IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 26, 2019, accepted December 12, 2019, date of publication December 18, 2019,

date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960626

Incorporating Label Co-Occurrence Into Neural
Network-Based Models for Multi-Label

Text Classification

JIAQI YAO ', KEREN WANG ™, AND JIKUN YAN

National Key Laboratory of Science and Technology on Blind Signal Processing, Chengdu 610041, China

Corresponding author: Jiagi Yao (jiaqi_yao@163.com)

ABSTRACT Multi-label text classification (MLTC) addresses a fundamental problem in natural language
processing, which assigns multiple relevant labels to each document. In recent years, Neural Network-based
models (NN models) for MLTC have attracted much attention. In addition, NN models achieve favorable
performances because they can exploit label correlations in the penultimate layer. To further capture and
explore label correlations, we propose a novel initialization to incorporate label co-occurrence into NN
models. First, we represent each class as a column vector of the weight matrix in the penultimate layer, which
we name the class embedding matrix. Second, we deduce an equation for correlating the class embedding
matrix with the label co-occurrence matrix, ensuring that relevant classes are denoted by vectors with
large correlations. Finally, we provide a theoretical analysis of the equation, and propose an algorithm to
calculate the initial values of the class embedding matrix from the label co-occurrence matrix. We evaluate
our approach with various text extractors, such as Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN) and Transformer on four public datasets. The experimental results demonstrate that our
approach markedly improves the performance of existing NN models.

INDEX TERMS Multi-label text classification, label co-occurrence, initialization, neural network, class

embedding.

I. INTRODUCTION

In many practical applications, a document is often labeled
with multiple labels. For example, descriptive texts about
books, music or videos may be labeled with more than
one label, and a news document may belong to sev-
eral topics [1], [2]. Multi-label text classification (MLTC)
addresses the problem by learning a mapping function from
a document to a relevant subset of the whole classes.

Label correlations are informative to MLTC [3], [4].
For example, if a movie’s descriptive text is labeled with
“Kung Fu”, it is usually also labeled with “Chinese”.
Many models exploit label correlations to improve MLTC
performance [3]-[8]. These models can be roughly divided
into three categories based on the order of label correlation
they exploit: (1) first-order, which ignores the correlation of
labels; (2) second-order, which considers the pairwise corre-
lation between labels; (3) high-order, which impose influence
of all other labels on each label [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanzheng Zhu

183580

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

In recent years, considerable progress has been made in
deep learning, and NN models have had a dramatic impact on
many fields of machine learning [14]. There are also many
NN models that address the problem of MLTC. The key
difference among different NN models for MLTC is the text
feature extractor [49], such as Convolutional Neural Network
(CNN, [22]), Recurrent Neural Network (RNN, [28], [47],
[48]) and Transformer [33]. In addition, these NN models
achieve favorable performances because they can exploit
label correlations in the penultimate layer by training [2].

To further explore label correlations for NN models,
we propose a novel initialization to incorporate label
co-occurrence into NN models. The penultimate layer of
NN models is close to the output, which suggests there is
more class-specific information in the layer and it is easier
to learn class-specific weights in the layer. Thus, just as word
embedding represents a word as a continuous dense vector,
we represent each class as a column vector of the weight
matrix in the penultimate layer of NN models, which we
name the class embedding matrix. And the class probability
of an example is calculated by the correlation between its

VOLUME 7, 2019

https://orcid.org/0000-0002-7390-5156
https://orcid.org/0000-0002-5846-7119
https://orcid.org/0000-0003-2600-968X
https://orcid.org/0000-0001-5160-9623

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

IEEE Access

feature vector and the class vector. The motivation for our
approach is based on the fact that the more examples the two
classes are both associated with, the closer the two corre-
sponding class vectors are. With this motivation, we derive an
equation between the class embedding matrix and the label
co-occurrence matrix. The equation correlates the included
angle between two class vectors with the co-occurrence times
of the two classes. After theoretical analysis, we find that
the equation does not necessarily have an analytical solution.
Therefore, we propose an approximate algorithm to calculate
the initial values of the class embedding matrix from the
label co-occurrence matrix with this equation. Finally, we use
the initial values to initialize the class embedding matrix.
Our approach belongs to the second-order, which uses the
pairwise correlation between labels. In addition, we evaluate
our approach with CNN, RNN and Transformer on four
public datasets. For each text feature extractor we use the
state-of-the-art architecture, i.e. XML-CNN for CNN [22],
Hierarchal Attention Network for RNN [28] and BERT for
Transformer [33]. The experimental results demonstrate that
our approach works for the various text feature extractors, and
BERT with our approach achieves the best performance.

In summary, the key contributions of this work are as

follows:

o We represent each class as a column vector of the weight
matrix in the penultimate layer, which we name the class
embedding matrix. And then we derive an equation to
correlate the label co-occurrence matrix and the class
embedding matrix.

o We analyze the properties of the equation between the
label co-occurrence matrix and the class embedding
matrix, and design an algorithm to calculate the initial-
ized values for the class embedding matrix from the label
embedding matrix with the equation.

« We validate the effectiveness of our approach with dif-
ferent text feature extractors on four public datasets.
In addition, for each text feature extractor, we adopt
state-of-the-art architecture, i.e. TextCNN for CNN,
Hierarchical Attention Network for RNN and BERT for
Transformer.

Il. RELATED WORKS

A. TEXT FEATURE EXTRACTOR

Text feature extractors can be categorized into two families.
One represents a word as a one-hot vector, while the other
represents a word as a continuous dense vector of fixed length
(i.e. word embedding). The text feature extractor based on
one-hot, such as tf-idf, cannot model the similarities between
words, resulting in a lack of semantic information. How-
ever, word embedding, which is trained on a large corpus,
can capture semantic information via the co-occurrence of
words. And word embedding is a kind of distributed rep-
resentation [16]. CBOW and Skip-Gram [17]-[20] are two
popular methods for training word embedding. For the above
advantage, many text classification models based on word
embedding have been proposed [15]. These models usually

VOLUME 7, 2019

represent text in terms of word embedding and then input
into different neural networks. These models can be roughly
divided into two categories according to the architecture of
the neural network they use: models based on CNN [21]-[24]
and RNN [28], [29].

Recently, some researchers have argued that a word has
different meanings in different contexts [30], and have
thus proposed contextualized word-embedding and various
fine-tuning approaches, such as ULMFiT [31], GPT [32],
and BERT [33]. These models pre-train language models
on certain language model objectives (e.g. the next word
prediction), and then fine-tune a supervised downstream
task. Among these models, the basic block of GPT and
BERT is Transformer, which is composed of attention mecha-
nism [25]. These achieve state-of-the-art results in many NLP
tasks.

B. MULTI-LABEL CLASSIFICATION MODELS

Multi-label classification is to learn a function to associate
an example with multiple relevant labels. In addition, these
models can be divided into two families: i.e., problem trans-
formation models and algorithm adaptation models [1], [34]:

Problem transformation models fit data to algorithms.
Models representative of this type include Binary Rele-
vance [35], Classifier Chains [36], Calibrated Label Rank-
ing [37] and Label Power [38]. Binary Relevance transforms
multi-label classification into many binary classifiers, and
thus does not exploit any correlation among classes. Classi-
fier Chain constructs a chain of binary classifiers that receives
the output of previous classifiers as partition input. Calibrated
Label Ranking constructs a set of classifiers between pair-
ing classes. Label Power directly transforms multi-label into
multi-class classification.

Algorithm transformation models fit algorithms to
data. Models representative of this type ML-kNN [39],
ML-DT [40], Rank-SVM [41], Modified NN models
[2], [11]. ML-kNN adapts kNN to multi-label classification
in the framework of Bayesian probabilities. ML-DT primarily
modifies the criterion of node splitting in the decision tree
model to adapt to the multi-label classification. Rank-SVM
modifies the SVM objective function by maximizing the
distance between relevant and irrelevant labels. NN models
also modify the loss function (e.g. the pairwise loss function,
the binary cross entropy function) for adaptation.

Ill. APPROACH

In this section, we present our approach, which aims to incor-
porate label co-occurrence into NN models. First, we briefly
review the neural network-based models for MLTC. Then,
we present the design of the label co-occurrence matrix, and
derive the corresponding equation with the weight matrix in
the penultimate layer, which we name the class embedding
matrix. Finally, we provide some theoretical analysis of the
matrix decomposition that the equation involves and propose
an algorithm to calculate the initial values of the class embed-
ding matrix from the label co-occurrence matrix. For ease

183581

IEEE Access

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

TABLE 1. Notations.

Notations Mathematical Meanings
| X The cardinality of set X
RN N-dimension real number field
{0,1}P D-dimension vector composed of 0 and 1
o(z) Sigmoid function m
AT Matrix Transpose of A
[|v]|2 2-norm of vector v
det(A) The determinant of Matrix A
Al 7 Frobenius norm of A
I The indicator function
diag(ai,az,...,an) A square, diagonal matrix with diagonal entries given by a1, a2, ..., an

of reference, we summarize major notations throughout this
paper in Table 1. In addition, all matrices are valid for real
numbers.

A. NEURAL NETWORK-BASED MODELS FOR
MULTI-LABEL TEXT CLASSIFICATION
We denote an example set by X and let L = {l1, o, ..., |1}
be the class set. In MLTC, an example x; € X(1 <i < |X])is
labeled with multiple classes in L, which we denote by y; €
Y C {0, 1}/, where y;; = 1(1 < j < |L|) if x; is with the
class /;. The task of MLTC is to learn from the training dataset
{X, Y }training to approximate a mapping function f : x; — y;.
Rank loss is one of the MLTC loss functions that describes
the average fraction of reverse-ordering label pairs between
the relevant and irrelevant labels. Given an example (x, y) €
(X, Y), for the mapping function f the rank loss is defined as
follows [9]:

Ly (f, (x,)
1
= c0) Y [y > F@]+ 510, =f0g] (1)

Yp<Vq

where c(y) is the cost for a mistake which may depend on
properties of ground truth y, and f'(x), is the prediction score
for label p.

Unfortunately, the rank loss is nonconvex and is thus,
difficult to minimize. However, two kinds of convex surrogate
loss functions for NN models are proposed, and proven to be
consistent with the rank loss [9], [10]. One is the following
pairwise surrogate loss function [9]:

o exp (= () —f(x)y)

P @EYr XYir
(2

Jpw(fa (x,y) = el [yirl
r r

where y, is the relevant subset of y, and y;, is the irrelevant
subset of y. The pairwise rank loss function is implemented
in the algorithm called BP-MLL [11].

The other is the following univariate surrogate loss func-
tion [10]:

L]

Juni(f (. 30) =) Y log (1 +exp (=3 ()p) 3)

p=1

183582

where y;," € {—1, 1}. If we set c(y) = 1 and apply sigmoid
activation function in the output layer, then we get the Binary
Cross Entropy (BCE) loss function [2]:

Jce(f, (x,¥))
IL]

== (yplog (o (F)p) + (1= yp) log (1 — o (F(x),)
€

The BCE loss function has been proven to be consistent
with the rank loss [2], [10]. Additionally, many NN models
use the BCE loss function because of its simplicity and
effectiveness [12]. Therefore, our approach is based on the
BCE loss function.

B. EQUATION BETWEEN LABEL CO-OCCURRENCE
MATRIX AND CLASS EMBEDDING MATRIX

Our approach takes the original NN models as the basic
models. We first extract a feature vector z : D x 1 from
a text via a feature extractor. The feature extractor can be
CNN, RNN or Transformer. Then, just as the word embed-
ding matrix represents each word as a continuous vector,
we represent each class as each column vector of weight
matrix W : D x |L| in the penultimate layer. Leto : |L| x 1
equal to W7 z. Finally, we set p = sigmoid (o), where p is
with the dimension of |L| x 1. Additionally, sigmoid is an
element-wise function, i.e. p; = m,l <j < |L|
NN models with BCE loss function for MLTC are illustrated
in Fig. 1.

Typically, if p; > 0.5, the input text is determined to
be associated with the corresponding class /;. And if p; >
0.5, then 0o; > 0, which means w;7 - z > 0, where w;
is the i-th column of the class embedding matrix W. Thus,
on {X, Y }raining, we get the following:

Ajj =P<wiT~z>0andeT-z>0)
_ #G)

N Q)]
Bj; =P<wiT~z>OorwJ~T~z>O)
_ #HO+#G) —#G)) ©)

N

VOLUME 7, 2019

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

IEEE Access

Class Embedding Matrix

W:D x |L|
o
Text > > >
Feature
W'z
Extractor Matrix Multiply
zzD x 1
Feature Vector
o:|L| x1 p:|Ll x1
Output Vector Probability Vector

FIGURE 1. NN models for MLTC.

A
cyj ==L

i
Bjj
P(wi-z>0andwj-z > 0)
P(wi-z>0orwj-z>0)
B #(i,))

#(0) +#() —# .)
where N is the number of training examples, #(i,j) is
the number of examples that are associated with both
l; and [;, and #(i) is the number of examples that are
with [;. Compared with (5) and (6), (7) has an advantage
where the numerator and denominator have the same order
of magnitude, guaranteeing the stability of the numerical
calculation.

Let 6;; denote the included angle between w; and wy;.
w;t and ij- are respectively the vertical vector of w; and
w;j. We refer to the included angle between w; and z as 6,
and based on the property of cosine function, we get the
following:

(N

T
wi-z= |will2 llzllzcos(®) >0, 0<6 <= (8

As shown in Fig. 2, and according to (8), we get the
following:

T — 0
P(Wi'Z>Oande-Z>()):% 9)
T+ 0;
P(Wi'Z>OOI'Wi'Z>O)=u (10)
(2m)
Plwiz=Oudwy z20) (r=0)
P(wi-z>00rwj-z>0) (7 +6;)
Substituting (7) into (11), we get the following:
1 -Gy
oy = L= (12)
1+ Cj

VOLUME 7, 2019

FIGURE 2. Geometric Illustration of (9)-(11).

Let Z;; = cos(6;;), then we get the following:

(1l -Gy
Zjj = cos <u>
1+ Cj
= cos (6;)
_ Wi - Wj
(hwillz [will,)
Expressing (13) in the form of a matrix yields the following:

Z=cosCL=O) _yry (14)
1+0)
where Z is composed of Z;;(1 < i,j < |L|), C is composed of
Cij(1 < i,j < |L|). For that [[will2 = wi" wi = ¢ = 1, (14)
is without normalization.

Equation (14) is the key result of our approach, which
correlates the class embedding matrix W with the label
co-occurrence matrix X. The equation ensures that the more
examples the two classes share, the closer the distance of their
corresponding vectors, and vice versa. In addition, the label

(13)

183583

IEEE Access

—

. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

Input: Z
Output: W
Letd = le — 9,errorp,e = +00,e = le — 3
error = |WTW — Z||r
while |error — errorpye| > 0:
ErTOTpre = ETTOT

_ d
W =W — ezt
error = |[WTW — Z||p

FIGURE 3. Algorithm to approximate the decomposition of Z into W7 Ww.

co-occurrence matrix Z can be counted and calculated from
the training dataset. Thus, the initial values of the class
embedding matrix can be calculated from Z, which we denote
by W*, and the theoretical analysis on the calculation is
deferred to III-C. Finally, we use W* to initialize W.

C. ANALYSIS ON THE DECOMPOSITION OF THE LABEL
CO-OCCURRENCE MATRIX Z
Equation (14) involves the decomposition of the label
Co-occurrence matrix Z into W7 W. In this section, we ana-
lyze whether the properties of matrix Z ensure that the
decomposition exists.

According to the definition of Z, the following properties
hold:

(1) Z is a symmetric real matrix.

@ 1Zl =1

3 Zi=1

The decomposition of Z into W W exists, if and only if
Z is positive definite or positive semi-definite [13]. However,
the properties of Z cannot ensure that Z is positive definite
or positive semi-definite. Let us take a 3 x 3 matrix M3 for
example:

1 a b
a 1 ¢
b ¢ 1

where —1 < a,b,c < l.det(M3) = 1 —a® = b*> — > +
2abc. If M3 is positive definite or positive semi-definite, then
det(M3) > Oisnecessary [13]. However, the value of def(M3)
depends on the value of a, b, ¢, and it may be less than 0, for
example, whena = b = c = —1,det(M3) = —4 < 0.

Therefore, the decomposition of Z into W/ W does not
necessarily exist. So we propose an algorithm to approximate
the decomposition, which is shown in Fig. 3. We design
an objective function error = |WTW — Z||p, which is
minimized by the gradient descent algorithm. If the decom-
position exists, then error = 0. If the decomposition does
not exist, the algorithm shown in Fig.3 makes W’ W approx-
imate Z by minimizing error, and ensures the properties
of Z as much as possible. When minimizing error, take
w; and w; for example, w; - w; approximates z;. Thus W
satisfies that the more examples the two classes are both asso-
ciated with, the closer the two corresponding class vectors
are.

183584

TABLE 2. A summary of dataset.

datasets #train #valid — #test |L]| L
Reuters-21578 7,002 778 3,022 118 1.24

RCV1-v2 20,835 2,314 781,265 103 3.24

AG-multi 74,784 9,348 9,348 12 2.74
20newsgroup 10,183 1,131 7,532 33 2.75

IV. EXPERIMENTS

In this section, the four public datasets used in this study
are first introduced. Then, details of how to implement our
approach with different text feature extractors are presented.
Finally, experimental results are reported and discussed.

A. DATASET
We collect four public MLTC datasets to evaluate our
approach.

Reuters-21578. Reuters-21578 consists of 10802 texts,
which is often used for MLTC evaluation [42].

RCV1-v2. RCV1-v2 is made up of many documents,
including 20,835 training documents and 781,265 test doc-
uments [43] within 103 classes.

AG-multi. We obtain the AG corpus on the web,! which
contains 496,835 classified news articles. We collect news
documents that are classified by multiple labels to construct
the multi-label text datasets. In addition, any class with less
than 100 documents is removed. Finally, we get the AG-multi
dataset of 93,480 news articles within 12 classes. We ran-
domly select 80% of AG-multi for training, 10% for validat-
ing and 10% for testing.

20newsgroup. The 20newsgroup’ dataset is roughly
evenly partitioned into 20 groups, such as ‘talk.politics.misc’,
‘rec.sport.hockey’, etc. We split the newsgroups by ‘., for
example, ‘talk.politics.misc’ is split into ‘talk’, ‘politics’
and ‘misc’. And then, we get a collection of multi-label
documents.

For Reuters-21578, RCVI1-v2, and 20newsgroup,
we reserve 10% of the training dataset for validation. The
statistics of these datasets are summarized in Table 2, where
#train, #valid and #test represent the corresponding number
of examples, |L| represents the number of total classes, and
L represents the average of labels per example.

B. IMPLEMENTATION DETAILS

In this work, we take CNN, RNN, and Transformer as the text
feature extractors. Next, we elaborate on three state-of-the-art
models that use each of these text feature extractors. For each
model, we use BCE as the loss function. And for simplicity,
we do not introduce the output layer, which has already been
introduced and described before.

1) CONVOLUTIONAL NEURAL NETWORK
For CNN, we adopt XML-CNN as the basic architec-
ture [12]. The whole architecture is shown in Fig. 4. We first
]http://www.di.unipi‘it/N gulli/AG_corpus_of_news_articles.html,
accessed on July, 10,2019
2http://qwone.com/ jason/20Newsgroups/, accessed on July,10,2019

VOLUME 7, 2019

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

IEEE Access

Text Word Embedding
Representation

Feature Vector

[TT11

convolution pooling ~ FC

FIGURE 4. XML-CNN.

represent the text with the pre-trained word vectors, and then
apply convolutional and pooling operations. We then add a
fully-connected (FC) layer for controlling the dimension of
the feature vector v.

For all datasets, we use the following: pre-trained
word2vec vectors that are from [19] (words that do not appear
in pre-trained word2vec vectors are initialized randomly fol-
lowing a uniform distribution); convolution kernel size of
3xd,4 xd and 5 x d, where d is the dimension of
pre-trained word2vec vectors; 256 convolution kernels for
each size, rectified linear activation function; dropout rate
of 0.5 for regularization. The dropout layer is added before the
convolutional layer. In addition, the dimension of v equals the
number of total class for each dataset. We adopt Adam [45] to
optimize the parameters, and the learning rate is determined
by the performance on the validating dataset.

2) RECURRENT NEURAL NETWORK

We use Hierarchical Attention Networks (HAN, [28]) as the
basic model for RNN. HAN applies both word-level and
sentence-level attention mechanism. In this study, we only
apply the word-level attention mechanism, and the whole
architecture is shown in Fig. 5. We first embed the words to
vectors vy, vz, - - - , vy through the pre-trained word embed-
ding matrix. Then, we use a bidirectional GRU and word
attention to get the representation of a text. GRU stands for
Gated Recurrent Unit, which is a kind of variant of RNN. The
whole calculation is listed specifically as follows:

— —
hy = GRU (vy), tell,T]
7 =GRU(v)., tell,T]
— <«
by = e |
Uy = tanh (Wht —+ b)
. exp (utTuW)
> exp (utTuW)

s = Za,h,
t

Finally, we input s into an FC layer to get the feature vector
v. In addition, the detailed settings of RNN for MLTC are
the same pre-trained word2vec vectors and dimension of the

VOLUME 7, 2019

Feature Vector

uW
Ak f— - i
7,] ;TZ E
\ | |
U1 U2 vr

FIGURE 5. Hierarchical attention network.

Feature Vector

BERT

FIGURE 6. BERT.

feature vector similar to those in CNN, 128 units in the GRU
cell, hyperbolic tangent activation function, and the dropout
rate of 0.5. The dropout layer is added before the GRU layer,
and the optimization is the same as that used in CNN.

3) TRANSFORMER

For Transformer, we adopt BERT, which is a language rep-
resentation model [33] and achieves many state-of-the-art
results for many NLP tasks. In this study, we input the special
classification embedding ([CLS]) of BERT into an FC layer
to get the feature vector v. The whole architecture is shown
in Fig. 6.

We use the pre-trained BERT model uncased_L-12_H-
768_A-12,3 which has 12 layers Transformer blocks, 768 hid-
den units, 12 multi-heads, and 110M parameters in total.
Uncased means that the text has been lowercased. We also
set the dimension of v to be the number of total classes for
each dataset. We adopt the same optimization in the original
BERT paper.

C. EXPERIMENTAL RESULTS

We report the detailed experimental results on four datasets
in Table 3, Table 4, Table 5 and Table 6. The definition of

3 https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-
12_H-768_A-12.zip, accessed on July,10,2019

183585

IEEE Access

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

TABLE 3. Results on reuters.

Metrics XML-CNN XML-CNN#* HAN HAN* BERT BERT*
Micro-Precision 0.8694 0.8773 0.8879 0.8856 0.9259 0.9176
Micro-Recall 0.8778 0.8869 0.8513 0.8816 0.8706 0.8987
Micro-F1 0.8736 0.8821 0.8692 0.8836 0.8974 0.9081
Marco-Precision 0.3940 0.4440 0.4137 0.4456 0.4387 0.5380
Marco-Recall 0.3488 0.3899 0.3493 03592 0.3377 0.4534
Marco-F1 0.3700 0.4152 0.3788 0.3977 0.3816 0.4921
Hamming Loss 0.0028 0.0026 0.0028 0.0025 0.0022 0.0020
Accuracy 0.8847 0.8928 0.8835 0.8969 0.9125 0.9231
Precision 0.9109 0.9169 0.9140 0.9234 0.9313 0.9490
Recall 0.9216 0.9289 0.9063 0.9298 0.9461 0.9484
F1 0.9055 0.9130 0.9014 09168 0.9296 0.9403
TABLE 4. Results on RCV1-v2.
Metrics XML-CNN XML-CNN#* HAN HAN* BERT BERT*
Micro-Precision 0.8365 0.8238 0.8077 0.7996 0.8662 0.8448
Micro-Recall 0.7449 0.7668 0.6758 0.6960 0.7144 0.7849
Micro-F1 0.7880 0.7942 0.7359 0.7443 0.7830 0.8137
Marco-Precision 0.6431 0.6485 0.4336 0.4463 0.4808 0.6687
Marco-Recall 0.4292 0.4737 0.3028 03178 0.2948 0.4924
Marco-F1 0.5148 0.5475 0.3565 0.3712 0.3655 0.5672
Hamming Loss 0.0129 0.0128 0.0156 0.0154 0.0127 0.0115
Accuracy 0.7205 0.7312 0.6672 0.6723 0.7220 0.7696
Precision 0.8656 0.8541 0.8327 0.8260 0.7609 0.8289
Recall 0.7875 0.8091 0.7240 0.7393 0.8842 0.8682
Fl 0.7959 0.8052 0.7480 0.7540 0.7930 0.8310
TABLE 5. Results on AG-multi.
Metrics XML-CNN XML-CNN#* HAN HAN* BERT BERT*
Micro-Precision 0.7657 0.7828 0.7945 0.7820 0.7976 0.7886
Micro-Recall 0.8801 0.8625 0.8099 0.8772 0.8468 0.8852
Micro-F1 0.8189 0.8207 0.7945 0.8269 0.8215 0.8341
Marco-Precision 0.8051 0.8154 0.8292 0.8161 0.7683 0.7619
Marco-Recall 0.8430 0.8625 0.6962 0.8485 0.8527 0.8858
Marco-F1 0.8236 0.8383 0.7569 0.8320 0.8083 0.8192
Hamming Loss 0.0686 0.0664 0.0738 0.0647 0.0649 0.0621
Accuracy 0.7320 0.7342 0.6918 0.7413 0.7411 0.7616
Precision 0.7786 0.7943 0.7921 0.7926 0.8568 0.8940
Recall 0.8737 0.8621 0.8664 0.8718 0.8188 0.8160
Fl 0.7956 0.7975 0.7993 0.8022 0.8083 0.8256
TABLE 6. Results on 20newsgroup.
Metrics XML-CNN XML-CNN#* HAN HAN* BERT BERT*
Micro-Precision 0.8155 0.8510 0.7843 0.7820 0.8898 0.8875
Micro-Recall 0.7484 0.7674 0.8740 0.8772 0.8736 0.8949
Micro-F1 0.7805 0.8071 0.8267 0.8269 0.8816 0.8912
Marco-Precision 0.8126 0.8416 0.8273 0.8161 0.8770 0.8756
Marco-Recall 0.7016 0.7336 0.8488 0.8485 0.8548 0.8753
Marco-F1 0.7530 0.7839 0.8379 0.8320 0.8658 0.8755
Hamming Loss 0.0350 0.0305 0.0646 0.0647 0.0195 0.0182
Accuracy 0.7019 0.7405 0.7393 0.7413 0.8633 0.8717
Precision 0.8130 0.8448 0.7921 0.7926 0.8777 0.8950
Recall 0.7544 0.7789 0.8664 0.8718 0.8860 0.8918
Fl 0.7586 0.7873 0.7993 0.8022 0.8791 0.8903

evaluation metrics can be found in [44]. In addition, the best
result is in boldface. The algorithms marked with * use the
proposed initialization in this work, and others use the same
initialization in the corresponding original paper.

To compare the performance of different approaches across
multiple datasets, we apply the corrected Friedman test and

183586

the post-hoc Nemenyi test as recommended by Demsar [46].
Friedman test is used to determine whether the performances
of different approaches are equal. If a statistically signif-
icant difference is detected, Nemenyi test is then used to
further distinguish the approaches. For brevity, we only
conduct Friedman test on Micro-F1, Marco-F1, Hamming

VOLUME 7, 2019

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

IEEE Access

D
I |
6 5 4 3 2 1
HAN —— L BERT*
XML-CNN ———— L BERT
XML-CNN* HAN*
(a) Micro-F1
cD
[|
6 5 4 3 2 1
. s . .
HAN — L BERT*
XML-CNN ———————— L BERT
HAN* XML-CNN*

(c) Accuracy

FIGURE 7. CD diagrams.

Loss, Accuracy and F1. Note that Micro-F1, Marco-F1 and
F1 are composite evaluation metrics of respective preci-
sion and recall. For these evaluation metrics except Marco-
F1, Friedman test at 0.05 significance level rejects the
hypothesis of equal performance. Rare classes have a great
influence on Marco-F1, and all these approaches perform
approximately equally on the rare classes. Therefore, we fur-
ther conduct Nemenyi test on Micro-F1, Hamming Loss,
Accuracy and F1. Specifically, Nemenyi test figures out the
Critical Difference (CD) based on the significance level for
average ranks and the number of datasets. The results of the
Nemenyi test are presented in Fig. 7. The average ranks are
shown along the horizontal axis, and CD = 3.770 is also
shown above the axis.

To summarize, we draw the following conclusions:

o The proposed initialization improves the performance
of models with different text feature extractors on most
evaluation metrics, even for the state-of-the-art model
BERT. The proposed approach incorporates the label
co-occurrence into the neural network models, and uses
the label co-occurrence matrix to calculate the initial
value of the class embedding matrix, thereby improving
the performance of different neural network models on
the multi-label text classification.

o For all datasets, BERT yields markedly better results
than those of XML-CNN and HAN. The reason is per-
haps that BERT has more parameters. But it’s more
likely that the pre-trained language model in BERT
works better on describing characteristics of natural lan-
guage data than word embedding that CNN and RNN
adopt.

V. CONCLUSION

In this study, we propose a novel initialization to incorporate
label co-occurrence into neural network-based models for
multi-label text classification. We represent each class as a
column vector of the weight matrix in the penultimate layer,
which we name the class embedding matrix. Because related
classes usually share the same instances, which is called label

VOLUME 7, 2019

L CD |
[!
6 5 4 3 2 1
HAN — L BERT*
XML-CNN ——————] L BERT
HAN* XML-CNN*
(b) Hamming Loss
cD
I |
6 5 4 3 2 1
! | . s
HAN —— L BERT*
XML-CNN HAN*
XML-CNN* BERT
(d)F1

co-occurrence in this study, we derive an equation between
the class embedding matrix and the label co-occurrence
matrix. We also provide a theoretical analysis of this equation,
and propose an algorithm to calculate the initial values of
the class embedding matrix from the label co-occurrence
matrix with this equation. We evaluate our approach with
prevalent text feature extractors, including CNN, RNN and
Transformer on four public datasets. In addition, we adopt
the state-of-the-art architecture for each text feature extrac-
tor, i.e. XML-CNN for CNN, HAN for RNN and BERT
for Transformer. The experimental results demonstrate the
effectiveness of our approach compared with the original
initialization in those models. In the future, we will generalize
our approach to other multi-label classification tasks.

REFERENCES

[1] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837,
Aug. 2014.

[2] J. Nam, J. Kim, E. L. Mencia, I. Gurevych, and J. Fiirnkranz, “Large-
scale multi-label text classification—Revisiting neural networks,” in Proc.
Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases. Berlin,
Germany: Springer, 2014, pp. 437-452.

[3] Z.F. He and M. Yang, “Sparse and low-rank representation for multi-label
classification,” Appl. Intell., vol. 49, no. 5, pp. 1708-1723, 2018.

[4] Y. Zhu, J. T. Kwok, and Z.-H. Zhou, “Multi-label learning with global
and local label correlation,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 6,
pp. 1081-1094, Jun. 2018.

[5] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” Mach. Learn., vol. 85, no. 3, p. 333, Dec. 2011.

[6] S.J. Huang and Z. H. Zhou, “Multi-label learning by exploiting label
correlations locally,” in Proc. 26th AAAI Conf. Artif. Intell., 2012.

[7] W. Bi and J. T. Kwok, “Multilabel classification with label correlations
and missing labels,” in Proc. 28th AAAI Conf. Artif. Intell., 2014.

[8] M. L. Zhang and K. Zhang, “Multi-label learning by exploiting label
dependency,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2010, pp. 999-1008.

[91 W. Gao and Z. H. Zhou, “On the consistency of multi-label learning,” in
Proc. 24th Annu. Conf. Learn. Theory, 2011, pp. 341-358.

[10] K. Dembczynski, W. Kotlowski, and E. Hiillermeier, *‘Consistent multil-
abel ranking through univariate losses,” 2012, arXiv:1206.6401. [Online].
Available: https://arxiv.org/abs/1206.6401

[11] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with applica-
tions to functional genomics and text categorization,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.

183587

IEEE Access

J. Yao et al.: Incorporating Label Co-Occurrence Into Neural Network-Based Models for MLTC

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

J. Liu, W. C. Chang, and Y. Wu, “Deep learning for extreme multi-label
text classification,” in Proc. 40th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr., 2017, pp. 115-124.

R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

Y. Goldberg, “Neural network methods for natural language process-
ing,” Synth. Lect. Hum. Lang. Technol., vol. 10, no. 1, pp. 1-309,
2017.

Y. Bengio, R. Ducharme, and P. Vincent, ““‘A neural probabilistic language
model,” J. Mach. Learn. Res., vol. 3, pp. 1137-1155, Feb. 2003.

T. Mikolov, W. Yih, and G. Zweig, “Linguistic regularities in continu-
ous space word representations,” in Proc. HLT-NAACL, vol. 13, 2013,
pp. 746-751.

T. Mikolov, K. Chen, and G. Corrado, “Efficient estimation of word rep-
resentations in vector space,” 2013, arXiv:1301.3781. [Online]. Available:
https://arxiv.org/abs/1301.3781

T. Mikolov, I. Sutskever, and K. Chen, “Distributed representations of
words and phrases and their compositionality,” in Proc. Adv. Neural Inf.
Process. Syst., 2013, pp. 3111-3119.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” 2016, arXiv:1607.01759. [Online]. Available:
https://arxiv.org/abs/1607.01759

S. Wang, M. Huang, and Z. Deng, “Densely connected CNN with multi-
scale feature attention for text classification,” in Proc. IJCAI, 2018.

Y. Kim, ‘“Convolutional neural networks for sentence classifica-
tion,” 2014, arXiv:1408.5882. [Online]. Available: https://arxiv.org/
abs/1408.5882

X.Zhang,J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 649-657.

A. Conneau, H. Schwenk, and L. Barrault, “Very deep convolutional
networks for text classification,” in Proc. 15th Conf. Eur. Chapter Assoc.
Comput. Linguistics, vol. 1, 2017, pp. 1107-1116.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process., 2017, pp. 6000-6010.

S. Lai, L. Xu, and K. Liu, “Recurrent convolutional neural
networks for text classification,” in Proc. AAAI, vol. 333, 2015,
pp. 2267-2273.

A. Vaswani, N. Shazeer, and N. Parmar, “Attention is all you need,” 2017,
arXiv:1706.03762. [Online]. Available: https://arxiv.org/abs/1706.03762
Z. Yang, D. Yang, and C. Dyer, “Hierarchical attention networks for
document classification,” in Proc. HLT-NAACL, 2016, pp. 1480-1489.
K. Sheng, R. Socher, and D. C. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,” 2015,
arXiv:1503.00075. [Online]. Available: https://arxiv.org/abs/1503.00075
M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proc.
NAACL, 2018.

J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics,
2018.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding with unsupervised learning,” OpenAl, Tech. Rep.,
2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” CoRR, 2018.
G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou, “Tutorial on learning from
multi-label data,” in Proc. ECML PKDD, Bled, Slovenia, 2009.

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, ‘““Learning multi-label
scene classification,” Pattern Recognit., vol. 37, no. 9, pp. 1757-1771,
Sep. 2004.

J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” in Machine Learning and Knowledge Discov-
ery in Databases (Lecture Notes in Artificial Intelligence), vol. 5782,
'W. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, Eds. Berlin,
Germany: Springer, 2009, pp. 254-269.

J. Fiirnkranz, E. Hiillermeier, E. L. Mencia, and K. Brinker, ‘“Multilabel
classification via calibrated label ranking,” Mach. Learn., vol. 73, no. 2,
pp. 133-153, 2008.

183588

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]
[46]

(47]

(48]

[49]

G. Tsoumakas and I. Vlahavas, ‘“Random k-labelsets: An ensemble
method for multilabel classification,” in Machine Learning (Lecture Notes
in Computer Science), vol. 4701, J. N. Kok, J. Koronacki, R. L. de Man-
taras, S. Matwin, D. Mladenic¢, and A. Skowron, Eds. Berlin, Germany:
Springer, 2007, pp. 406-417.

M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning approach to
multi-label learning,” Pattern Recognit., vol. 40, no. 7, pp. 2038-2048,
Jul. 2007.

A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype
data,” in Principles of Data Mining and Knowledge Discovery (Lecture
Notes in Computer Science), vol. 2168, L. De Raedt and A. Siebes, Eds.
Berlin, Germany: Springer, 2001, pp. 42-53.

A. Elisseeff and J. Weston, ““A kernel method for multi-labelled classifi-
cation,” in Advances in Neural Information Processing Systems, vol. 14,
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA,
USA: MIT Press, 2002, pp. 681-687.

Y. Yang and X. Liu, ““A re-examination of text categorization methods,” in
Proc. 22nd Annu. Int. SIGIR, 1999.

D. D. Lewis, Y. Yang, and T. G. Rose, “RCV1: A new benchmark col-
lection for text categorization research,” J. Mach. Learn. Res., vol. 5,
pp- 361-397, Apr. 2004.

G. Madjarov, D. Kocev, and D. Gjorgjevikj, “An extensive experimen-
tal comparison of methods for multi-label learning,” Pattern Recognit.,
vol. 45, no. 9, pp. 3084-3104, 2012.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. ICLR, 2015.

J. Demsar, ““Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

L. Zhang, Y. Zhu, and W. X. Zheng, ““Synchronization and state estimation
of a class of hierarchical hybrid neural networks with time-varying delays,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 459-470,
Feb. 2015.

L. Zhang, Y. Zhu, and W. X. Zheng, “State estimation of discrete-time
switched neural networks with multiple communication channels,” /IEEE
Trans. Cybern., vol. 47, no. 4, pp. 1028-1040, Apr. 2017.

K. Kowsari, M. K. Jafari, and M. Heidarysafa, “Text classification algo-
rithms: A survey,” Information, vol. 10, no. 4, p. 150, 2019.

JIAQI YAO received the bachelor’s degree in
electronic engineering from Tsinghua University,
in 2014. He is currently pursuing the Ph.D. degree
with the National Key Laboratory of Science
and Technology on Blind Signal Processing. His
research interests are in machine learning and nat-
ural language processing.

KEREN WANG received the Ph.D. degree from
the National Key Laboratory of Science and Tech-
nology on Blind Signal Processing, in 2014. His
research interests are in machine learning video
steganography and natural language processing.

JIKUN YAN received the Ph.D. degree from the
National Key Laboratory of Science and Tech-
nology on Blind Signal Processing, in 2008. His
research interests are in machine learning and nat-
ural language processing.

VOLUME 7, 2019

