. In order to collect the enough
amount of training data, a mutate algorithm is proposed to
generate program inputs. Neural network can only process the
fixed length and numerical data. And in this paper, we utilize
byte-level one-hot vector to embed the program input.

B. TWO-PARTS ATTENTION-BASED NEURAL NETWORK
Our network is a two-parts network, the front-end network is
the attention network based on GRU [49] and the back-end
network is the regression network based on CNN [18].

Although the structure of our network is different from tra-
ditional attention-based seq2seq network structure. We give
a brief prove the transform equation of our network is
basic the same with tradition attention-based network [11] in
Section V.

C. TWO-STEP TRAINING METHOD
High fitting accuracy is the main goal of traditional attention
based network and the explanation is not important. However,
the network we need is the fitted attention network that can
calculate the relevance score correctly. The network fitted
by common training method may not always provide mean-
ingful explanations [26]. In view of this situation, we pro-
pose two-step training method to train our network. Different
part of two-parts network is trained with different order and
data-set to guarantee the attention network can provide the
correct explanation.

D. STATISTICAL ANALYSIS METHOD
Although two-step training method can help one network
to calculate the relevance score correctly, the possibility of
faulty key segmentmarking still exists for one single network.
We train the networks for multiple rounds and epochs. And
improve the key segment marking accuracy by statistical
analysis method.

Figure 3 shows the overall process of key segmentmarking.
The yellow blocks are the true key segments of the program
input, the blue shadow blocks are the rough key segments
calculated by attention network and the red shadow blocks
are the final key segments analyzed by statistical analysis
method.

V. IMPLEMENTATION
We describe the different components of our scheme in detail
below.

FIGURE 3. The overall process of key segment marking.

Algorithm 2Mutating Algorithm
Input: input ← test case
1: for k ∈ [0, len(input)) do
2: tmp_input ← input
3: tmp_input[k]← randint(0, 0xFF, 1)
4: WriteToFile(tmp_input)
5: tmp_input ← input
6: randlen← randint(1, len(input)− k, 1)
7: tmp_input[k : k + randlen] ←

randint(0, 0xFF, randlen)
8: WriteToFile(tmp_input)
9: end for

A. DATA-SET CONSTRUCTION
Besides the architecture of neural network, the training data-
set also affects the fitting rate greatly. The training data-set
includes input data with corresponding label data, which
refers to program input and the number of target function
execution times. We introduce the approaches for collecting
network input data and constructing related label data.

1) DATA-SET GENERATION
Training network requires a huge amount of program inputs.
The target test-case to be analyzed is single, so a method
that can generate test-cases based on single file is urgent.
We leverage a simple mutating algorithm to obtain program
inputs, the specific algorithm is shown in Algorithm 2.

There are three reasons to utilize such algorithm to gener-
ate training data. (1) is that fixed length data is good for train-
ing the neural networks, and our algorithmwill not change the
length of program input; (2) is that our back-end network is
a CNN based regression network, each CNN layer processes
a block-like data and randomly change the block of original
data can help CNN network identify the character of target
program input; (3) is that the change of input may cause the
change of label, which can rich the variety of data-set and
improve the fitting accuracy.

VOLUME 7, 2019 183881

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

Large amount of program inputs are collected by running
the Algorithm2 for enough times. As for labels, we record the
number of target function execution times through the binary
instrumentation tool PinTool [25].

2) DATA-SET FILTERING
Many program inputs generated by Algorithm 2 cannot trig-
ger the target function, which are regarded as noise data in this
paper. The number of noise data should be selected appro-
priately since excessive noise data could result in low fitting
rate, while insufficient noise data might cause over-fitting.
Therefore, the noise data should be added appropriately in
the data-set. In this paper, the training data-set is constructed
according to a certain proportion of non-noise data and noise
data.

3) PROGRAM INPUT EMBEDDING
User input embedding converses the program input into
numeral matrix which is acceptable to the neural net-
work. There are two general input embedding methods,
real-valued vector embedding and one-hot vector embed-
ding. The real-valued vector embedding maps the pro-
gram input from the byte set {0x00, 0x01, . . . , 0xFF}N

to {R}N , converts a program input into an N × 1 float
vector. However, the real-valued element need to multi-
ply by the relevance score calculated by attention network
before the regression network, and may turn one element
to another, thus causing the fitting error while training.
One-hot embedding converts the program input from the
integer set {0x00, 0x01, . . . , 0xFF}N to a 256-dimension
vector {[1, 0, . . . , 0]T , [0, 1, . . . , 0]T , . . . , [0, 0, . . . , 1]T }N

[24]. Although one-hot vector contains high dimension and
introduces more parameters for the network, which resulting
in time consumption and memory redundancy while training
and predicting. Each element of one-hot vector is orthogonal,
which means that no side effect when multiplied by relevance
score. Thus we choose one-hot vector embedding to model
program input.

The output of network is the number of target function
execution times y ∈ N, which is a positive integer number
or zero. We use real-valued number to model y.

B. ARCHITECTURE OF ATTENTION-BASED TWO-PARTS
NEURAL NETWORK
The overall of network structure is shown in Figure 4. The
GRU layer and Dense layer calculate the relationship among
every component of one-hot vector input, the softmax layer
then generates the relevance score of each component, and
origin one-hot vector input multiply the relevance score
which is theweighted−program−input . The back-endCNN
maps theweighted−program−input into the execution times
of target function.

1) ATTENTION-BASED FRONT-END NETWORK
The GRU is a natural generalization of feed forward neu-
ral networks to sequences [13], [14] and known to learn

FIGURE 4. The attention-based network structure.

problems with long range temporal dependencies [12]. Given
a program input model in one-hot vector (x1, x2, . . . , xN) and
xi ∈ {0, 1}256. Here, we define the GRU unit at each time
step t to be a collection of vectors: an update gate zt , a reset
gate rt , a candidate set lt and a hidden state ht . And the GRU
transition equations are the following Equation (1):

rt = sigmoid(Wr · [ht−1, xt]),

zt = sigmoid(Wz · [ht−1, xt]),

lt = tanh(Wl · [rt × ht−1, xt]),

ht = (1− zt)× ht−1 + zt × lt ,

ot = sigmoid(Wo · ht), (1)

where xt is the t − th component of program input and
× denotes element-wise multiplication, [] denotes the cas-
cade of two vectors [15]. Since the value of the gating vari-
ables vary for each vector element, the GRU layer can learn
to represent information over multiple components scales.

The output of GRU can be simplify as Equation (2)

ht = fGRU ([ht−1, xt], ht−1),

ot = sigmoid(Wo · ht) (2)

183882 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

where fGRU is the simplified GRU transition equation. The
output ot can represent the relationship between Ext and
(Ex1, Ex2, . . . , Ext−1), and such form is similar to the attention
mechanism in [26].
ot can represent the importance of Ext in (Ex1, Ex2, . . . , Ext−1).

However, the relevance score of Ext should be the importance
of Ext in (Ex1, Ex2, . . . , ExN), and the score of every dimension
among all (Ex1, Ex2, . . . , ExN) should also have a uniform stan-
dard. So we permute the output of GRU and pass it through
Dense layer.
Dense layer is also named as fully connected(FC) layer

and consists of linear transformation. The permuted output
(o1, o2, . . . , oN)T = (ED1, ED2, . . . , ED256) is then pass to two
256-channel Dense layers, that is Equation (3)

Mt = Relu(W (1)
t · Dt + b(1)t),

mt = Relu(W (2)
t ·Mt + b(2)t),

1 ≤ t ≤ 256, t ∈ N (3)

where Relu is an activation function. (m1t ,m2i, . . . ,mN i)
denotes the importance of Ext in (Ex1, Ex2, . . . , ExN).

The permuted output of Dense layer (Em1, Em2, . . . , Em256)T

is passed to the N-channel softmax layer to get a uniform
standard of relevance score.
Softmax is a function that takes as input a vector of N

real numbers, and normalizes it into a probability distribution
consisting of N probabilities.
The over all transition equation of attention network is in

Equation (4).

Eht = fGRU ([Eht−1, Ext], Eht−1),

Eot = sigmoid(Wo · Eht),
EM = Relu(W (1)

· tanh(Eo)T + b(1)),

Em = Relu(W (2)
· EM + b(2)),

wij =
emji∑N
k=1 e

mk i
(4)

The output of attention network is Ew and 0 < wij < 1. All
dimensions except Xt dimension of xt are zero. And the input
of back-end network is Ex � Ew. So (w1X1 ,w2X2 , . . . ,wNXN)
can be the relevance score of program input (X1,X2, . . . ,XN).
And the higher the wt Xt is, the more important that Xt is in
(X1,X2, . . . ,XN).

2) REGRESSION-BASED BACK-END NETWORK
Generally, one attention layer is only effective to single output
[26], and classification network is multiple output. Thus we
choose regression network as back-end network. There are
three network structures to build a regression network, which
are feed forward neural network [17], RNN and CNN . With
the expanding scale of software, the size of program input has
gradually increased, and the program input of some commer-
cial software has reached megabytes. The parameters to be
trained of the forward neural network increase exponentially
with the increase of network input, making it unable to deal
with long sequence input. And gradient disappear problem

often occurs during training the feed forward network. The
RNN structure is uncommonly used in regression analysis.
Typically RNN suffers long training time and low training
efficiency compared with CNN [18]. CNN s have recently
enjoyed a great success in classification network [10] and
regression network [19], [20]. And CNN s can also deliver
outstanding performance in the availability of large training
set and making the training practical with powerful GPU
implementations. As a result, we construct a regression net-
work with CNN .

The output of attention network Ew multiplies the one-hot
vector input Ex and pass it to the CNN based regression net-
work. The output is Equation (5).

y = fCNN ([w1X1 · Ex1,w2X2 · Ex2, . . . ,wNXN · ExN]) (5)

And the transition equation of the whole network is in
Equation (6).

Eht = fGRU ([Eht−1, Ext], Eht−1),

Eot = sigmoid(Wo · Eht),
EM = Relu(W (1)

· tanh(Eo)T + b(1)),

Em = Relu(W (2)
· EM + b(2)),

wij =
emji∑N
k=1 e

mk i
,

y = fCNN ([w1X1 · Ex1,w2X2 · Ex2, . . . ,wNXN · ExN]) (6)

Although the structure of our network is different from
traditional attention-based network structure. But the total
framework of Equation (6) is basic the same with traditional
attention-based network [11].

C. TWO-STEP TRAINING METHOD
All traditional attention-based neural networks train the net-
work as a whole. The attention layer may not always work
well in explanation [26]. There are three reasons causing
such failure, (1) is that the training data-set is not good
enough to distinguish different labels and the attention layer
focuses on the wrong part of the input to make prediction.
It is extremely difficult to obtain perfect training data-set
and such problem always appears when the network is over-
fitting; (2) is that the attention layer introduces more training
parameters for the whole network and it is easy to trigger
over-fitting when network has too many parameters. And the
value calculated by attention network will be abnormal when
over-fitting occurs.(3) the layers behind the attention layer
have no prior knowledgewhile training. And it is likely to turn
the attention layer to a common regression layer like others
and the regression layer is not explainable.

We propose a two-step trainingmethod to train the network
and improve the probability of training a ‘‘good’’ attention
layer. And the overall training method is shown in Figure 5.
The back-end network is trained with averaged one-hot vec-
tor inputs in the first step. First step training just train the
regression network and no attention layer is involved. Hence
less over-fitting occurs. The whole network is trained with the

VOLUME 7, 2019 183883

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

FIGURE 5. The two-step training method.

origin one-hot vector inputs in the second step. The change
of key segment component will influence the output of fitted
back-end greatly and the layers that process key segment
component have a larger gradient value than other layers.
That is, the attention network can get a clearly direction of
where to focus as soon as training starts. Thus the attention
network can focus on the important part of the input and
improve the explainable ability.

The two-step training method can avoid some ill fittings
of attention network, but cannot avoid them all. Over-fitting
always occurs due to the random initialization and ran-
dom gradient descent algorithm. Under these circumstances,
the network is trained for several rounds and several epochs
every round. We then extract the attention networks, com-
pute the relevance scores of them and send them to sta-
tistical analysis algorithm to achieve accurate key segment
marking.

D. STATISTICAL ANALYSIS ALGORITHM
Assuming that the network is trained for R rounds and each
time forM epoches. Arm denotes them−th attention network
of the r − th round training. The attention network Arm ‘s
whole network fitting accuracy is αrm. The test sample is EX =
(X1,X2, . . . ,XN). The output of Arm is EW . And the statistical
analysis algorithm is shown in Algorithm 3.
For one round training, some epoches may suffer

over-fitting problem that and some may suffer low fitting
accuracy problem, it is very difficult to select a proper trained
network to calculate the correct relevance score among all
epochs. For every input component xi, we multiply the rel-
evance score with fitting accuracy wi × α and add the result
of all epoches together(as in line 8). By adding all Ew together,
the Ew of over-fitting network can be neutralized by other Ew of
well-fitting network. And by multiplying with α, the Ew of low
fitting accuracy network will take less importance among all
epoches. So the new relevance score Ewnew can represent the
relatively correct relevance score of one round fitted network.
Then k rough key segments is selected by sorting Ewnew with
descending order.

Algorithm 3 The Statistical Analysis Algorithm

Input: EX ← program input
Ex← one-hot vector program input
A← attention network
α← fitting accuracy of the whole network
EW ← the output of attention network
Ew← relevance score
k← the top k number selected from the target list

Output: KeySegment ← the key segment of Ex
1: keysegment_dict ← dict()
2: for r ∈ R− rounds do
3: Escore_w← []
4: for m ∈ M − epoches− of − round − r do
5: EW ← Arm.predict(EX)
6: Ew← (W1x1 ,W2x2 , . . . ,WN xN)
7: for wi ∈ Ew do
8: score_wi← score_wi + wi × αrm
9: end for
10: end for
11: for indice ∈ topk(k, Escore_w) do
12: keysegment_dict[indice]++
13: end for
14: end for
15: for indice ∈ keysegment_dict.keys do
16: if keysegment_dict[indice] > 0.4× R then
17: KeySegment.append(indice)
18: end if
19: end for
20: return KeySegment

Every round training starts over with random initialization.
Some rounds networks may suffer from over-fitting, and the
attention layer may be inaccurate. Training loss is another
problem that always occurs during network training and some
marked key segments are inaccurate. Over-fitting and training
loss are usually random, and will not dominant in all net-
works. In order to avoid the errors caused by such randomness
as far as possible, we count the rough key segments in every
round(as in line12) and select the segments whose count is
larger than threshold as key segments(as in line16 ∼ 17).
The threshold we set is a certain proportion of the total round
number and the proportion is 0.4 in line16.

VI. EXPERIMENTS
We select 4 linux real world programs. The target file formats
include jpg, elf, xml and pdf files. Each program is compiled
under ubuntu 16.04.11 ×64 system with the default compile
option and the gcc version is 5.4.0 build 20160609. For each
program we choose one position that the test case would
trigger. And we use AttentionMark to mark the key segments
for each test case. And we select S2E and NeuralTaint as
the comparison tools. The performance of AttentionMark is
evaluated on three aspects:(1) the effectiveness of two-step
training method; (2) the accuracy of key segments marking
performance; (3) time consumption.

183884 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

TABLE 2. Network configurations.

A. EXPERIMENT SETTINGS
All networks are trained in Ubuntu 16.04 x64 system and
trained by keras 2.11.1 with tensorflow 1.11.0 as back-end.
The graphics card is GTX 1080Ti, CPU is 5820k @3.4GHz,
and the memory is 32G.

We leverage Algorithm 2 to collect program inputs based
on the target test case. The label data of target function is
recorded by a plugin of Pintool [25]. We executes the target
test cases on multiple cores since our CPU contains 12 logic
cores, thus save a lot of time in the execution of target test
cases.

We regard the program input that result in zero output as
noise data. First we filter the data-set to make sure that the
numbers of non-noise data with different label contents are as
close as possible. Then we mix the non-noise data and noise
data in about 3: 1 ratio. After filtering and mixing, 15% of the
data-set is selected as verification data and the rest is training
data.

The overall network configuration is shown below
in Table 2.

The network training procedure generally follows the com-
mon regression network [21]. Namely, the training is carried
out by optimizing the mean square error(MSE [9]) objec-
tive using Adam [22](based on back-propagation [23]) with
momentum. The batch size is set to 128, momentum to 0.8.
The learning rate is initially set to 10−7. The initialization of
the network parameters is Xavier [27], [28].

For AttentionMark , we train network for 20 rounds and
10 epochs each round. For every round, we use two-step
training method and common training method to train the
network. The k in Algorithm 3 is 15% of the length of test
case.

For NeuralTaint , we train network for 50 rounds.
For S2E, we check the registers of conditional jump related

to target function. When registers are not tainted, we analyze
the path constrains when target function is triggered and get
the key segments.

FIGURE 6. The test case of jhead program. Yellow blocks are the key
segments.

B. EXPERIMENT RESULTS
1) PROGRAM 1: JHEAD
Jhead is an image processing software in linux. The target file
format is jpg. We choose the function process_DHT as the
target function. Such function is used to evaluate the quality
of picture. Triggering the function requires a switch − case
structure which can cause control flow dependency. The tar-
get file must have a file head with FF D8 and the jpg segment
head must be FF C4 to trigger the process_DHT function
and two bytes behind FF C4 checks weather the length of
the segment is illegal.

The test case is shown in Figure 6. And the indices of key
segments are [0, 1, 116, 117, 118, 119, 149, 150, 151, 152].
The key segments are FF D8(file head), FF C4(key word)
and the data length followed them. The target test case can
trigger process_DHT two times. The noise data generated by
Algorithm 2 is 3300 and non-noise data is 9000.
After training and statistical analysis, the importance score

of AttentionMark , AttentionMark without two-step training
and NeuralTaint is shown in Figure 7.

In Figure 7, AttentionMark and NeuralTaint have higher
relevance score on the key segments and AttentionMark with
common training method does not have the higher relevance
score on the key segments. However, NeuralTaint method
focus on several wrong indices due to the several over-fitting
rounds training.

Since the flag registers of control branch of process_DHT
contains no symbolic memory due to the control flow depen-
dency structure of jump table(switch-case structure). S2E
checks the path constrains when triggering the process_DHT ,
and many other irrelevant indices are marked as key seg-
ments. The S2E marks every segment head of png file due
to those heads affect the execution of other branches.

The analysis results of jhead program is shown in Table 3.
The accuracy rate is the number of correctly marked indices
divides the number of total correct indices. The false positive

VOLUME 7, 2019 183885

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

FIGURE 7. Relevance score of jhead for neural network based methods.

TABLE 3. Analysis results of jhead.

is the number of wrongly marked indices divides the number
of total marked indices.

Form the Table 3, we can see that AttentionMark can
mark the key segments accurately because of two-step
training method and statistical analysis algorithm and can
deal with the control flow dependency structure like jump
table. And NeuralTaint’s gradient value becomes abnor-
mal because of several rounds over-fitting training. For the
time consumption, neural network based methods cost more
time than traditional method because neural network needs
training. Since AttentionMark has a more complex struc-
ture than NeuralTaint , AttentionMark costs more time than
NeuralTaint .

2) PROGRAM 2: READELF
Readelf gets information from an elf file. The target file
format is elf , an executable file format under linux platform.
We choose the function process_section_headers, the number
of execution times represents the amount of section heads.
The function process_section_headers is executed in a cycle
structure, thus the execution times is controlled by the cyclic
control variable directly. The target file must have a file head
with 7F 45 4C 46, which is a standard elf file head, then the
48th offset of the target file is the cyclic control variable of
the function process_section_headers.

FIGURE 8. The test case of readelf program. Yellow blocks are the key
segments.

FIGURE 9. Relevance score of readelf For neural network based methods.

The test case is shown in Figure 8. And the indices of key
segments are [0, 1, 2, 3, 33, 34, 35, 47, 48, 49]. The key seg-
ments are 7F 45 4C 46(file head) and the 48th offset of input
is the cyclic control variable of target function. The target test
case can trigger process_section_headers six times. The noise
data generated by Algorithm 2 is 7260 and non-noise data is
19800.

After training and statistical analysis, the importance score
of AttentionMark , AttentionMark without two-step training
and NeuralTaint is shown in Figure 9.

In Figure 9, AttentionMark and NeuralTaint have higher
relevance score on the key segments and AttentionMark with
common training method does not have the higher relevance
score on all the key segments. However, NeuralTaint method
focus on several wrong indices due to the several over-fitting
rounds training.

For S2E , we directly checks the cyclic control vari-
able of process_section_headers manually. Because every

183886 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

TABLE 4. Analysis results of readelf.

component of elf ’s head is processed by the program, and
the path constrains of process_section_headers contain all
indices from [0-49].

The analysis results of readelf program is shown in Table 4.
Form the Table 4, we can see that AttentionMark can

mark the key segments accurately because of two-step train-
ing method and statistical analysis algorithm and can deal
with the cycle structure. NeuralTaint has a very high gra-
dient value at the cyclic control variable and other gradi-
ent value becomes inaccurate. For the program like readelf
that every byte of the user input is processed by the pro-
gram, it is quite difficult for traditional analysis tool like
S2E to analysis the control information flow if the target’s
directly branch registers are not tainted. And under taint
and over taint problem often arise here even with manually
help.

3) PROGRAM 3: MUPDF
Mupdf is a pdf processing software under linux. The tar-
get file format is pdf . We choose the target function
pdf _load_object . Target function process the obj object of
target pdf file. Such function is called by a function pointer,
whichmeans the function is dynamically invoked. The execu-
tion times of function pdf _load_object depends on the num-
ber of object. The legal object structure consists a sequence
number, a version number, key word ‘‘obj’’(6F 62 6A), con-
tent split symbol and space(20) among them. This experiment
target is a good case to test weather our method can deal with
virtual pointer structure.

The test case is shown in Figure 10. And the
indices of key segments are [9 − 17, 43, 44, 51 − 60,
93, 94, 100 − 109, 138, 139, 146 − 155, 178, 179,
186 − 195, 218, 219, 225 − 233]. And target test case can
trigger pdf _load_object six times. The noise data generated
by Algorithm 2 is 5280 and non-noise data is 14400.

After training and statistical analysis, the importance score
of AttentionMark , AttentionMark without two-step training
and NeuralTaint is shown in Figure 11.
In Figure 9, all the methods show six peaks, mean-

ing that the target input should be divided into six parts
which is corresponding to the fact. In AttentionMark’s rel-
evance score figure, the heights of each peak are nearly the
same. AttentionMark with common training method has one
extremely high peak. NeuralTaint’s relevance score has more

FIGURE 10. The test case of mupdf program. Yellow blocks are the key
segments.

FIGURE 11. Relevance score of mupdf For neural network based methods.

‘‘noise’’ than the other two methods, which may affect the
accuracy and false positive of the analysis result.

For S2E , the control branch of pdf _load_object contains
no symbolic memory due to the virtual pointer. And the
process of decoding obj structure is in information flow.
Therefore, the path constrains only contains the process of file
head checking. However, the execution of pdf _load_object
function has nothing to do with file head checking.

The analysis results of mupdf program is shown in Table 5.
Form the Table 5, we can see that AttentionMark can

mark the key segments accurately because of two-step train-
ing method and statistical analysis algorithm and can deal
with the virtual pointer structure and dynamic invoking.
NeuralTaint still has more ‘‘noise’’ in its relevance score than
AttentionMark which leads to inaccuracy. S2E cannot anal-
ysis the control flow dependency structure contains dynamic
invoking and virtual pointer.

VOLUME 7, 2019 183887

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

TABLE 5. Analysis results of mupdf.

FIGURE 12. The test case of xmlwf program. Yellow blocks are the key
segments.

4) PROGRAM 4: XMLWF
Xmlwf is a xml processing software under linux. The target
file format is xml. We choose the target function docontent .
Target function process the content tag head object of target
xml file. Such function is called under a switch-case structure
and such structure is under a branch like the example code in
Section II. The legal content tag head is consisted of < .. >

\n structure.
The test case is shown in Figure 12. And the indices of

key segments are [0-9, 12, 19, 42, 43, 81, 82, 89, 99, 100,
104, 153, 154, 161, 183, 184, 224, 230, 231, 235, 241, 242,
243, 253, 254]. And target test case can trigger doconten eight
times. The noise data generated by Algorithm 2 is 8580 and
non-noise data is 23400.

FIGURE 13. Relevance score of xmlwf for neural network based methods.

TABLE 6. Analysis results of xmlwf.

After training and statistical analysis, the importance score
of AttentionMark , AttentionMark without two-step training
and NeuralTaint is shown in Figure 13.

In Figure 13, all the methods show six peaks, mean-
ing that the target input should be divided into six parts
which is corresponding to the fact. In AttentionMark’s rel-
evance score figure, the heights of each peak are nearly the
same. AttentionMark with common training method has one
extremely high peak. NeuralTaint’s relevance score has more
‘‘noise’’ than the other two methods, which may affect the
accuracy and false positive of the analysis result.

For S2E , the control branch of doconten contains no sym-
bolic memory due to switch case and other control flow
dependency structure. xmlwf processes the target file as a
parser, which means that every byte in the user input is pro-
cessed by the control branch of xmlwf . The path constrains in
the doconten branch thus contains every component of target
input.

183888 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

FIGURE 14. Relevance score of xmlwf for neural network based methods
with visible character.

TABLE 7. Analysis results of xmlwf with visible character.

The analysis result of xmlwf program is shown
in Table 6.

Form the Table 6, we can see that AttentionMark has a
higher accuracy rate and lower false positive rate than com-
mon training method and NeuralTaint . However, the analysis
accuracy is not as high as other software. The reason is
that xmlwf ’s parser would stop parsing if current byte is
not visible character. And the Algorithm 2 generates lot of
test cases that contain invisible character, which reduces the
fitting accuracy of the neural networks.

We then replace [0,0xFF] byte with the visible character
in Algorithm 2, and run the AttentionMark and NeuralTaint .
The relevance score with visible character is shown
in Figure 14. And the analysis result of xmlwf program with
visible character is shown in Table 7.
From Table 14, all three neural network methods show an

improvement in analysis accuracy rate and false positive rate.
AttentionMark canmark the key segments accurately because

of two-step training method and statistical analysis algorithm
and can deal with common control flow dependency struc-
ture. Traditional dynamic analysis tool S2E suffers over taint
problem while analyzing common control flow dependency
structure code.

Experiments on four general software show that attention
mechanism based method shows a higher analysis rate and
lower false positive rate than gradient based method and
traditional dynamic analysis method. And two-step training
method is more efficient than common training method.
However, there are still inaccuracies and false positives
in AttentionMark , especially some input contents need to
be limited. Training method and statistical analysis algo-
rithm still need to improve in future work. In general,
attention mechanism shows great potential in key segments
marking.

VII. CONCLUSION
In this paper, we present AttentionMark , a key segment mark-
ing tool based on attention mechanism and deep learning.
We propose a two-parts network with attention mechanism
to analyze the key segments of target program function exe-
cution and prove that the attention part of our network can
work like traditional attention network both in theory and
experiments. Further, we address the reasons for the inaccu-
racy of traditional attention network and propose the two-step
training method to train our two-parts network. Experiment
results show that two-step trainingmethod has higher analysis
accuracy rate and lower false positive rate than common
training method and gradient-basedNeuralTaint . By compar-
ing with traditional dynamic analysis tools, AttentionMark
can correctly analyze control flow dependency structure like
switch-case(jump table), cycle variable control and virtual
pointer.

REFERENCES
[1] E. J. Schwartz, T. Avgerinos, and D. Brumley, ‘‘All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),’’ in Proc. IEEE Secur. Privacy, May 2010,
pp. 317–331.

[2] J. Clause, W. Li, and A. Orso, ‘‘Dytan: A generic dynamic taint
analysis framework,’’ in Proc. Int. Symp. Softw. Test. Anal., 2007,
pp. 196–206.

[3] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, ‘‘Strict control dependence
and its effect on dynamic information flow analyses,’’ in Proc. 19th Int.
Symp. Softw. Test. Anal., 2010, pp. 13–24.

[4] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, ‘‘DTA++:
Dynamic taint analysis with targeted control-flow propagation,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, 2011,
pp. 1–14.

[5] L. P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen, B. Wu, and
S. Cheemalapati, ‘‘SpanDex: Secure password tracking for Android,’’
in Proc. 23rd USENIX Secur. Symp. (USENIX Security 14), 2014,
pp. 481–494.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987.

[7] D. F. Specht, ‘‘The general regression neural network-rediscovered,’’ Neu-
ral Netw., vol. 6, no. 7, pp. 1033–1034, 1993.

[8] T. Liu, K.Wang, L. Sha, B. Chang, and Z. Sui, ‘‘Table-to-text generation by
structure-aware seq2seq learning,’’ in Proc. 32nd AAAI Conf. Artif. Intell.,
2017.

VOLUME 7, 2019 183889

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

[9] Y. Ephraim and D. Malah, ‘‘Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,’’ IEEE Trans. Acoust.
Speech Signal Process., vol. 32, no. 6, pp. 1109–1121, Apr. 1984.

[10] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis., 2013, pp. 818–833.

[11] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473. [Online].
Available: https://arxiv.org/abs/1409.0473

[12] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[13] P. J. Werbos, ‘‘Backpropagation through time: What it does and how to do
it,’’ Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[14] D. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representations
by back-propagating errors,’’ Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[15] K. Sheng, R. Socher, and C. D. Manning, ‘‘Improved semantic repre-
sentations from tree-structured long short-term memory networks,’’ 2015,
arXiv:1503.00075. [Online]. Available: https://arxiv.org/abs/1503.00075

[16] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[17] E. P. P. A. Derks, M. S. S. Pastor, and L. M. C. Buydens, ‘‘Robust-
ness analysis of radial base function and multi-layered feed-forward neu-
ral network models,’’ Chemometrics Intell. Lab. Syst., vol. 28, no. 1,
pp. 49–60, 1995.

[18] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ‘‘A convolutional neural
network formodelling sentences,’’ 2014, arXiv:1404.2188.[Online]. Avail-
able: https://arxiv.org/abs/1404.2188

[19] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
‘‘Mastering the game of go without human knowledge,’’ Nature, vol. 550,
no. 7676, p. 354, 2017.

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis
‘‘Mastering the game of go with deep neural networks and tree search,’’
Nature, vol. 529, no. 7587, p. 484, 2016.

[21] D. M. Bates and D. G. Watts, ‘‘Nonlinear regression analysis and its
applications,’’ Technometrics, vol. 32, no. 2, pp. 219–220, 1988.

[22] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, ‘‘Backpropagation applied to handwritten
zip code recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[24] W.-C. Chou, P. A. Beerel, R. Ginosar, R. Kol, C. J. Myers, S. Rotem,
K. Stevens, and K. Y. Yun, ‘‘Average-case optimized technology mapping
of one-hot domino circuits,’’ in Proc. 4th Int. Symp. Adv. Res. Asyn-
chronous Circuits Syst., Mar./Apr. 1998, pp. 80–91.

[25] [Online]. Available: https://software.intel.com/en-us/articles/pin-a-
dynamic-binary-instrumentation-tool

[26] S. Jain and B. C. Wallace, ‘‘Attention is not explanation,’’ 2019,
arXiv:1902.10186. [Online]. Available: https://arxiv.org/abs/1902.10186

[27] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for
fast feature embedding,’’ 2014, arXiv:1408.5093. [Online]. Available:
https://arxiv.org/abs/1408.5093

[29] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, ‘‘Driller: Augmenting
fuzzing through selective symbolic execution,’’ in Proc. NDSS, vol. 16,
2016, pp. 1–16.

[30] V. Chipounov, V. Kuznetsov, and G. Candea, ‘‘S2E: A platform for in-vivo
multi-path analysis of software systems,’’ inProc. 16th Int. Conf. Architect.
Support Program. Lang. Oper. Syst., 2011, pp. 265–278.

[31] E. Shin, C. Richard, D. Song, and R. Moazzezi, ‘‘Recognizing functions
in binaries with neural networks,’’ in Proc. 24th USENIX Secur. Symp.
(USENIX Security 15), 2015, pp. 265–278.

[32] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, ‘‘Neural nets can learn
function type signatures from binaries,’’ in Proc. 26th USENIX Secur.
Symp. (USENIX Secur. 17), 2017, pp. 99–116.

[33] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, ‘‘NEUZZ: Efficient
fuzzing with neural program smoothing,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2019, pp. 803–817.

[34] T. Wang, T. Wei, G. Gu, and W. Zou, ‘‘TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2010, pp. 497–512.

[35] X. Zhang, C. Feng, R. Li, J. Lei, and C. Tang, ‘‘NeuralTaint: A key
segment marking tool based on neural network,’’ IEEE Access, vol. 7,
pp. 68786–68798, 2019.

[36] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, ‘‘Dowser:
A guided fuzzer to find buffer overflow vulnerabilities,’’ in Proc. 22nd
USENIX Secur. Symp., 2013, pp. 49–64.

[37] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, ‘‘FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,’’ ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[38] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
‘‘VUzzer: Application-aware evolutionary fuzzing,’’ in Proc. NDSS,
vol. 17, 2017, pp. 1–14.

[39] P. Chen and C. Hao, ‘‘Angora: Efficient fuzzing by principled search,’’ in
Proc. IEEE Symp. Secur. Privacy, May 2018, pp. 711–725.

[40] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX Annu. Tech. Conf. (FREENIX Track), vol. 41, 2005, p. 96.

[41] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, ‘‘BitBlaze: A new approach to
computer security via binary analysis,’’ in Proc. Int. Conf. Inf. Syst. Secur.
Berlin, Germany: Springer, 2008.

[42] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, ‘‘Repeat-
able reverse engineering with PANDA,’’ in Proc. 5th Program Protection
Reverse Eng. Workshop, Los Angeles, CA, USA, Dec. 2015, pp. 1–4.

[43] S. Lecomte, ‘‘Élaboration d’une représentation intermédiaire pour
l’exécution concolique et le marquage de données sous windows,’’ APA,
Washington, DC, USA, Tech. Rep., 2014.

[44] B. S. Pak, ‘‘Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution,’’ School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-12-116, 2012.

[45] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, ‘‘QSYM: A practical concolic
execution engine tailored for hybrid fuzzing,’’ inProc. 27th USENIX Secur.
Symp. (USENIX Security 18), 2018, pp. 745–761.

[46] H. Zhang, I. Goodfellow, D.Metaxas, andA. Odena, ‘‘Self-attention gener-
ative adversarial networks,’’ 2018, arXiv:1805.08318. [Online]. Available:
https://arxiv.org/abs/1805.08318

[47] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. NIPS, 2014, pp. 2672–2680.

[48] X. Wang, R. Girshick, A. Gupta, and K. He, ‘‘Non-local neural networks,’’
in Proc. CVPR, Jun. 2018, pp. 7794–7803.

[49] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, ‘‘Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,’’ 2014,
arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/1412.3555

[50] A. Shrikumar, P. Greenside, and A. Kundaje, ‘‘Learning important features
through propagating activation differences,’’ in Proc. 34th Int. Conf. Mach.
Learn., vol. 70, 2017, pp. 3145–3153.

XING ZHANG received the B.Sc. and M.Sc.
degrees from the National University and Defense
Technology, China, in 2014 and 2016, respec-
tively. He is currently pursuing the Ph.D.
degree. His main research interests include infor-
mation security, deep learning, and software
vulnerabilities.

183890 VOLUME 7, 2019

X. Zhang et al.: Marking Key Segment of Program Input via Attention Mechanism

CHAO FENG received the B.Sc., M.Sc., and Ph.D.
degrees from the National University and Defense
Technology (NUDT), China, in 2004, 2005, and
2011, respectively. He is currently an Associate
Professor with the College of Electronic Sci-
ence, NUDT. His main research interests include
protocol analysis, network security, and software
vulnerabilities.

RUNHAO LI received the B.Sc. degree from
the National University and Defense Technology,
China, in 2017. He is currently pursuing the M.Sc.
degree. His main research interests include infor-
mation security and software vulnerabilities.

JING LEI received the Ph.D. degree from
the National University of Defense Technology
(NUDT), China, in 2003. She is currently a Profes-
sor with the College of Electronic Science, NUDT.
Her main research interests include information
security and information coding.

CHAOJING TANG received the Ph.D. degree from
the National University of Defense Technology
(NUDT), China, in 2003. He is currently a Profes-
sor with the College of Electronic Science, NUDT.
His main research interests include information
security, software vulnerabilities, and electromag-
netic countermeasure.

VOLUME 7, 2019 183891

