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ABSTRACT Direction-of-arrival (DOA) estimation using nested linear array ignores the information from
repeated sensors, thus involves the problem of losing accuracy. Moreover, non-circular feature of signals is
rarely considered and it results in discontinuity of the virtual array, namely, holes appear. This paper first
provide an improved data averaging method to increase the accuracy of DOA estimation by fusing data from
covariance and elliptic covariance. And then an algorithm based on matrix completion theory in nested array
that greatly extends the degrees of freedom (DOF) and is able to find more sources than number of physical
sensors is presented. The algorithm reconstructs the covariance matrix of the virtual linear array, which
exactly has the same shift invariance as the uniform linear array but a higher aperture. Considering about
the missing elements of the virtual array covariance matrix, we apply matrix completion theory to solve the
problem. Finally, true DOAs of multiple signals can be obtained through subspace algorithms. Numerical
results demonstrate that the proposed algorithms can obtain high accuracy while underdetermined DOA
estimation is realized.

INDEX TERMS Direction-of-arrival, nested array, matrix completion theory, data averaging.

I. INTRODUCTION
Direction-of-arrival estimation is a fundamental problem in
array processing [1] and is significant in many applications
such as MIMO radar [2], [3], mobile communication [4],
indoor positioning [5] and underwater acoustics [6]. There
are so many subspace-based methods that resolve real DOAs,
including multiple signal classification (MUSIC) [7], esti-
mating signal parameters via rotational invariance techniques
(ESPRIT) [8] and so on. These algorithms usually need to
assume that the number of impinging sources D is less than
the number of actual sensors M , which implies that the low
rank signal subspace component is necessary to DOA esti-
mation. Recently, several researchers find that this restriction
appears to be a result of sub optimal array geometries such as
uniform linear array (ULA), viz., uniformly spaced antenna
array [9]. Therefore, a new array geometry called nested array
[10]–[12] based on non uniform sampling was proposed.
Nested array is composed of two or more uniform array and
is inherently able to detect O(M2) impinging sources with
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onlyM sensors. [10] proposed a suitable extension ofMUSIC
algorithm called spatial smoothing MUSIC (SS-MUSIC) to
conduct DOA estimation since the data covariance matrix
no longer spans the signal subspace when D > M . While
SS-MUSIC solves the problem of losing low rank compo-
nent, it neglects communication signals with amplitude shift
keying (ASK), binary phase shift keying (BPSK) and unbal-
ance quadrature PSK (UQPSK) modulation which possess
non-circular features.

In other words, non-circular signals have a property of
ellipse covariance matrix being non-zero, which can double
dimensions of array output covariance matrix by combin-
ing covariance matrix and ellipse covariance matrix. Hence
it can expand the array aperture, increase the degrees of
freedom and the accuracy, do which circular signals is not
able to. Since most existing algorithms [13], [14] use second
order statistics (covariance) to resolve DOAs, we can utilize
the non-circular characteristics [15], [16] to obtain much
more effective performance. As a result, it always makes
sense to concentrate on the non-circular signals and study
the impact it brings about in nested array. Consequently,
we revise the generation of difference co-array and find that in
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former researches [10], [17]–[19], the repeated sensors were
omited. Thus the information from those repeated sensors
was not used properly. Most importantly, the co-array based
on non-circular signals is no longer consecutive, namely,
there are zeros in virtual array covariance matrix.

In order to solve the problem presented above, this paper
first prepares a preprocess of data averaging to utilize the
information from every single sensor, as is mentioned in [20]
which considers circular situation. However, it may not effec-
tively improve the performance using only a single statistic
(covariance). Here in this paper we conduct a suitable exten-
sion and average the corresponding terms of both covariance
data and elliptic covariance data in non-circular circumstance.
The DOA estimation method based on date averaging in this
paper is called non-circular spatial smoothing MUSIC, short
for NC-SS-MUSIC. With the consecutive sensors in virtual
array, one can detect the same number of sources with higher
accuracy using the preprocessing method.

Moreover, compressive sensing (CS) methods, including
sparse bayesian learning and orthogonal matching pursuit
(OMP), are becoming a prosperous area of DOA esti-
mation. Recently, several algorithms [21], [22] based on
OMP have been proposed and solve the problem of dis-
tinguishing between two adjacent sources, improving the
performance especially in low signal-to-noise (SNR) ratio.
Besides, an algorithm based on compressive sensing [23] was
proposed for non-circular signals. However, it can use only
consecutive and non-consecutive virtual sensors generated
by original sparse array but do nothing to the missing ones.
To this end, the paper also proposes a method based on matrix
completion theory [24]–[26] which constructs a larger aper-
ture and a higher DOF with fewer sensors while compared
with non-sparse arrays.

Considering that JIAN-FENG CAI has developed an
algorithm [27] of singular value thresholding, we can esti-
mate zeros in the extended covariance matrix with soft
thresholding methods. We first calculate a covariance matrix
after averaging the received data from repeated sensors.
Then, when impinging sources are non-circular, holes appear
and the proposed non-circular singular value threshold-
ing MUSIC (NC-SVT-MUSIC) can be applied to resolve
DOAs of high resolution. Compared with NC-SS-MUSIC,
the proposed algorithm obtains a more effective perfor-
mance. Morevoer, it has significantly increased the accuracy
and the number of sources available with the non-circular
feature.

The paper is organized as follows. In Section 2, a brief
introduction to signal model of nested array is presented.
Then, difference co-array generation process is studied in
Section 3. Section 4 describes the preprocessing method of
data fusion and then the proposed algorithm using SVT is pre-
sented in detail. The steps are listed subsequently and a direct
matrix reconstruction method is also included. In Section 5,
computational complexity and freedom degree of proposed
algorithm is analyzed and compared with some former meth-
ods. Simulation results that demonstrate the efficiency and

FIGURE 1. A 2 level nested array with 4 sensors in each level.

accuracy are presented in Section 6. Finally, Section 7 makes
a conclusion to this paper.

Throughout the paper, [•]∗, [•]T , [•]H and | • | denote the
conjunction, transpose, conjugate transpose and number of
elements in (•) respectively.

II. SIGNAL MODEL
Considering the two level nested array composed of M ele-
ments, M1 in level 1 and M2 in level 2, Figure 1 shows the
array geometry with M1 = 4 and M2 = 4. Here d = λ/2
and λ denotes wavelength of the impinging sources. Suppose
that the antenna array receives D narrowband sources from
directions θ1, θ2, . . . , θD. Note that all impinging sources are
uncorrelated with each other. The response of the antenna
array in the tth time interval can be expressed by

X(t) = A(θ )S(t)+ N(t), (1)

where A(θ) ∈ CM×D is the array manifold denoted by (2)
and (3), S(t) ∈ CD×1 is the vector form of zero-mean wide
sense stationary (WSS) source signals andN(t) is the additive
white Gaussian noise vectors with identical power σ 2.

A =
[
a(θ1) a(θ2) · · · a(θD)

]
, (2)

a(θm) =
[
1 ej2π (d/λ)sinθm

· · · ej2π (M1+(M2−1)(M1+1))(d/λ)sinθm
]T
. (3)

To estimate θ with given time samples of source signals,
a majority of algorithms utilize second-order statistics of
array output data, mainly covariance matrix of the impinging
signals.

Rx = E[X(t)XH (t)] = A(θ)RsAH (θ )+ σ 2I, (4)

where Rs = E[S(t)SH (t)] = diag( σ 21 σ 22 ··· σ 2D ) is the source
signal covariance matrix and I is an unimodular matrix.
Besides, the received signal covariance can be defined as

Rss = A(θ)RsAH (θ ). (5)

Assuming that the number of source signals is fewer than
that of array elements, namely, D < M , we call the circum-
stance as ‘overdetermined’. In this regime, signal covariance
matrix Rss ∈ CM×M is low rank(of rank D). To increase
the number of detected sources, we were devoted to con-
duct DOA estimation when D > M . In this circumstance
called ‘underdetermined’, the array manifold matrix A(θ )
is fat and as a result, Rss is not low rank anymore. Thus
classical subspace-based algorithms lose their efficiency of
DOA estimation.

As is shown earlier, nested array has higher degrees of
freedom, making it possible to estimate more DOAs with
fewer physical elements. In terms of circular signals, scholars
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proposed a great deal of methods for underdetermined DOA
estimation using nested array. However, the co-array gener-
ated by nested array has holes when it comes to non-circular
signals. A complex random variable, x, is recognized as
non-circular of the order two, if the elliptic covariance E[xx]
is non-zero. For arbitrary signal s, it has form of [28]

E[s2] = ρej8E[ss∗] = ρej8σ 2
s , (6)

where ρ and 8 denote the non-circularity rate and phase,
respectively. This paper focuses on strictly non-circular signal
like BPSK whose non-circularity rate ρ = 1. In the next
section, we will revise the model based on co-array and
concentrate on ‘hole’ problem.

III. DISCONTINUITY PROBLEM OF CO-ARRAY FOR
NON-CIRCULAR SIGNALS
Finding a suitably designed sampling geometry is the first
step to perform DOA estimation with high accuracy. It has
been shown that a traditional uniform linear array (ULA) is
the conventional but poor choice for not dealing with under-
determined estimation problem. Here we utilize structure of a
nested array and consider its co-array for non-circular signals,
which could identify DOA clearly even when D > M .

A. REVISE THE SIGNAL MODEL BASED ON CO-ARRAY
Consider a two-level nested array basically consisted of two
ULAs, whose elements are located at L1 = {md,m = 0, 1,
· · · ,M1 − 1} and L2 = {(M1 + (M1 + 1)n)d, n =
0, 1, · · · ,M2 − 1}. Also, we have L = L1 ∪ L2. With Exi
denoting the position of the ith element, difference co-array
[29], [30] set Pv can be defined as

Pv = ±
{
Exi − Exj

}
, ∀i, j = 0, 1, · · · ,M − 1. (7)

In the set Pv, there are repetitions of those elements thus we
define the set Pu which denotes distinct elements of the set
Pv. Therefore a virtual uniform linear array (VULA) whose
sensors located at positions given by Pu is formed. With up
toM2/2+M − 1 DOFs, a 2 level nested array then is able to
resolve underdetermined estimation.

From (7), one can establish a VULA with nested array
through a series of methods, in which vectorization approach
is the most widely used and convenient one. Now follow-
ing (4), the vectorized form can be described as

z = vec(Rx) = (A∗ ◦ A)p+ σ 2
n
E1n, (8)

here p = [ σ 21 σ 22 ··· σ 2D ]
T denotes the power of impinging

source signals. E1n = [ wT1 wT2 ··· w
T
D ]T is a column vector with

wi being a vector of all zeros except the ith element being 1.
Compared with (1), (8) can be denoted as vector form of
array output data, though there are lots of repeated elements
in it. The equivalent array manifold is given by distinct ones
of A∗ ◦ A where ◦ denotes the KR product. The locations
of sensors in this virtual array are described by the distinct
values in (7) above.

According to (7), the VULA has its sensors located from
−Mcd to Mcd , here Mc = M2/4 + M/2 − 1. The array
manifold of such a co-array is then described as

Av(2) =
[
av(θ1) av(θ2) · · · av(θD)

]
, (9)

where [Av(2)]m,n = ej2πm(d/λ)sinθn ,−Mc ≤ m ≤ Mc,

1 ≤ n ≤ D.
Due to transformation from nested array to difference

co-array, equivalent signal component composed of the actual
sources powers σ 2

i takes effect like a series of coherent
sources, and hence the covariance matrix of VULA is no
longer of full rank. [10] proposed a smoothing technique to
construct a modified matrix Rsmoothed ∈ CMc×Mc . Dividing
the co-array into Mc + 1 overlapping subarrays, computing
those array output covariance matrices and then taking the
average of them, we can get

Rsmoothed =
1

Mc + 1

Mc+1∑
i=1

Ri, (10)

where Ri denotes covariance matrix of the ith subarray.
Usually, we estimate Rx with time average instead of

statistical average values due to a finite number snapshots,
say, T . Thus

R̂x =
1
T

T∑
t=1

X (t)XH (t). (11)

From (10) and (11), the smoothed covariance matrix can
be expressed as

Rsmoothed = Av(2)R̂sAH
v (2)+ Î, (12)

here R̂s is the time average values of source signal, and
Î is equivalent noise componet, including cross-correlation
terms of signal-signal and signal-noise. Noticed that Rsig =

Av(2)R̂sAH
v (2) is still a low rank matrix of rank D, just

the same as Rss. Thus subspace algorithms could be applied
to Rsig as it eliminates the effect of coherence which was
discussed earlier.

B. HOLES IN CO-ARRAY FOR NON-CIRCULAR SIGNALS
Co-array transformed from normal nested array is consec-
utive (i.e., no holes) in the case of circular sources. When
non-circular sources impinge on it, the array aperture will be
extended and the degree of freedom will also be increased by
utilizing the nonzero property of ellipse covariance matrix.
Thus the array output signal model will change, and as a
result, problem of discontinuity arises.

As is introduced in Section 1, existing angle estimation
algorithms mostly use covariance data calculated by (1).
Considering that the ellipse covariance matrix of non-circular
signals is non-zero, we can extend data dimension by putting
array receiving data matrix and its conjugate component
together. Consequently, one can ‘double’ the available sen-
sors, which is denoted by [28]

Y(t) =
[
X(t)
X∗(t)

]
. (13)
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FIGURE 2. Values of sets Ddiff and D̃diff when M1 = 4, M2 = 4.

Like (4), the extended covariance matrix can be expressed
as [28]

Rnc = E
[
Y(t)YH (t)

]
= E

{[
X(t)
X∗(t)

] [
X(t) X∗(t)

]}
= E

{[
XXH XXT

X∗XH X∗XT

]}
. (14)

From the properties listed earlier, E[XXT ] and E[X∗XH ]
in (14) is non-zero, thus we can increase the available sensors
by reconstructing the array received matrix. Similar to (8),
vectorize (14) and we can get

z̄ = vec(Rnc) = Āp+ σ 2
n Ew, (15)

where Ā contains not only all the elements of A, but also
sensors located from−Mncsd toMncsd withMncs = M2/2+
M − 2, which results from non-circular expansion charac-
teristic. Note that there are several missing values so that z̄ ∈
C(M2/2+3M−3)×1 and among them the consecutive sensors are
located at −Mncd toMncd andMnc = M2/4+M − 1. Then,
let Pnc denotes the sensors location corresponding to z̄.
From (2), (3), (4) and (7), location information included

in array manifold leads us to difference co-array definition.
Namely, E[XXH ] denotes the difference component Pv. Sim-
ilarly, E[XXT ] (E[X∗XH ]) here denotes the sum component
(and its negative) which can be defined as

Ps = ±
{
Exi + Exj

}
, ∀i, j = 0, 1, · · · ,M − 1, (16)

here we also define a set P̄u that denotes the distinct ele-
ments in Ps. Then, the co-array generated by nested array for
non-circular signals is exactly described by set Pv and Ps.

To observe more clearly, first we define two set as

Ddiff =
{
±(xi − xj) ∪ ±(xi + xj) | xi, xj ∈ L

}
, (17)

D̃diff =
{
±(xi − xj) ∪ ±(xi + xj) | xi, xj ∈ L̃

}
, (18)

where L̃ = {md,m = 0, 1, · · · ,Mc}. In this circumstances,
the mth element can be expressed as

Dm =
D∑
k=1

σ 2
k e

j2π(xm/λ)sinθk = D(xm) xm ∈ L, (19)

D̃m =
D∑
k=1

σ 2
k e

j2π (xm/λ)sinθk = D̃(xm) xm ∈ L̃. (20)

ForM1 = 4 andM2 = 4, Figure 2 shows the values inDdiff
and D̃diff . It indicates that virtual sensors generated in Ddiff
are all included in set D̃diff while some sensors of D̃diff are
missing in Ddiff . That is, co-array of nested linear array for
non-circular signals is inconsecutive—in other words, holes
appear.
Examine Figure 2 carefully, we can either estimate DOAs

with 2Mnc + 1 consecutive sensors, or with the whole virtual
array possessing sensors in D̃(xm), though some of them are
missing. Because of shortage in virtual array, the former
method has a lower computational complexity than the latter.
However, the latter can get high degrees of freedom and array
aperture, detecting more sources at the same time. Particu-
larly, the latter estimates D̃(xm) with the values of D(xm) and
the missing ones set to zeros tentatively.

IV. PROPOSED ALGORITHMS
It has been found that co-array generated by nested linear
array for non-circular signals has holes, which is different
from that under circular signal conditions. Considering about
it, we first extend a preprocessing method based on data aver-
aging and then propose an approach using matrix completion.

A. CONVENIENT APPROACH BASED ON RECEIVED DATA
AVERAGING USING CONSECUTIVE SENSORS
SS-MUSIC, mentioned in [10], works well when covariance
matrix is estimated accurately, namely, for large L. However,
snapshots number T is always finite in practice, resulting
in dramatic deterioration of estimation performance. In this
section, we provide a improved DOA estimation approach
based on received data averaging to get amore accurate result.
From here on, we shall concentrate on the consecutive virtual
sensors in Ddiff .
As is mentioned in [10], there are numerous repeated sen-

sors after vectorize the received covariance. However, schol-
ars are used to choosing data received by one sensor to replace
those of all the other repeated virtual sensors. Thus informa-
tion from those repeated sensors is out of effective utilization
undoubtedly. For non-circular signals, both covariance and
elliptic covariance can generate plenty of repeated virtual
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FIGURE 3. Virtual sensors generation based on covariance and elliptic covariance when M1 = 4, M2 = 4.

sensors and most importantly, these two kinds of covariance
may refer to sensors at the same position, enabling us to
process the data from different statistics so that the accuracy
could be increased.

To make full use of all information outputed from antenna
array, we modify a preprocessing method mentioned in [20]
by fusing data of covariance and elliptic covariance. Consider
the consecutive elements under non-circular signal condition,
there are 47 consecutive elements in corresponding virtual
array, from−23d to 23d , which is shown in Figure 3. It illus-
trates that covariance and elliptic covariance generate the
same virtual sensors so that it does make sense to average the
data from repeated sensors of the two second order statistics.

From Figure 3, we can find that Pv and Ps, which represent
the sensor location corresponding to covariance and elliptic
covariance, have the same sensors located at −19d to 19d .
The improved averaging method averages the corresponding
data from Pv and Ps respectively. As for those only belong to
Ps, they are averaged in the range of Ps. As is shown in (15),
an inconsecutive data vector is established. Suppose that the
consecutive components of P̄u are described as P̄′u, and the
corresponding data vector can be defined as

z̄1 = Ā1p+ σ 2
n Ew1, (21)

where Ā1 is the matrix sorted to make the ith row correspond-
ing to the sensor location (−Mnc + i)d, i = 0, . . . , 2Mnc
in difference co-array. And Ew1 ∈ C(2Mnc+1)×1 is a column
vector of all zeros except a 1 at the (Mnc + 1)th position.
Through averaging the received data by following the

approach above, a modified data vector can be obtained.
Define a data averaging operator D and it is presented in
detail as

D(z̄1) , D(z̄1(l)), (22)

and furthermore,

D(z̄1(l)) =
1
|Ql |

∑
i∈Ql

z̄(i), (23)

where z̄1(l) denotes the lth element of z̄1, so does z̄(i). Note
that Ql = {i|Pnc(i) = P̄′u(l), i = 1, . . . , 4M2

} is the set
consisting indexes of elements in Pnc which is equal to P̄′u(l).
Later Numerical results will show that receiving data averag-
ing approach can improve DOA performance effectively.

Follow (10), R̄smoothed can be calculated and aMUSIC-like
null spectrum will be calculated to estimate 2. Firstly,
the SVD of R̄smoothed is performed as

R̄smoothed = U6VH . (24)

Supposed that R̄smoothed is of rank r and the singular
values are listed in descending order. Denoting the lastMnc+

1 − r corresponding columns of U as Un = [ur+1ur+2 · · ·
uMnc+1]. Defining ā(θ) =

[
1 · · · ej2π (Mnc+1)(d/λ)sinθ

]
∈

C(Mnc+1)×1 as the steering vector of the difference co-array of
direction θ and hence the MUSIC spectrum is formed as [7]

P(θ ) =
āH (θ )ā(θ )

āH (θ )UnUH
n ā(θ )

. (25)

The DOA estimates will be given through the peaks locat-
ing of null spectrum P(θ).

B. HYBRID APPROACH BASED ON RECEIVED DATA
AVERAGING AND MATRIX COMPLETION
A data preprocessingmethod and a subspace DOA estimation
scheme are introduced in last section and get us better per-
formance. As is shown earlier, non-circular signals will lead
to inconsecutive in difference co-array of nested linear array.
In this section, we will focus on how to achieve information
of those missing virtual sensors so that we can detect more
sources than NC-SS-MUSIC provided in last section.

From Figure 2 and 3, sensors in Ddiff is available, i.e., able
to be generated by covariance and elliptic covariance. Thus
we can also average the received data from repeated sen-
sors except for the missing sensors. After that the hole
problem becomes the key to resolving DOA accurately and
is intractable to deal with. Since all elements of Ddiff are
included in set D̃diff , we can estimate D̃(xm) with D(xm).
However, the elements of D̃diff which do not exist in Ddiff
limit us from estimating D̃(xm). As a result, we compute
D̃(xm) with the values of D(xm) while those missing values
are set to zero tentatively. Therefore, we can complete (15)
with zeros in position where D̃diff has elements butDdiff does
not. Then we get a new equivalent array output vector z̄2 after
data averaging. Note that z̄2 ∈ C(M2

+2M−3)×1.
Since a nested linear array is considered in this paper,

the toeplitz characteristic can be used to reconstruct a output
covariance matrix. Consider about z̄2 with zero elements in it,
we can divide it into two parts on average and take them for
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toeplitz reconstruction. Suppose that the reconstructed matrix
is described as R̄c and it containsM (M/2−1) zero elements.

Matrix completion theory has been researched in antenna
array especially for coprime array due to its properties that
the difference co-array transformed from it has holes natu-
rally [31]. Recently, matrix completion schemes using convex
optimization show up frequently. Some of them estimate the
missing values in covariance matrix of co-array with the hole
values set to zero [32]. In other words, the toeplitz recon-
structed matrix R̄c is just suitable for it. In matrix completion
theory [33], [34], the problem is expressed as

min rank(R̂c)

s.t. R̂(i,j)
c = R̄(i,j)

c , (i, j) ∈ �, (26)

where R̂c is the unknown matrix of low rank and it can be
expressed as

R̂c = ÂcR̂sÂH
c + Î, (27)

here [Âc]m,n = ej2πm(d/λ)sinθn , 0 ≤ m ≤ Mncs, 1 ≤
n ≤ D denotes a equivalent manifold of virtual uniform
array. Candes and Recht proved [33] that almost all low-rank
matrices can be recovered exactly from those sampled entries
by solving a convex optimization problem, like (26). Here
� is the location set of all non-zero components in R̄c, thus
we can denote a orthogonal projector P� satisfying that the
(i, j)th element of P�(R̄c) is equal to R̄(i,j)

c if (i, j) ∈ � and
zero otherwise. It is a NP-hard problem to solve the rank
minimization, and hence a convex relaxation is undoubtedly
necessary. Given that nuclear norm minimization problem
is the tightest convex relaxation of the (26), singular value
thresholding is a computationally efficiency and fast converg-
ing solution to it. With convex relaxation, problem can be
converted to [27]

min γ
∥∥∥R̂c

∥∥∥
∗

+
1
2

∥∥∥R̂c

∥∥∥2
F

s.t.
∥∥∥P�(R̂c)− R̄c

∥∥∥2
F
≤ ε, (28)

where ‖R̂c‖∗ denotes the nuclear norm of R̂c, which is the
sum of its singular values. ‖•‖F is the Frobenius norm which
equals to the square root of the sum of squares of all elements
in the matrix it works on and in (28), ‖R̂c‖

2
F equals to the

standard inner product of R̂c itself. γ is a constant that the
bigger it is, the closer (28) is to (26). Besides, ε is a constant
depend on noise power. First of all, several definitions will
be given in order to set forth the algorithm. Gγ (•) denotes
the soft threshold operator and is defined as

Gγ (R̂c) = UGγ (6)VH , (29)

where R̂c = U6VH denotes the singular value decomposi-
tion.6 is a diagonal matrix composed of λi, which represents
the ith singular value sorted in descending order. Further-
more,

Gγ (6)=diag[(λ1 − γ )+ (λ2−γ )+· · ·(λM2/2+M−2 − γ )+],

(30)

here (λi − γ )+ = max[0, λi − γ ]. Hence the main steps in
algorithm of SVT is tabulated in Table 1.

TABLE 1. The steps of SVT.

The initial value was considered in [27] and here we initial-
ize them as γ = 20M , δ = 1.03 and ε = 10−4. After that the
zero-location value will be recovered and hence we obtain the
covariance matrix of completed virtual uniform linear array.
Suppose that R̂∗c is the optimal solution to SVT.

Generally, we apply the classical MUISC algorithm to
find the arrival angle of signals. First of all, SVD of R̂∗c is
conducted and we can get corresponding singular vectors.
Here we assume that the number of impinging sources is
known as D. Hence the last Mncs + 1 − D columns of left
singular vector constitute Un, which spans the noise sub-
space. The steering vector of difference co-array is āc(θ ) =[
1 · · · ej2π (Mncs+1)(d/λ)sinθ

]
∈ C(Mncs+1)×1 and the MUSIC

spectrum is expressed as

P(θ ) =
āHc (θ )āc(θ )

āHc (θ )UnUH
n āc(θ )

. (31)

It is surely that we need to estimate the signal number first
to obtain results of high accuracy. Method [35] can detect
more signals than the number of physical sensors together
with source number estimation, which is equal to the rank
of matrix recovered by the algorithm. However, the proposed
algorithm is mainly aimed at estimating the zero components
of R̄c. It can still estimate the number of impinging sources,
though, in such a complicated model and it needs to do a
further research on it. Similarly, arrival angle will be shown
in the form of MUSIC spectrum peak. To sum up, the entire
proposed algorithm can be summarized in Table 2 below.

TABLE 2. The steps of proposed algorithm.
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In this part we develop a hybrid approach of DOA estima-
tion based on received data averaging and matrix completion,
and now we shall present relations to other work.

P. Pal et al. developed a gridless method of DOA estima-
tion via low-rank recovery, which considers nuclear norm
minimization as well [35]. Thus it is meaningful to make a
comparison with it. This paper first raises the discontinuity
problem of co-array for non-circular signals in nested array
and based on this, a SVT-based matrix completion method
is proposed. However, [35] considers hole-free co-array of
nested array for circular signals and hence it does not need
matrix completion. In their paper, P. Pal et al. have the spa-
tial smoothing operator Psmooth acting on covariance matrix
while the proposed method reconstructs an equivalent covari-
ance matrix with the missing values set to zeros. The result
is that [35] accomplishes the aim of denoising, which is
characterized by ε and the proposed method estimates those
missing values. Of course the matrix R̄c is reconstructed of
vectors averaged with both covariance and elliptic covariance
data.

The array interpolation method for coprime array [36]
poses a semidefinite programming scheme to solve nuclear
norm minimization problem (P1) and recover correlation
information. However, it has a constraint of Hermitian matrix
while we do not need. By the way, a Toeplitz reconstruction
of steering vectors in antenna array has already ensured this
constraint. As is analyzed earlier, the received data vector
has been preprocessedwith covariance and elliptic covariance
information through scheme provided in Section 4, Part A.
In terms of optimization, we derive a different way to solve
the problem. Note that (28) is closely related to nuclear norm
minimization problem so the solution to (28) eventually con-
verges to a matrix that nearly minimizes nuclear norm of R̂c.
Besides, SVT provides a computationally efficiency and fast
converging solution to (28) so that we can solve nuclear norm
minimization problem under low complexity. Note that the
complexity of SVT has been analyzed particularly in [27] and
proved to have a fast converging solution so that this paper
does not discuss the issue in detail.

V. COMPUTATIONAL COMPLEXITY AND FREEDOM
DEGREE ANALYSIS
A. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section we present the complexity of proposed
algorithm and compare it with some former schemes like
NC-SS-MUSIC and CS-based methods. Specificly, OMP
method mentioned in [37], [38].

The complexity of the proposed algorithm is mainly com-
posed of four parts: covariance matrix calculation through
time averaging, eigenvalue decomposition, SVT andMUSIC,
whose complexities are O(4TM2), O(M3

ncs), O(2M
3
ncsNi) and

O((Mncs −D)MncsDθ ) respectively. Here Ni denotes the iter-
ation number and Dθ = 180/1θ + 1 is the number of
spectral points in peak search grid with1θ represents search
step. Therefore the computational complexity of the proposed

algorithm isO(4TM2
+M3

ncs+2M
3
ncsNi+(Mncs−D)MncsDθ ).

The computational efficiency of SVT has been analyzed and
proved by numerical results in [27] with comparison to other
methods solving nuclear norm minimization problem.

Besides, the SS-MUSIC in [10] can resolve DOA with
consecutive sensors so that it do not need to apply SVT. The
complexity of SS-MUSIC isO(TM2

+M3
c + (Mc−D)McDθ )

and for comparison, NC-SS-MUSIC has a complexity of
O(4TM2

+ M3
nc + (Mnc − D)MncDθ ). Besides, OMP men-

tioned in [37] is a method based on CS, whose computational
complexity mainly exists in two parts: calculating covariance
matrix and iteration calculation. The OMP method has a
complexity of O(TM2

+DM2
cOθ ), where Oθ = 180/1θ + 1

denotes redundant dictionary.
It shows that the proposed method can detect more sources

than number of sensors without significant increase in com-
plexity from Table 3. This is due to the extension based on
non-circular signals and improvement in degrees of freedom,
as is shown in (13), (14) and Figure 2. Moreover, the SVT
method also has a significant effect on complexity which
mainly comes from singular value decomposition. The num-
ber of snapshots projects little influence on complexity while
the searching step size 1θ exerts a stronger impact. Peak
searching and redundant dictionary are all depend on grids,
which means that once the step size is small, the complexity
becomes really high.

TABLE 3. Complexity comparison of different algorithms.

B. FREEDOM DEGREE ANALYSIS
Degrees of freedom are affected by antenna array manifold
and specific algorithm one uses, which are also influencing
application performance and source numbers of estimation
conversely. The property of high degrees of freedom, which
means ability of multiple sources detection, is the key to the
proposed algorithm. We consider a two level nested array
with M sensors,M/2 for each level.

For non-circular signals, the corresponding virtual array
has holes and hence we can develop two ways to resolve
DOA. First we only make use of the consecutive virtual sen-
sors together with a preprocessing technique of data fusion
by averaging, obtaining a freedom degree of O(M2/4+M ).
Besides, all the virtual sensors can be fully utilized by
completing the missing elements using SVT, thus we can
get a freedom degree of O(M2/2 + M − 1), which is
much higher than conventional methods like SS-MUSIC
and NC-SS-MUSIC. The freedom degree comparison among
these algorithms is presented below in Figure 4. The proposed
algorithm has the highest degrees of freedom and it can
detect sources when the number of sources are more than the
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FIGURE 4. Degrees of freedom versus number of sensors.

number of antenna, which is recognized as underdetermined
DOA estimation.

VI. SIMULATION RESULTS
This section presents numerical results that illustrate perfor-
mance of the proposed algorithms compared to methods in
[10], [36] and [37]. First we shall define an evaluation criteria
called root mean square error (RMSE), which is expressed as

RMSE =

√√√√ 1
KD

K∑
i=1

∥∥∥2− 2̂i

∥∥∥2, (32)

where 2 and 2̂i denote the real value and the ith value of
estimation respectively; K is the number of Monte Carlo
simulations. Moreover, we assume that a two level nested
array with M1 = M2 = 4 is under consideration for all
simulations below.

Then, a lower bound on the variances of the unbiased esti-
mator called the Cramér-Rao bound (CRB) shall be defined.
The CRB describes the smallest mean square error of unbi-
ased estimates of parameters such as DOA, which can be
presented as [39]

CRB(θ ) =
σ 2

2T
{Re[(A

′HPAA′)� ŜT ]}−1, (33)

where

A′ =
[
∂a(θ1)
∂θ1

∂a(θ2)
∂θ2

· · ·
∂a(θD)
∂θD

]
, (34)

PA = I− A(AHA)−1AH , (35)

Ŝ =
1
T

T∑
t=1


s1(t)
s2(t)
...

sD(t)



s1(t)
s2(t)
...

sD(t)


H

. (36)

and � denotes the Hadamard product. Note that S(t) =
[s1(t) s2(t) · · · sD(t)]T .

A. PERFORMANCE IN UNDERDETERMINED CONDITION
(D > M)
In this part we concentrate on underdetermined DOA esti-
mation and consider D = 15 or D = 25 sources while
using a two level nested linear array of 8 sensors in total.
The SNR is 0 dB, snapshots T = 500 and searching step
size 1θ = 0.05◦. The MUSIC spectrum using two proposed
methods is presented in Figure 5 (a) and (b) respectively.
The two figures demonstrate that the proposed algorithms can
correctly estimate the DOA of impinging sources and realize
underdetermined DOAs estimation successfully. In addition,
matrix completion technique makes it possible to further
extend degrees of freedom, namely, to improve detectable
sources numbers.

FIGURE 5. MUISC spectrum under the condition of SNR = 0dB
(a) 15 sources estimated with maximum consecutive sensors;
(b) 25 sources estimated using matrix completion.

B. RMSE COMPARISON WITH BOTH CONSECUTIVE
SENSORS AND MATRIX COMPLETION UNDER
DIFFERENT SNRs
RMSE performance versus SNR is be studied in this
part. We compare the performance of two proposed algo-
rithms together with methods in [36] and [37] in the case
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of K = 100, T = 500 and SNRs from -5dB to 15dB with
step size 5 dB. For proposed algorithms, we consider two
scenarios of D = 3 and D = 5, in both of which signals are
strictly non-circular so that both proposed algorithms, NC-
SS-MUSIC and NC-SVT-MUSIC can be applied. The results
are presented in Figure 6 and 7.

FIGURE 6. RMSE comparison under different SNRs with D = 3,
1θ = 0.05◦ (a) RMSE performance with maximum consecutive sensors;
(b) RMSE performance using matrix completion.

From (a) in Figure 6 and 7, we can find that the accuracy
of estimation gets considerable improvement by making full
use of the non-circular characteristics. Because, using the
non-zero property of elliptic covariance matrix, one can dou-
ble the received data matrix so that the information available
is also doubled. Furthermore, replacing the data from a single
virtual sensor with the average of those received data from
repeated sensors can get us more accurate results. Figure (a)
illustrates that data averaging does improve the performance
of DOA estimation. Without using data averaging, we also
present the results of proposedNC-SVT-MUSIC in (a), which
can detect more signals and attain results as accurate as
proposed NC-SS-MUSIC, and even better. It means that SVT
method works well and is helpful to improve performance of
DOA estimation.

FIGURE 7. RMSE comparison under different SNRs with D = 5,
1θ = 0.05◦ (a) RMSE performance with maximum consecutive sensors;
(b) RMSE performance using matrix completion.

In (b) of Figure 6 and 7, the CS-based method, OMP
in [37], obtains good performance when SNR ≤ 0 dB but
goes worse gradually with SNR increasing. Once matrix
completion theory is applied, the holes in virtual array will
be completed. Moreover, the array aperture and degrees
of freedom also increase as the number of virtual sensors
increases, which means more detectable sources. For com-
parison, RMSE results of nuclear norm minimization method
in [36] are presented in line of triangle. We can find that
the proposed NC-SVT-MUSIC attains higher accuracy than
method in [36] with lower computational complexity.

C. RMSE COMPARISON WITH BOTH CONSECUTIVE
SENSORS AND MATRIX COMPLETION UNDER DIFFERENT
NUMBER OF SNAPSHOTS
In simulation 3, we keep SNR = 0 dB, Monte Carlo sim-
ulations K = 100, and varies the number of snapshots to
T = [50, 100, 200, 1000, 2000, 5000, 10000] to study the
impact of snapshots on DOA estimation. Figure 8 and 9
illustrate the results of 3 and 5 sources with 1θ = 0.05◦

respectively. The RMSE becomes lower with the increase
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FIGURE 8. RMSE comparison under different snapshots with D = 3,
1θ = 0.05◦ (a) RMSE performance with maximum consecutive sensors;
(b) RMSE performance using matrix completion.

of number of snapshots, and basically keep unchanged once
T > 500. Analyze the four pictures below carefully, and we
find that NC-SS-MUSIC is more accurate than SS-MUSIC,
NC-SVT-MUSIC also performs better than methods in [36]
and [37]. It also illustrates that the method after process of
data averaging is more effective than that does not according
to line of plus sign and circle in (b) of Figure 8 and 9.
From simulation 2 and 3, we can find that NC-SVT-MUSIC
and NC-SS-MUSIC have similar accuracy. To sum up, NC-
SS-MUSIC can be used for more accurate results than
SS-MUSIC with high speed while NC-SVT-MUSIC can be
used for detecting more sources than number of sensors with
a higher complexity. Though it is lower than other nuclear
norm minimization methods. The other conclusions are also
similar to those in simulation 2.

D. RMSE COMPARISON WITH OTHER METHODS FOR
NON-CIRCULAR SIGNALS
In former simulations, it has been proved that the proposed
NC-SVT-MUSIC outperforms methods in [36] and [37].
However, the latter two methods were proposed for circular

FIGURE 9. RMSE comparison under different snapshots with D = 5,
1θ = 0.05◦ (a) RMSE performance with maximum consecutive sensors;
(b) RMSE performance using matrix completion.

signals and in this part, we set D = 3 strictly non-circular
signals to study the performance under different SNRs and
snapshots. Similarly, Monte Carlo simulations K = 100.
Figure 10 shows the results of DOA estimation. It shows
that NC-SVT-MUSIC has better performance compared to
methods [36] and [37] even in scenario of non-circular
signals.

E. RMSE COMPARISON UNDER DIFFERENT NUMBER
OF SENSORS
The number of sensors can affect the virtual array aperture
and freedom degree, thus having an important influence on
RMSE performance. In this simulation, we set SNR = 0dB,
snapshots T = 500, Monte Carlo simulations K = 100 and
varies the number of sensors to M = [4, 8, 12, 16, 20]. Note
that each level of nested array has M/2 sensors and there
are 3 sources impinging on antenna array. Figure 11 shows
the result of RMSE with 1θ = 0.05◦. It is clear that as
the number of sensors increase, the RMSE decreases. When
there are 20 sensors in nested linear array, it can obtain a high
accuracy, for instance, RMSE less than 10−2.
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FIGURE 10. RMSE comparison with other methods for non-circular
signals with D = 3, 1θ = 0.05◦ (a) RMSE performance under different
SNRs; (b) RMSE performance under different snapshots.

FIGURE 11. RMSE comparison under different number of sensors.

VII. CONCLUSION
The paper has presented an underdeterminedDOA estimation
technique using a two-level nested linear array. After a brief
introduction to the model and associated problems, we ana-
lyze the information loss problem and the hole problem of

nested array for non-circular signals carefully and give the
theoretical analysis. Through received data averaging and
matrix completion theory, the proposed algorithms solve the
problems of existing approaches, namely the inability to find
more sources than number of physical sensors and the effec-
tive and accurate DOA estimation with low complexity in this
circumstance. Through a series of simulation experiments,
we demonstrate that the received data averaging method can
improve the performance of DOA estimation effectively and
the proposed hybrid approach usingmatrix completion theory
achieves better results compared with [36] and [37] while it
can estimate more sources than number of sensors.
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