
Received November 24, 2019, accepted December 15, 2019, date of publication December 18, 2019,
date of current version December 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960511

Equivalence Checking of Scheduling in High-Level
Synthesis Using Deep State Sequences
JIAN HU , GUANWU WANG , GUILIN CHEN , AND XIANGLIN WEI
The 63rd Research Institute, National University of Defense Technology, Nanjing 210000, China

Corresponding authors: Xianglin Wei (wei_xianglin@163.com), Jian Hu (hujian198681@126.com)

This work was supported by the National Natural Science Foundation of China under Grant 61902421.

ABSTRACT By using high-level synthesis tools, electronic system level design provides a promising
solution to fill the growing design productivity gap of high quality hardware systems. However, an error
may exist in the implementation of a compiler due to the complex and error prone compiling process.
Equivalence checking is the process of proving that the target code is a correct translation of the source
code being compiled. In this paper, we present a novel approach to solve the false-negative problem of
value propagation (VP) based equivalence checking method. Finite State Machine with Datapath (FSMD) is
used to model the original and the transformed programs. Our method proves the equivalence by comparing
the deep state sequences (DSS) between the original and the transformed FSMD. Automatic test vector
generation (ATVG) and simulation technique are used to recognize the corresponding DSS and exclude the
false paths to solve the false-negative problem. The promising experimental results show the effectiveness
of the proposed method to solve the false-negative problem in VP based equivalence checking method.

INDEX TERMS Equivalence checking, high-level synthesis, deep state sequence, FSMD.

I. INTRODUCTION
High-level synthesis (HLS) is generally a process of translat-
ing a source code into a target code, often with an objective
to save critical resources and/or reduce the execution time.
Thus, it can make the programmer write an efficient code and
focus only on the correctness and functionality of the program
being developed. HLS is seen as a solution to fill the gap of
design productivity and consists of several inter-dependent
subtasks such as compiler transformation, scheduling, bind-
ing and code generation [1]. Scheduling, one of subtasks
in HLS, assigns operations of a behavior description with
specific clock cycles based on given constraints of area, delay
and data dependencies. Code motion based optimizations
[2]–[5] are used in the scheduling phase of HLS tools to
improve the quality of synthesis results. Most of the code
motion results cannot be one-to-one mapped to their original
behavior descriptions, which raises a tough verification chal-
lenge in HLS. Hence, it is necessary to validate the functional
equivalence between the input program to HLS (i.e., source
code) and the scheduled program generated by HLS (i.e.,
transformed code).

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

Several methods have made contributions to address the
equivalence checking problem in high-level synthesis in
recent years. Kundu et al. [6] presents an approach to
automatically validate the target program against its initial
high-level program using automated theorem proving, trans-
lation validation and relational approaches to reasoning about
programs. Li et al. [7] defines new bisimulation relations
to improve the method by reducing the number of query of
automated theorem prover. But when the control structure
of input behavior is modified by a path based scheduler [8],
this method will fail. A dual-rail symbolic simulation of the
input and output design representations of a transformation
is presented in [9]. The method explores all paths of the
source and target program using symbolic execution. It can
automatically certify most of transformations applied by a
behavioral synthesis tool. Li et al. [10] applied translation
validation method to designs modeled using FSMD [1].
However, this method has to iterate over the loop to find a
fixpoint when validating designs with loop structure, while
such process does not always terminate. Karfa [11] proposed
an equivalence checking method for scheduling verification.
This method can solve the problem of the modified control
structure of the input behaviour by the scheduler. The work
reported in [14] has identified some false-negative cases of

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 183435

https://orcid.org/0000-0003-3896-6938
https://orcid.org/0000-0001-9733-0505
https://orcid.org/0000-0002-2802-1407
https://orcid.org/0000-0002-6181-4441
https://orcid.org/0000-0003-0810-1458


J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

the algorithm in [11] and proposed an algorithm to overcome
those limitations. A formal verification method for checking
correctness of code motion techniques is presented in [12].
The method can verify both uniform and nonuniform code
motion techniques by identifying the properties needed to
be checked during equivalence checking and validating them
using the model checking tool NuSMV [13].

All these methods can not deal with loop invariant code
motion and code motion across loops, since the definition of
a path cover will not allow a path extended beyond a loop.
A state of the art equivalence checking method based on
value propagation for verification of code motion techniques
was presented in [15]. Different with many other reported
methods, this method can deal with uniform, non-uniform
code motion and code motions across loops. This is achieved
by repeated propagation of the mismatched values to subse-
quent paths until the final path segments are traversed without
finding a match or the values match.

However, when some loop invariant operation op is moved
before or after the loop and there is a guarantee the loop will
execute, the VP based method will give false negative results.
To solve the false negative problem, we propose a DSS based
equivalence checking method to exclude the false paths of
the programs during equivalence checking and establish the
equivalence. Experimental results present the effectiveness of
the proposed method.

The remainder of this paper is organized as follows. The
definition of FSMD and DSS are presented in section II.
The motivation of our method is given in Section III. The
definition of equivalence of paths is presented in section IV.
The definition of equivalence of FSMD is presented in
section V. The equivalence checking algorithm is described
in section VI. Section VII presents an example illustrating
our method. The correctness of our method is presented in
section VIII. Section IX gives the experimental results. The
conclusions and future work are presented in section X.

II. FSMD AND DEEP STATE SEQUENCE
A. FINITE STATE MACHINES WITH DATA PATHS (FSMD)
In this paper, the original and the transformed programs
are modeled using FSMD. An FSMD is a Finite State
Machine (FSM) with datapaths of which each transition is
associated with a condition over the data variables. When the
transition is traversed, a set of operation will be executed to
transform the variable values. We extended the definition of
traditional FSMD by defining a final state of FSMD for the
generation of DSS. All the incoming edges of the reset state
are all altered to point to the final state. And the final state
will loop to reset state. The FSMD is defined as an ordered
tuple < Q, q0, qf , I ,O ,V , f , h > in our method, where

1) Q = {q0, q1, q2, . . . , qn} is the finite set of states,
2) q0 ∈ Q is the reset state,
3) qf ∈ Q is the final state,
4) I is the finite set of primary inputs,
5) O is the finite set of primary outputs,

6) V is the finite set of storage variables,
7) f : Q×2S → Q is the state transition function, where S

is the set of status expression including predicates over
I ∪ V ,

8) h : Q× 2S → U is the update function of outputs and
storage variables, where U is a set of storage variable
assignment or outputs statements, U = {x = e | x ∈
O ∪ V , e is arithmetic expression over I ∪ V}

The second argument of the function f (or h) among the
members of the set of status expressions is conjunction and
parallel edges between two states are disjunction of status
expressions. The FSMD remains deterministic, thus for any
state q, f (q, s1) = f (q, s2) and h(q, s1) = h(q, s2) if sta-
tus expression s1 = s2. The label on each transition edge
in Figure 1 is of the form s/h, s ∈ 2S , for example the label
‘‘i ≤ n/x = 5, y = y + i’’ on the transition from A1 to A2
in Figure 1(a).

The FSMD modelM0 for the original specification shown
in Figure 1 (a) is as follows,

1) M0 =< Q, q0, qf , I ,O,V , f , h >.
2) Q = {A0,A1,A2,A3,A4}, q0 = A0, qf = A4, V =
{x, y, i}, I = {n}, O = {out}.

3) U = {y = 0, x = 0, i = 0, x = 5, y = y + 1, i =
i+ 1, out = x + y, out = −1}.

4) S = {n 6= 0, i ≤ n, i > n, n < 0}.
5) f and h as defined in the transition graph shown

in Figure 1 (a).
6) Some typical expressions of f and h are shown bellow:

• f (A1, i ≤ n) = A2
• f (A0, n < 0) = A3
• h(A1, i ≤ n) = {x = 5, y = y+ 1}
• h(A0, n < 0) = {out = −1}

B. DEEP STATE SEQUENCE
Definition 1: Path: A finite path p from qi to qj, where qi,

qj ∈ Q, is a finite transition sequence of states of the form
〈qi = q1

−→c1 q2
−→c2 ...
−−→cn−1qn = qj〉 such that ∀l, 1 ≤ l ≤ n− 1,

∃
−→cl ∈ 2S such that f (ql,

−→cl ) = ql+1.
Definition 2: Deep State Sequences: For a given FSMD

M, p is a finite path composed of states 〈qi, qi+1, qi+2...qn〉.
If the path p starts in initial state (qi = q0), ends in final state
(qn = qf ) and does not have any path repetition, it is called a
deep state sequence.
Definition 3: False path: A path of an FSMD is called false

path if it never executes (can not be activated by any input
vector).

An example of deep state sequences is shown in Figure 2.
The node q1 has two branches: q1 to q4 and q1 to q2. Two
DSS will be generated in this situation. At first, the branch q1
to q2 is selected, and when the path goes back to q1, q1 to q4
is the only choice for the reason that the branch q1 to q2 has
been visited and DSSwill not have repeated paths. According
to definition 2, two DSS are geneated in the figure. One is
q0 → q1 → q4 → q5 depicted in blue dotted line and the

183436 VOLUME 7, 2019



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

FIGURE 1. (a) M0, the original FSMD (b) M1, the transformed FSMD.

FIGURE 2. Example of deep state sequences [16].

other is q0 → q1 → q2 → q3 → q1 → q4 → q5 depicted
in red dotted line.

Since the path in the existing path-based method and the
DSS in our method are both generated in a syntactic manner.
Some paths or DSS will not be executed in practice because
no inputs can satisfy the path condition, whichwill cause false
negative results. To avoid these false paths results, ourmethod
excludes the DSS that can not be satisfied by the inputs using
ATVG technique.

III. MOTIVATIONS
Loop invariant statements consists of statements or expres-
sions inside a loop body which are not dependent on loop
iterations. In other words, these statements produce the same
result each time the loop is executed. When this code are
moved outside the loop body, they will not change the pro-
gram semantics. By reducing the number of times loop invari-
ant expressions executed, loop invariant code motion can
improve overall program execution time by a factor equal to
the loop size.

Let us consider the original and the transformed FSMD
in Figure 1. In this example, the operation x = 5 is a loop
invariant statement for FSMD M0 in Figure 1(a). It is moved
out of the loop in the transformed FSMD M1 in Figure 1(b).

There are 3 possible paths in this FSMD, p1 = A0
n≥0
−−→

A1
i>n
−−→ A3 → A4, p2 = A0

n≥0
−−→ A1

i≤n
−−→ A2 → A1

i>n
−−→

A3 → A4, p3 = A0
n<0
−−→ A3 → A4. The path p1 executes if

the loop condition n ≥ 0 and i > n are satisfied. The path p2
executes if the loop condition n ≥ 0 and i ≤ n are satisfied.
The path p3 executes for the condition n < 0. In this example,
n is always greater than or equal to 0 and i is equal to 0 when
the state A1 is reached for the first time. Therefore, the loop
will execute at least once for all possible n ≥ 0 and i = 0. This
means the path p1 is a false path which will never execute.
For equivalence checking of these two programs using the

VP based method, it will try to prove all possible paths in
the FSMDs equivalent. Thus, the equivalence checker will
try to find the equivalence of paths p1, p2 and p3 in the other
FSMD M1. It finds that the paths p2 and p3 of FSMD M0

are equivalent to the paths q2 = B0
n≥0
−−→ B1

i≤n
−−→ B2 →

B1
i>n
−−→ B3 → B4 and q3 = B0

n<0
−−→ B3 → B4 of FSMD

M1, respectively. However the equivalence checking method
finds that the path p1 of FSMD M0 is not equivalent to the

path q1 = B0
n≥0
−−→ B1

i>n
−−→ B3 → B4 of FSMD M1, since

the final value of the variable x is different. It may be found
that the final values of x are 0 and 5 after the execution of
path p1 in M0 and path q1 = B0

n≥0
−−→ B1

i>n
−−→ B3 →

B4 in M1. In this example, as described above, the path p1
will never execute. This equivalence checking method will
report non-equivalence of the FSMDs due to this false path.
If we can recognize this false path before validation and
exclude it during equivalence checking, we can prove the

VOLUME 7, 2019 183437



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

equivalence between these two behaviors. The preliminary
results and the observations motivate us to propose the novel
approach.

IV. EQUIVALENCE OF PATHS
Definition 4: Condition of execution of the path (Rα): the

condition of the path α is a logical expression over the inputs
in I and the variables in V such that Rα is satisfied by the
initial data state of the path iff the path α is traversed. Thus,
Rα is the weakest precondition of the path α [18].
Definition 5: Data transformation of path (rα): the data

transformation of the path α over V , denoted as rα , is the
tuple 〈sα,Oα〉; the first member sα , termed as storage (vari-
able) transformation of α, is an ordered tuple 〈ei〉 of alge-
braic expressions over the inputs in I and the variables in
V such that the expression ei represents the value of the
variable vi after the execution of the path in terms of the
initial data state of the path; the second member Oα =
[OUT (Pi1 , e1),OUT (Pi2 , e2), ...] represents the output list
along the path α [12].
The characteristic formula τα(v, vf ,O) of the path α is

Rα(v) ∧ (vf = sα(v)) ∧ (O = Oα(v)), where Oα is the
output list in the path α, sα is the data transformation, vf
represents a vector of variables of V and v represents a vector
of variables of I ∪ V . The formula captures the following:
If the condition of execution Rα of the path α is satisfied by
the (initial) vector v at the beginning of the path, then the path
is executed, and after execution, the outputOα(v) is produced
[12], and the final vector vf of variable values becomes
sα(v).
Definition 6: Equivalence of paths. A path p1 of an FSMD

M0 is equivalent to a path p2 of another FSMD M1 if
Rp1 ≡ Rp2 and Op1 ≡ Op2 , where Rp1 and Rp2 repre-
sent the conditions of execution of p1 and p2, respec-
tively and Op1 and Op2 are the output lists of p1 and p2,
respectively. The equivalence of paths p1 and p2 is denoted
as p1 ≡ p2.

V. EQUIVALENCE OF FSMD
Let FSMD M0 = 〈Q0, q00, q0f , I0,O0,V0, f0, h0〉 and M1 =

〈Q1, q10, q1f , I1,O1,V1, f1, h1〉 represent the behavior of the
original and the transformed programs, respectively. The
main goal of our paper is to validate the equivalence of M0
andM1, which means that the execution traces ofM0 andM1
produce the same outputs on each output port for all possible
inputs. A DSS of an FSMD is a finite path from the reset
state to final state without having repeated paths. So, a DSS
represents one possible execution of an FSMD under an input
sequence and produces an output sequence. We define the
equivalence of FSMD as follows:
Definition 7: Equivalence of DSS. A DSS c1 of an FSMD

M0 is equivalent to a DSS c2 of another FSMD M1 if Rc1 ≡
Rc2 and Oc1 ≡ Oc2 , where Rc1 and Rc2 represent the condi-
tions of execution of c1 and c2, and Oc1 and Oc2 represent
the output lists of c1 and c2, respectively. The equivalence of
DSS c1 and DSS c2 is denoted as c1 ≡ c2.

Definition 8: Containment of FSMDs: If for any DSS c0
of FSMD M0, there exists a DSS c1 of FSMD M1 such that
c0 ≡ c1, the FSMD M0 is said to be contained in an FSMD
M1, symbolically M0 v M1.
Definition 9: Equivalence of FSMDs: If two FSMDs M0

and M1 such that M0 v M1 and M0 w M1, then M0 and M1
are said to be equivalent, symbolically M0 ≡ M1.

Algorithm 1 EquivalenceChecker(FSMD M0, FSMD M1)
1: F0← Ex_FSMD(M0)
2: DSS0← Ex_DSS(F0)
3: Ins_State(M1)
4: while DSS0 6= ∅ do
5: dss0← Sel_DSS(DSS0)
6: i0← Gen_test(dss0)
7: dss1← Sim_Model(M1, i0)
8: r ← Comp_DSS(dss0, dss1)
9: if r == ’sat’ then
10: Error and Exit(’Not Equivalent’)
11: else
12: Remove_DSS(dss0,DSS0)
13: end if
14: end while
15: if M0 and M1 have not interchanged then
16: Goto step 1 with M0 and M1 interchanged
17: else
18: Exit(’Equivalent’)
19: end if

VI. EQUIVALENCE CHECKING ALGORITHM
Algorithm 1 presents our proposed equivalence checking
algorithm. Two programs M0 and M1 are taken as the inputs
representing the original and the transformed programs.
The algorithm recognizes the corresponding DSS-pairs and
excludes the false paths during verification. And then it
checks the equivalence of all the generated DSS-pairs of the
two programs. Supposing the scheduling will not change the
names of storage variables, inputs and outputs. The following
subsections describes the details of the algorithm.

A. GENERATING FSMD FROM THE ORIGINAL PROGRAM
The procedure Ex_FSMD can automatically generate the
FSMD from the original program before scheduling. We use
the tool Pycparser [20] to generate an abstract syntax
tree (AST) of the original program. The procedure traverses
through the AST and creates FSMD nodes based on the type
of syntax tree node. The combination of the following three
basic constructs can represent any sequential behavior:

1) Basic Blocks (BBs): sequences of statements without
any bifurcation of control flow

2) Control Blocks (CBs): if-else constructs or switch-case
constructs

3) Loop Blocks (LBs): while, do while or for constructs
Therefore, our algorithm can effectively represent any

sequential behavior as an FSMD if it captures these three

183438 VOLUME 7, 2019



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

constructs in a program.We construct FSMD in the following
way:

1) For start node: Before the first statement of
the program, a node is created as the start
node.

2) For BBs: Create a node before a CB or LB.
3) For CBs: if(c) then BB1 else BB2 endif. In this branch

case, the FSMDs M1 and M2 of BB1 and BB2 are
constructed first. Second, the start states of the two
FSMDs are merged into one start state and the end
states of the two FSMDs are merged into one end state.
Third, we placed the condition c as the condition of
the transition from the start node to the FSMD M1
corresponding to BB1 and placed the condition ¬c as
the condition of the transition from the start node to the
FSMD M2 corresponding to BB2.

4) For LBs: while(c) BB endwhile. In this case, the FSMD
M of BB is constructed first. Second, the start and the
end state of M are merged into one state, q0 say, and
the condition c is placed on the transition from q0 to
the FSMD M corresponding to BB. A transition from
q0 with condition ¬c is added as the exit path from the
loop in the FSMD.

5) For end node: Before the return statement of the pro-
gram, a node is created as the end node.

Taking Figure 1(a) as an example, node A0 is created as the
start node before the first statement of the program, A4 is cre-
ated as the end node before the return statement. And nodes
A1, A2 and A3 are created as the LB construct, the conditioin
i ≤ n is placed on the transition from state A1 to state A2
and the conditioin i > n is placed on the transition from
state A1 to state A3. The FSMD construction algorithm in our
method is more efficient than the method in [12]. Because we
only create one state for a BB, while the method in [12] may
create several states for a BB according to a dependence graph
that is a directed acyclic graph. The condition associated with
each transition between the states of the BB is ‘‘true’’, hence,
we do not need to create so many states and one state is
enough.

B. GENERATING DSS FROM THE FSMD
Procedure Ex_DSS can automatically generate all the DSS
from the FSMD after the FSMD of the design is obtained.
To deal with the FSMD, the extracted FSMD is first converted
to a link list structure. The list structure of the Figure 1 is
shown in Figure 3. Each node in the link list represents a
state in the FSMD and the number of the node is the state
number of the state in FSMD. If there is a transition from state
a to state b, there is a link from node a to node b in the link
list.

Then, the link list is traversed from the start node in a
depth-first search manner, and all the state sequences with-
out repeated paths from the reset state to the final state are
generated. The algorithm for DSS extraction is presented in
Algorithm 2. We use recursive method to generate the DSS.

FIGURE 3. The converted list of FSMD in Figure 1.

Algorithm 2 DSSGenerator(seq, num, list , p, j)
1: Seq[num][j]← p.vertex
2: if InSeq(p.vertex, Seq[num], j− 1) then
3: pn← list[p.vertex].next
4: while pn 6= Null do
5: if InSeq(p.vertex, Seq[num], j− 1) then
6: pn← pn.next
7: else
8: Generate_Seq(pn, Seq[num], list, j+ 1)
9: end if
10: end while
11: else
12: pn← list[p.vertex].next
13: if pn 6= Null then
14: Generate_Seq(pn, Seq[num], list, j+ 1)
15: end if
16: end if
17: p← p.next
18: while p 6= Null do
19: if InSeq(p.vertex, Seq[num], j− 1) then
20: p← p.next
21: else
22: num← num+ 1
23: Generate_Seq(p, Seq[num], list, j)
24: end if
25: end while
26: Return Seq

During the recursion process, the algorithm will determine
whether the path is repeated. The unrepeated paths are auto-
matically saved in a list. The variable Seq, num, list, p, j are
used to save the generated DSS, the number of generated
DSS, the converted FSMD list, the current FSMD node and
the number of node in current DSS. The function InSeq()
determines if node p is in the first j-1 nodes of Seq, which
can determine whether the path is repeated. When a node
is visited, the algorithm will visit the subsequent unvisited
nodes in a depth-first search manner and add them to the DSS
list. For example, in Figure 1 (a) if A1 is encountered, A1 is
appended to A0. The algorithm will determine whether the
subsequent node A2, A3 of A1 have been visited. And then it
will visit the unvisited node. The process will continue in a
depth first search manner until it reaches the final state. For

example, the path A0
n≥0
−−→ A1

i≤n
−−→ A2 → A1

i>n
−−→ A3 → A4

is a generated DSS from the FSMD.

VOLUME 7, 2019 183439



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

C. GENERATING CORRESPONDING DSS IN THE
TRANSFORMED PROGRAM
1) TEST GENERATION
Procedure Sel_DSS selects a dss0 from the DSS set if the
obtained DSS set is not empty. Then the procedure Gen_test
generates direct test for the selected dss0 by using ATVG
technique [21]. The procedure first simulates the selected
dss0 symbolically and then feeds the generated expression
to a SMT solver. The SMT solver will output satisfied input
vector for the dss0 or output unsatisfied which means there is
no inputs that can satisfy the DSS. The ATVG procedure can
automatically identify the false path by checking whether the
path will actually execute. If there is no input vector that can
satisfy the path execution, our method will recognize the path
as a false path and ignore it during equivalence checking.

2) CORRESPONDING DSS GENERATION
The corresponding potential equivalent DSS are generated in
our proposed algorithm by using simulation technique. The
output statements are inserted automatically into the source
code of transformed program by traversing the generated
AST. Figure 4 shows the inserted output statements for the
program in Figure 1 (such as ‘‘//output A0’’ or ‘‘//output
B0’’).

FIGURE 4. The inserted output statements in the code of Figure 1.

The generated tests in the previous step (Test Generation)
are applied to simulate the transformed program by procedure
Sim_Model. When the simulation ends, the procedure will
output corresponding deep state sequence according to the
inserted output statements. The two dss from the original
program and the transformed program under the same test is a
corresponding potential equivalent DSS-pair. Taking dss0 =

A0
n≥0
−−→ A1

i≤n
−−→ A2 → A1

i>n
−−→ A3 → A4 in M0 and the

generated dss1 = B0
n≥0
−−→ B1

i≤n
−−→ B2 → B1

i>n
−−→ B3 → B4

in M1 in Figure 1 (a) as an example, dss0 and dss1 constitute
one corresponding potential equivalent DSS-pair, where dss1
is obtained in the transformed program by using the test
generated from dss0.

D. COMPARING THE CORRESPONDING POTENTIAL
EQUIVALENT DSS-PAIRS
Procedure Comp_DSS will compare the DSS-pairs using
word-level symbolic simulation technique after recognizing
the corresponding potential equivalent DSS-pairs. Before
symbolic simulation, the expression of each statements
should be transformed to static single assignment (SSA) [17].
And then symbolic simulation conjuncts the expression of
SSA of the DSS-pairs. Next, we convert the conjunction SSA
expression to SMT format. Finally, an SMT solver is used to
check the equivalence of the SMT format of the correspond-
ing DSS-pairs. The corresponding DSS-pair is not equivalent
when the SMT solver returns ‘‘sat‘‘. Our algorithm exits and
outputs ‘‘Not Equivalent‘‘. The corresponding DSS-pair is
equivalent when the SMT solver returns ‘‘unsat‘‘. We remove
the dss0 fromDSS set and continue the checking process until
the DSS set is empty. If all the DSS-pairs are equivalent,
it shows the FSMD M0 is contained in FSMD M1. Next,
we exchange the two FSMDs and repeat the equivalence
checking process from the first step. If FSMDM1 is also con-
tained in FSMD M0, it shows the two FSMDs are equivalent
according to definition 9.

VII. RUNNING EXAMPLE
The working of our algorithm for loop invariant code motion
is briefly discussed with the example shown in Figure 1. The
scheduling will not change the names of storage variables,
inputs and outputs. The iterations of the equivalence checking
method are as follows.

First, procedure Ex_FSMD extracts the FSMD from the
original program as shown below. Ai represents the state
name and the state transition condition e1 and update function
e2 in the form e1/e2 are separated by ’/’. Each assignment
statement is separated by a comma. ’−’ represents true for
transition condition in e1 or no operations in update function
e2.

FSMD of original program:
A0 : n ≥ 0/y = 0, i = 0, x = 0,A1; !(n ≥ 0)/out = −1,A3;
A1 : i ≤ n/y = y+ i, x = 5,A2; !(i ≤ n)/out = x + y,A3;
A2 : −/i = i+ 1,A1;
A3 : −/−,A4;
A4 : −/−,A0;

Next, the FSMD is converted to a link list as shown
in Figure 3. And procedure Ex_DSS generates all the DSS
from the FSMD as shown bellow. The procedure generates
three DSS from the generated FSMD. ‘‘Ai‘‘ represents the
state name. ’→’ represents the transition between states and
the expression on the transition represents transition condi-
tion, such as ’n ≥ 0’ and ’i > n’.
DSS of original program:

1. A0
n≥0
−−→ A1

i≤n
−−→ A2→ A1

i>n
−−→ A3→ A4

2. A0
n≥0
−−→ A1

i>0
−−→ A3→ A4

3. A0
n<0
−−→ A3→ A4

Next, procedure Gen_test generates input vectors
for all the generated DSS by using ATVG technique.

183440 VOLUME 7, 2019



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

First, the expression of each statement is transformed to SSA
expression. The subscript of a variable is initialized to 0 and
it should increase by 1 when the variable is assigned a value
(such as i1 = i0+1). Second, symbolic simulation technique
is used to generate the symbolic expression of each DSS.
Symbolic expression is the conjunctions of the conditions and
operations of the program through each DSS. The generated
symbolic expressions are shown below.

Symbolic simulation
1. A0

n≥0
−−→ A1

i≤n
−−→ A2 → A1

i>n
−−→ A3 → A4 : (n0 ≥

0) ∧ (i0 = 0) ∧ (x0 = 0) ∧ (y0 = 0) ∧ (i0 ≤ n0) ∧ (x1 =
5)∧ (y1 = y0+ i)∧ (i1 = i0+1)∧ (i1 ≥ n)∧ (out0 = x1+y1)

2. A0
n≥0
−−→ A1

i>0
−−→ A3→ A4 : (n0 ≥ 0)∧ (i0 = 0)∧ (x0 =

0) ∧ (y0 = 0) ∧ (i0 ≥ n) ∧ (out0 = x0 + y0)

3. A0
n<0
−−→ A3→ A4 : (n0 ≥ 0) ∧ (out0 = −1)

The obtained symbolic expressions are fed into an SMT
solver to generate the directed tests. In this case, we find that

the path A0
n≥0
−−→ A1

i>0
−−→ A3 → A4 can not be satisfied by

any input vector while the other two paths can. This shows

that the path A0
n≥0
−−→ A1

i>0
−−→ A3 → A4 will not be executed

in practice, which means it is a false path. Therefore, our
method excludes this unsatisfied path and ignores it during
equivalence checking. But the VP based method in [15] can
not recognize and exclude the false path and it will fail to
establish the equivalence.

Next, output statements are inserted into the transformed
program by procedure Ins_State as shown in Figure 4, such
as ‘‘//output A0’’ or ‘‘//output B0’’. And then the gener-
ated tests are applied to simulate the program by procedure
Sim_Model. After simulation, the corresponding potential
equivalent DSS are obtained in the transformed program as
shown below.

DSS of transformed program:

1. B0
n≥0
−−→ B1

i≤n
−−→ B2→ B1

i>n
−−→ B3→ B4

2. B0
n<0
−−→ B3→ B4

Finally, procedure Com_DSS verifies the corresponding
potential equivalent DSS-pairs between the original and
transformed program by using symbolic simulation and a
SMT solver. First, the expression of each statement is trans-
formed to SSA expression. Second, the symbolic expressions
of the DSS-pair are generated and the two symbolic expres-
sions are conjuncted. Third, for all the corresponding inputs,
we conjunct the formula∧(I0i == I1i) to the SSA expression.
Finally, for all the corresponding outputs, we conjunct the
disjunction of all such formulas (such as (O0j 6= O1j)) to

the SSA expression. We take the DSS-pair A0
n≥0
−−→ A1

i≤n
−−→

A2 → A1
i>n
−−→ A3 → A4 and B0

n≥0
−−→ B1

i≤n
−−→ B2 →

B1
i>n
−−→ B3 → B4 as an example. The resulting symbolic

expression is (n00 ≥ 0) ∧ (i00 = 0) ∧ (x00 = 0) ∧ (y00 =
0) ∧ (i00 ≤ n00) ∧ (x01 = 5) ∧ (y01 = y00 + i) ∧ (i01 =
i00 + 1) ∧ (i01 ≥ n00) ∧ (out00 = x01 + y01) ∧ (n10 ≥
0)∧ (i10 = 0)∧ (x10 = 0)∧ (y10 = 0)∧ (i10 ≤ n10)∧ (x11 =
5) ∧ (y11 = y10 + i) ∧ (i11 = i10 + 1) ∧ (i10 ≥ n10)∧

(out10 = x11 + y11) ∧ (n00 == n10) ∧ (out00 6= out10). The
SMT solver outputs ’unsat’ for the expression, which means
the corresponding DSS-pair is equivalent.

In this example, the two valid corresponding potential
equivalent DSS-pairs are proved to be equivalent. According
to definition 8, the original program is contained in the trans-
formed program, denoted as M0 v M1. Next, we exchange
the two FSMDs and repeat the verification process. And we
can prove that the transformed program is also contained in
the original program, denoted as M0 w M1. Hence, the two
FSMDs are equivalent according to definition 9, denoted as
M0 ≡ M1.

VIII. CORRECTNESS
Theorem 1: The generated DSS in the transformed pro-

gram under the test generated from the DSS in the original
program is the only corresponding potential equivalent DSS
in the transformed program.
Proof: Assuming the DSS set of the original program isDSS0,
DSS set of the transformed program is DSS1 and the tests set
I0 are generated from DSS0 using ATVG technique.
Since the FSMD in our method is deterministic, one input

test activates only one DSS. ∀i0 ∈ I0 generated from a
dss0 ∈ DSS0, it can only activate one corresponding dss1 ∈
DSS1. Other dss1 ∈ DSS1 cannot recognize the input test.
Meanwhile the equivalent DSS-pair must recognize the same
test. Therefore, the DSS generated by simulation from the
transformed program is the only corresponding potential
equivalent DSS needed to be considered. �
Theorem 2: When our algorithm terminates, the equiva-

lence between the original and transformed programs can be
checked.
Proof : Assuming the DSS set of the original program is
DSS0, DSS set of the transformed program is DSS1, I0 is the
test set generated fromDSS0 using ATVG technique, original
program is M0 and transformed program is M1. ∀dss0 ∈
DSS0, i0 ∈ I0 is the generated test from dss0. dss1 is the
obtained DSS from transformed program using test i0.

If dss0 in DSS0 can not be satisfied by any input vec-
tor using ATVG technique, it means dss0 is a false path.
We exclude it from the set DSS0. The false path problem
will be solved by ignoring the unsatisfied dss0 during the
equivalence checking process.

If dss0 can be satisfied and dss0 6= dss1(not equivalent),
then we have found a test i0 which makes the outputs of the
M0 and M1 different. It means the original and transformed
programs are not equivalent, symbolically M0 6= M1. Our
algorithm terminates with the output ’not equivalent’.

If dss0 can be satisfied and dss0 ≡ dss1, then a dss1
in M1 equivalent with the dss0 in M0 has been found. The
verified dss0 is removed fromDSS0 and another dss0 ∈ DSS0
is selected. The process will repeat until DSS0 is empty.
When all the dss0 in the original program have found an
equivalent dss1 in transformed program, according to defi-
nition 8, the original program is contained in the transformed

VOLUME 7, 2019 183441



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

TABLE 1. Experimental results.

TABLE 2. Experimental results.

program, denoted as M0 v M1. Next, we exchange the
two FSMDs and repeat the verification process. If we can
prove that the transformed program is also contained in the
original program, denoted as M0 w M1, the two FSMDs are
equivalent according to definition 9, denoted as M0 ≡ M1.
Our algorithm terminates with the output ’equivalent’. �

IX. EXPERIMENTAL RESULTS
The equivalence checking algorithm described in this paper
has been implemented in python and C and has been run on
a 2.5 GHz Intel i5 duo processor with 8G RAM. The synthe-
sizer used in our experiments is SPARK [19]. The SPARK
scheduler is allowed to perform uniform, non-uniform and
code motion across loop. The symbolic simulator and FSMD
extractor are implemented based on Pycparser [20]. The DSS
extractor is implemented in C and Z3 [22] is used as our
SMT solver. Tables 1 and 2 show the results of the exper-
iments. Table 1 tabulates the comparison of the execution
time required by the VP based equivalence checking method
[15] and our DSS-based method for the benchmarks. The
VP-based tool is available at [23]. The first column is the
names of the benchmarks. The second and the third columns
show the number of states in the original FSMD and loops
in the original program. For each benchmark, the obtained
runtime (in milliseconds (ms)) and equivalence result by both
tools are recorded. The equivalent scenarios are listed in rows
1-5 and the inequivalent scenarios with some manually intro-
duced faults for the benchmarks listed in rows 1-5 are listed
in rows 6-10. Both tools are able to establish the equivalence
for the benchmarks in rows 1-5 and report non-equivalence
for the benchmarks in rows 6-10.

Some test cases where the VP based method fails to estab-
lish the equivalence are presented in Table 2. We created

these test cases manually. In these test cases, some loop
invariant operations are moved before or after the loop from
inside it and there is a guarantee the loop will execute at
least once, which makes some paths become false paths in
the FSMD. Table 2 shows our DSS-based method can estab-
lish the equivalence for the cases with false paths, but the
VP based method fails. The results in Tables 1 and 2 show
that 1) first our method can handle all the cases which can
be handled by the VP based equivalence checking method;
2) second our method can solve the false negative problems
in the method [15].

X. CONCLUSION
An equivalence checking method presented in this paper ver-
ifies loop invariant code transformations with false paths. For
each DSS, our method automatically symbolically simulates
it and uses a SMT solver Z3 to validate the satisfaction of the
DSS. If the DSS can not be satisfied, our method ignores the
false path during equivalence checking. Using our proposed
method, we can solve the false-negative problem in VP based
method.

A limitation of the present work is the scalability of our
method. Because the DSS is generated in a syntactic way, our
algorithmwill generate all the possible DSS in the FSMD. If a
program has too many branches, the number of the DSS will
be large. It will be time-consuming to generate all the tests for
a large number of DSS and compare the DSS-pairs. Enhanc-
ing the equivalence checking to encompass the limitation
seems to be a promising future endeavor. Investigating some
heuristic path extension method (such as machina learning
[24]) to generate less number of DSS can be useful in this
regard.

183442 VOLUME 7, 2019



J. Hu et al.: Equivalence Checking of Scheduling in High-Level Synthesis

REFERENCES
[1] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis:

Introduction to Chip and System Design. Norwell, MA, USA: Kluwer,
1999.

[2] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, ‘‘Using global
code motions to improve the quality of results for high-level synthesis,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 2,
pp. 302–312, Feb. 2004.

[3] L. C. V. Dos Santos and J. Jress, ‘‘A reordering technique for efficient
code motion,’’ in Proc. 36th ACM/IEEE Design Automat. Conf. (DAC).
New York, NY, USA: ACM, 1999, pp. 296–299.

[4] G. Lakshminarayana, A. Raghunatharn, and N. Jha, ‘‘Incorporating spec-
ulative execution into scheduling of control-flow-intensive designs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 3,
pp. 308–324, Mar. 2000.

[5] L. C. V. Dos Santos, M. J. M. Heijligers, C. A. J. Van Eijkvan,
J. Van Eijnhoven, and J. A. G. Jess, ‘‘A code-motion pruning technique for
global scheduling,’’ ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 1,
pp. 1–38, 2000.

[6] S. Kundu, S. Lerner, and R. K. Gupta, ‘‘Translation validation of high-
level synthesis,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 29, no. 4, pp. 566–579, Apr. 2010.

[7] T. Li, Y. Guo, and W. Liu, ‘‘Efficient translation validation of high-level
synthesis,’’ in Proc. IEEE Int. Symp. Qual. Electron. Design, Mar. 2013,
pp. 516–523.

[8] R. Camposano, ‘‘Path-based scheduling for synthesis,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 1, pp. 85–93,
Jan. 1991.

[9] Z. Yang, K. Hao, K. Cong, S. Ray, and F. Xie, ‘‘Equivalence checking
for compiler transformations in behavioral synthesis,’’ in Proc. IEEE
31st Int. Conf. Comput. Design (ICCD), Asheville, NC, USA, Oct. 2013,
pp. 491–494.

[10] T. Li, Y. Guo, W. Liu, and M. Tang, ‘‘Translation validation of scheduling
in high level synthesis,’’ in Proc. 23rd ACM Int. Conf. Great Lakes Symp.
VLSI (GLSVLSI), 2013, pp. 101–106.

[11] C. Karfa, D. Sarkar, P. Kumar, and C. Mandal, ‘‘An equivalence-checking
method for scheduling verification in high-level synthesis,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 3, pp. 556–569,
Mar. 2008.

[12] C. Karfa, C. Mandal, and D. Sarkar, ‘‘Formal verification of code motion
techniques using data-flow-driven equivalence checking,’’ ACM Trans.
Des. Automat. Electron. Syst., vol. 17, no. 3, Jul. 2012, Art. no. 30.

[13] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NuSMV: A new
symbolic model checker,’’ Int. J. Softw. Tools Technol. Transf., vol. 2, no. 4,
pp. 410–425.

[14] C. H. Lee, C. H. Shih, and J. D. Huang, ‘‘Equivalence checking of schedul-
ing with speculative code transformations in high-level synthesis,’’ in Proc.
16th Asia–South Pacific Design Autom. Conf., 2011, pp. 497–502.

[15] K. Banerjee, C. Karfa, and D. Sarkar, ‘‘Verification of code motion
techniques using value propagation,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 33, no. 8, pp. 1180–1193, Aug. 2014.

[16] J. Hu, T. Li, and S. Li, ‘‘Formal equivalence checking between SLM and
RTL descriptions,’’ in Proc. 28th IEEE Int. Syst. Chip Conf. (SOCC),
Beijing, China, Sep. 2015, pp. 131–136.

[17] R. Cytron, J. Ferrante, K. B. Rosen, N. M. Wegman, and F. K. Zadeck,
‘‘Efficiently computing static single assignment form and the control
dependence graph,’’ ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
pp. 451–490, 1991.

[18] Z. Manna, Mathematical Theory of Computation. New York, NY, USA:
McGrawHill, 1974.

[19] S. Gupta, N. Dutt, and R. Gupta, ‘‘SPARK: A high-level synthesis frame-
work for applying parallelizing compiler transformations,’’ in Proc. Int.
Conf. VLSI Design, IEEE Comput. Soc., Jan. 2003, pp. 461–466, 2003.

[20] Accessed: Jun. 2019. [Online]. Available: http://pypi.python.org/
pypi/pycparser

[21] T. Li, Y. Guo, G. Liu, and S. Li, ‘‘Functional vectors generation for RT-
level verilog descriptions based on path enumeration and constraint logic
programming,’’ in Proc. 8th Euromicro Conf. Digit. Syst. Design (DSD),
2005, pp. 17–23.

[22] Accessed: Jun. 2019. [Online]. Available: http://z3.codeplex.com/
[23] Accessed: Jun. 2019. [Online]. Available: http://cse.iitkgp.ac.in/%

7Echitta/pubs
[24] C. Bishop, Pattern Recognition and Machine Learning. Berlin, Germany:

Springer, 2008.

JIAN HU received the B.S., M.S., and Ph.D.
degrees in computer science from the College
of Computer, National University of Defense
Technology, in 2009, 2012, and 2016, respec-
tively. He is currently an Assistant Professor with
The 63rd Research Institute, National Univer-
sity of Defense Technology. He has published
more than 20 articles in electronic design automa-
tion and computer aided design fields, which are
accepted by FCS, JCSC, DAC, SOCC, ISQED,

and GLSVLSI. His research interests include computer aided design, formal
verification, and high-level equivalence checking.

GUANWU WANG received the B.S. degree in
computer science from the College of Computer,
Sichuan University, in 2008, and the M.S. and
Ph.D. degrees in computer science from the Col-
lege of Computer, National University of Defense
Technology, in 2011 and 2015, respectively. He is
currently an Assistant Professor with The 63rd
Research Institute, National University of Defense
Technology. He has published more than ten sci-
entific articles in computer architecture and com-

piler, which are indexed by SCI and EI. His research interests include
coarse grained reconfigurable architecture, high-level compiler, and micro-
electronics.

GUILIN CHEN received the M.S. degree in
computer science from the College of Com-
puter, National University of Defense Technology,
in 2018. He is currently an Assistant Engineer
with The 63rd Research Institute, National Uni-
versity of Defense Technology. He has published
several articles in CNN accelerations and microar-
chitecture, which are indexed by SCI and EI.
His research interests include microarchitecture,
adversarial machine learning, and neural network
accelerator.

XIANGLIN WEI received the bachelor’s degree
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2007, and the
Ph.D. degree from the PLA University of Sci-
ence and Technology, Nanjing, China, in 2012.
He is currently working as a Researcher with The
63rd Research Institute, National University of
Defense Technology, Nanjing. His research inter-
ests include mobile edge computing, wireless net-
work optimization, and the Internet of Things.

He has served as an Editorial Member of many international journals and a
TPCmember of a number of international conferences. He has also organized
a few special issues for many reputed journals.

VOLUME 7, 2019 183443


	INTRODUCTION
	FSMD AND DEEP STATE SEQUENCE
	FINITE STATE MACHINES WITH DATA PATHS (FSMD)
	DEEP STATE SEQUENCE

	MOTIVATIONS
	EQUIVALENCE OF PATHS
	EQUIVALENCE OF FSMD
	EQUIVALENCE CHECKING ALGORITHM
	GENERATING FSMD FROM THE ORIGINAL PROGRAM
	GENERATING DSS FROM THE FSMD
	GENERATING CORRESPONDING DSS IN THE TRANSFORMED PROGRAM
	TEST GENERATION
	CORRESPONDING DSS GENERATION

	COMPARING THE CORRESPONDING POTENTIAL EQUIVALENT DSS-PAIRS

	RUNNING EXAMPLE
	CORRECTNESS
	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	JIAN HU
	GUANWU WANG
	GUILIN CHEN
	XIANGLIN WEI


