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ABSTRACT Inefficient healthcare is a major concern among many African nations. It can be mitigated
by building world-class infrastructure connecting different medical facilities for collaboration and resource
sharing. Such infrastructure should support the exchange of medical data, enabling access to expertise not
available locally. It should be equipped with technologies of the fourth industrial revolution, providing
support to doctors thereby enabling African nations leapfrog from poorly equipped to medically prepared.
Sadly, world-class healthcare facilities are a missing piece in African public health ecosystems. Medical
facilities are either non-existent or prohibitively expensive. Being a collaborative model between Cloud
providers, federated Clouds allow the execution of tasks on computing resources flexibly and cost efficiently.
This paper aims to interconnect medical facilities across Africa by proposing a Cloud federation for
healthcare using co-operative and competitive collaboration models. Simulations were carried out to test
the efficiency of these models using two new allocation schemes: Genetic Algorithm-based VM Allocation
(GAVA) and Stable Roommate Allocation (SRA). These schemes were bench-marked against First-Fit-
Descending (FFD), Best-Fit-Descending (BFD), Binary-Search-Best-Fit (BSBF) allocation schemes; for
both light and heavy workloads. Obtained results revealed that the co-operative model resulted in lower
delays but higher resource utilization; while the competitive provided faster service delivery and better
quality of service. Deployment considerations and potential businessmodels for the African Cloud federation
were also presented.

INDEX TERMS Africa, cloud computing, federated cloud, healthcare, workload allocation.

I. INTRODUCTION
Cloud computing is a key technology which plays a vital
role when interfacing the physical and virtual worlds in
most fields of the fourth industrial revolution (4IR). There
are numerous definitions of Cloud computing in literature,
however that of the NIST is arguably the most accepted.
According to the NIST, Cloud computing is a model that
enables pools of measurable computing resources be made
available to users conveniently and ubiquitously [1]. One
of the key characteristic of Cloud computing is elastic pool
of resources, this implies a near infinitive resource scale.
In actuality however, no Cloud Service Provider (CSP) is
able to provide a limitless amount of resources to users.
Beyond elasticity, Cloud resources need to be available at
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any time and from any location, globally. Though it is pos-
sible to achieve global coverage for a single site data center,
users would however experience increased latency/delay and
reduction in throughput as distance grows. Therefore, CSPs
often have data centers located in multiple geographical areas
to be as close to the users as possible - a concept known
as multi-homing [2]. Similarly, there are situations whereby
a CSP does not have sufficient resources to cater for all
its users; such a situation might arise for example, during
peak office hours (company websites), during promotions
and sales (for e-commerce websites) or when students are
resuming new academic sessions (for academic websites).
Two potential solutions to this problem of resource shortage
are resource scaling (either vertically or horizontally [9])
and collaboration with other CSPs. Resource scaling might
however be extreme costly, especially if demand spikes are
only for short duration of time. CSP collaboration on the other
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hand might prove to be a more cost-effective solution. Cloud
federation has emerged as a solution for CSP collabora-
tion [3]. It is based on the economicmodel of federation game
and one in which multiple CSPs combine their resources, in a
way that allows for cross-utilization among themselves and
improves the quality of services (QoS) rendered to users [8].
Cloud federation also provides CSPs with an extended reach,
allowing them leverage on partner CSPs to reach disperse
geographical locations. Cloud federation can be provided in
one of three models [3], [8], which are: infrastructure pooling
(where resources of multiple CSPs are aggregated together
and appear as a single virtual infrastructure, similar to the
disk striping or RAID0); hybrid federation, which combines
resources across private and public Clouds and broker-based
federation, wherein each CSP remains independent but con-
joined by a single broker. The focus of this paper is on the
third model. In this model, CSPs have the option of joining a
federation or working independently.

A. CLOUD FEDERATION FOR HEALTHCARE SUPPORT
IN AFRICA
It is widely recognized that developing nations have missed
many of the opportunities offered by the first three industrial
revolutions. It is also expected that, cognizant of this sad fact,
many developing countries will take advantage of relevant
technological offerings of the fourth industrial revolution to
leapfrog from poorly equipped to technologically prepared
countries. The specific 4IR use-case scenario being consid-
ered in this paper is the application of Cloud federation
to healthcare and medicine across African countries. This
would allow for collaboration and resource pooling across the
continent for improved healthcare services. The justification
for a federated Cloud for medicine in Africa are numerous,
among which are: i. most African countries are either under-
developed or developing. ii. access to world-class medical
services is either non-existent or extremely expensive; how-
ever, there are a handful of African countries with good med-
ical facilities, which can offer tele / cyber-health supports. iii.
patients in many developing parts of Africa cannot afford the
huge cost of flying abroad or to other African countries such
as South Africa and Egypt for treatment. Cloud federation
can therefore allow for collaboration, wherein resources can
be pooled together for tasks such as X-Rays and CT Scans
interpretations, remote testing and diagnosis, and possibly
conference surgeries - where multiple experts monitor and
observe surgical procedures. To put this in context, we would
describe an application scenario. Currently, there are only
about 75 Cloud data centers (DC) across theAfrican countries
according to [21] and Fig. 1 shows their distribution, with
each bubble sized proportionality to the number of DCs in
each country.

From Fig. 1 only six countries have more than five DCs,
while eight countries have between one and three. This sums
to only fourteen of the fifty-five countries in Africa. The other
countries either do not have DCs or theirs’ are below the
DC standards as stipulated in [22], [23]. Building DCs and

FIGURE 1. Data centers sizes across Africa.

FIGURE 2. High-level conceptual cloud federation network for African
Healthcare.

capacity is a very expensive and time consuming process.
DCs are not a priority for many African countries, as they
are often times encumbered with economic sustainability and
survival challenges. Cloud federation can therefore be of
immense value to these countries and the African continent in
general. Fig. 2 shows a potential high-level Cloud federation
network for medicine across Africa. Countries with multiple
DCs are chosen as regional hubs and distributed as follows:
Egypt to the North, South Africa to the South, Kenya to the
East, Nigeria to theWest and DRC at the center. ThoughDRC
has only one DC, it has been selected as a hub because of its
geographical position at the center of the continent. A high
bandwidth, low latency network connection between these
hub nations would serve as the backbone of the federated
system, while the hub countries serve as regional gateways
into the network.

The Federation can be done in one of two models. In the
first, the CSPs agree to work together, forming a single
virtualized resource pool; we refer to this as a co-operative
federation model. Conversely, the CSPs can decide to work
independently, we refer to this as the competitive federation
model.
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B. CONTRIBUTION AND OUTLINE
For this work, we considered five different workload
allocations schemes to determine their effects on the
co-operative or competitive Cloud federation. They are the
heuristic models - First-Fit Descending, Best-Fit Descending
and Binary-Search-Best-Fit; meta-heuristic model - Genetic
Algorithm and the Stable Roommate Allocation economic
model. Resource utilization, QoS and allocation delays were
considered as performance metrics. The specific contribu-
tions of this paper are:
• A unique GA gene encoding scheme for the allocation
of Cloud workloads to PMs and its implementation as
contributed codes to the Cloudsim framework.

• An adapted Stable Roommate Allocation economic
model, which guarantees the allocation of all Cloud
workloads while using comparatively minimal Cloud
resources. This was also added as an extension to
Cloudsim.

• A detailed performance comparison of five different
workload allocation schemes and how they affect var-
ious metrics in co-operative and competitive Cloud
federations.

• Potential business models and considerations for the
deployment of federated Clouds for healthcare in Africa.

The rest of this paper is organized as follows: following
this introduction is a review of related work in section 2.
In section 3, the Cloud federation models are presented, along
side our proposed allocation schemes. Classical workload
allocation schemes against which our proposed schemes are
bench-marked are presented in section 4. Results of simula-
tions done are presented and discussed in section 5, while
deployment considerations and potential business models are
presented in section 6. Section 7 concludes the paper with
motivations for future works given.

II. RELATED WORK
With respect to collaboration across nations, a number of
solutions already exist particularly in the academic and
research domain. One such, is the African Research and
Education Network (AfREN); which is a network established
for collaboration and research in Universities and research
centers across Africa [24]. It is a region based network which
consists of ASREN covering the Northern and Mid-Eastern
Africa, WACREN for the Western and Central Africa and
UbuntuNet for the Eastern and Southern African countries.
Similar networks also exists globally such as the Asia-Pacific
Advanced Network (APAN) [25], GEANT [28] in Europe
and internet2 [29] in the USA. A number of works have
been done on providing infrastructure to support health across
Africa. In the work of Bagula et al. [39], the authors proposed
a multi-layered framework for Cyber-Physical Healthcare
which combined IoT and machine learning techniques. IoT
was used for the collection and muling of health data to
the Cloud infrastructure, while machine learning techniques
were used for patient triage. The potential advantage of this
framework include better patient prioritization, better patient

monitoring, cost and time savings. In a related work on
IoT and healthcare, considerations for designing a full stack
Remote Patient Monitoring system (RPM) for tele-medicine
based on FiWAREwas presented in [30]. FiWARE advocates
openness and the authors proposed a solution inline with the
FICHe guidelines. Critical considered to note when building
such a system were given, some of which included design
steps, device deployment; collection, muling, security and
storage of data, as well as system integration. The authors
in [4], considered the applications of Fog computing for
securely storing sensitive health information in a Cyber-
healthcare system and proposed the Multi-Phased Data Secu-
rity and Availability (MDSA) protocol. The Fog networks
helped cut down network latency, while the multi-phased
security ensured end-to-end security coverage. In another
related work, the authors in [40], proposed a Cloud-based
medical triage service system. Upon collecting body vital
signs from patients, the system analyses the information
using either linear regression or k-means, bench-marking the
obtained results again the WHO standard. In order to achieve
collaborative healthcare system pan-African wide, standards
have to be agreed upon for effective transmission and inter-
pretation of patient medical / health records. This would
foster interoperability between the various Cloud platforms
spread across the continent. Lubamba and Bagula [41], had
proposed a framework for the standardization ofmedical data.
Their proposed model was based on the Health Level Seven
(HL7) standard [42]. In their work, patient data had to be
encoded into XML based HL7 format before being trans-
mitted using HL7-CDA web service. From obtained results,
the authors showed that their HL7 based model was able to
transmit significantly more records, with minimal overhead
when compared with the alternatives. Some of the ideas pro-
posed inmany of the works reviewed thus far could be applied
in the implementation of healthcare kiosks in developing
countries as suggested in [26], [27]. In the work done by
Shimizu et al. [25], the authors presented medical use cases
of combining the Asia-Pacific Research and Education Net-
work (REN) with a Digital Video Transport System (DVTS).
The DVTS allowed them obtain digital streams of images
which could be transported via an IP network, while the REN
provided a stable high-bandwidth network for transmission.
A hundred different medical teleconferences were used as
test, with images from live surgical sessions, endoscopy,
transplants, nursing and healthcare etc. The authors in [31]
also discussed the potentials and advantages of introducing
tele-medicine in Africa. Some of these include: lowering
medical cost, reducing geographical distance and cater for
severe shortage of doctors across the African continent. Fac-
tors limiting the wide-spread adaptation of tele-medicine and
possible future directions were also presented. Cloud com-
puting has in the last two decades emerged as a reliable,
robust and capable computing paradigm. It has grown beyond
the single-site, single provider solution it once was to one in
which multiple CSPs work together to achieve preset goals.
Darzanos et al. [8], had proposed a model for economically
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evaluating Cloud federation. They focused on workload
delays within federated Cloud systems. With time being the
main metric, they therefore modeled each CSP as an M/M/1.
In the work, the resources of the CSPs were pooled and user
workloads could be served by resources belonging to any of
the participating CSPs. They finally developed a model for
allocation that maximized the profit of the collective whole.
In a latter work [3], the authors extended on their earlier
work by considering performance across three types of Cloud
federation models- weak, strong and elastic. The strong being
a co-operative model, the weak - a classic competitive model,
while the elastic could be described as a dynamic competitive
model. In this work however, profit was dependent on energy
consumption and QoS adherence. Finally, the Shapley-value
was used for profit sharing among the participating CSPs.
With respect to our choice of allocation schemes, we can con-
sider the allocation of workloads to Cloud resources as a bin-
packing problem [16], which in itself is a NP-hard problem.
This therefore necessitates the use of non-intrinsic methods to
solve, such as heuristic and meta-heuristic models. In terms
of the heuristic, the first-fit, best-fit and their variance are
arguably the most common. For Cloud workload alloca-
tion, the Best-fit-descending (BFD) has been widely used by
numerous researchers [11], [12], [15], it therefore makes an
excellent choice for our selection. First-fit-descending (FFD)
like BFD has been shown to use the same amount of bins,
but much faster. With allocation speed being a core metric in
this paper, we therefore considered FFD. In terms of meta-
heuristic, the Genetic Algorithm (GA) has been widely used
in many literature for workload allocation in Cloud comput-
ing environs. A few of these works are [10], [13], [14] with
energy conservation, QoS and resource utilization considered
as metrics. However, to the best of our knowledge GA has not
been used for virtual machine (VM) migration in federated
Clouds. Economic concepts have beenwidely applied in solv-
ing computing related problems. Coalition games and game
theories have been used for problems relating and involving
multiple participants - such as in VM migration in federated
computing [7] and dynamic resource re-allocation in [6].
The stable marriage economic model has also been used
for workload allocation in Cloud computing [5]. However,
to the best of our knowledge, it has not been used to address
VM migration issues in federated Cloud environments.

The focus of many of these reviewed works was either
on medical collaboration via the Internet or various schemes
for allocating workloads to Cloud resources. Unlike in those
other works, this paper considers a Cloud federation system
for improved user satisfaction and health service delivery
across the African continent. Like the work of [3], this work
also compares the different Cloud federation model, however,
with the objective of determining which of the two mod-
els is best suited for specific requirements - light or heavy
usage demands. To achieve this, we applied various workload
schemes to a simulated federated Cloud, consisting of multi-
ple CSPs working co-operatively or competitively to provide
medical services across the continent.

FIGURE 3. Co-operative vs competitive Cloud federation models.

III. CLOUD FEDERATION MODEL FORMULATION
Typically, a federated model for Cloud computing includes
different Cloud providers collaborating by: i) sharing
resources yet remaining independent entities with ‘‘thick
walls’’ separating them; ii) having applications run ‘‘Cloud
provider agnostic’’ through the use of virtual local networks
between collaborating CSPs and iii) having Cloud providers
totally disperse from each other in terms of cost and trust
level.

When considering a federated Cloud environment, vir-
tual machines allocated to tasks can be migrated either to
physical resources within the same Cloud Resource Provider
(CRP) or to resources of a different provider. Two federation
models are being considered in this work; the competitive
model, where virtual machines can only be migrated to other
resources within the same provider’s network and the co-
operative, where migration can be to any provider. These
are illustrated in Fig. 3, which reveals the migration of VMs
between three CRPs in the co-operative federation. The right
side of the figure, shows a localized migration for the com-
petitive federation, with each CRP migrating its VMs within
its own Cloud environment.

A. MATHEMATICAL FORMULATION
In our model, the resources which have been availed by a
CRP j are expressed by Rpn(j), while demand for resources
by a VM i during migration are expressed by Dvn(i). P and
V respectively represent the set of CRPs and VMs. The fed-
erated Cloud computing problem consists of finding for each
VM i in distress, a mapping to a physical resource provider j
that maximizes a utility function D(i, j) as defined below:

maxD(i, j) = α(i, j) ∗ (Rpn(j)− Dvn(i))

subject to

{
Rpn(i) ≥ Dvn(j) ∀i ∈ V, j ∈ P (1.a)
α ∈ {0, 1} ∀i ∈ V, j ∈ P (1.b)

(1)

Note that as expressed by equation 1.b, α(i, j) is a
binary parameter used in the model to differentiate
between co-operative and competitive Cloud computing as
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expressed below:

α(i, j) =

{
1 VM (i) ∈ PM (j) Co-operation
0 VM (i) /∈ PM (j) Competition

(2)

Also note that, as expressed by 2, α(i, j) is used in the model
to enable all participating providers be elected for VMmigra-
tion under co-operative Cloud computing (α(i, j) = 1) and
prevents providers from participating in VMmigration under
competitive Cloud computing (α(i, j) = 0) when such VMs
do not belong to their clients.

B. ALGORITHMIC SOLUTIONS
In this work, we propose two solutions to the problem of find-
ing suitable destination resource (PM) for VMs selected for
migration. These solutions are the Genetic Algorithm based
VM allocation (GAVA) and Stable Roommate Allocation
(SRA). Both are described in the following subsections.

1) GENETIC ALGORITHM-BASED VM ALLOCATION (GAVA)
A number of researchers have applied GA to Cloud resource
allocation, of particular note are [13], [19]. Like in those
works, we also followed the steps of the classic GA described
in [18], but with a different implementation. Our GAVA
algorithm is as described in Algorithm 1.

We assumed each PM to be made up of two processing
elements (PEs). PEs are synonymous to CPU cores. Each
PM’s PE is represented by gene, thus we have twice as many
genes as PMs in our system. The algorithm starts off by
setting all genes to 0 and iterates through the list of VMs. For
each VM, a PM is randomly chosen and tested to determine if
its PE can accommodate the VM’s request. If it can, its corre-
sponding gene value is set to 1, else it remains 0. This process
is repeated until all VMs are assigned PMs. The obtained
string of genes (chromosome) represents a potential VM-to-
PM allocation solution. This process is illustrated in Fig. 4.
The set of obtained chromosomes make up the population.
Each chromosome has a fitness value. For this work, we took
fitness value to be the total number of 0s in the chromosome.
Therefore, the chromosome with the highest number of 0s
(least number of 1s) is selected as the best. This translates to
a solution which uses the least amount of PMs to cater for
all Vms.

For our mutation step, we performed partial mutation and
only changed 0s to 1s. This is because changing a 1 to
0 would require de-allocating all VMs currently assigned to
such a PE and then searching for alternate VMs to allocate.
Rather than doing this, we instead simply created a different
chromosome.

2) STABLE ROOMMATE ALLOCATION (SRA)
For this work, the stable roommate algorithm was adapted
for application in Cloud workload allocations. The stable
roommate is a version of stable marriage wherein one party
is allowed to have multiple partners or a room is allowed
to have multiple occupants. In applying SRA, we took PMs

Algorithm 1 GA VM Allocation (GAVA)
1: procedure GENE ENCODING genes[size(PmList)]→ 0
2: for each vm ∈ Vmlist
3: while true do
4: p← random(PmList)
5: if vm.getRequestedCapacity ≤

p.getPE0CapacityRemaining then
6: gene[p]← 1
7: p.setPE0CapacityRemaining =

(p.getPE0CapacityRemaining −

vm.getRequestedCapacity)
8: break
9: if vm.getRequestedCapacity ≤

p.getPE1CapacityRemaining then
10: gene[p+ 1]← 1
11: p.setPE1CapacityRemaining =

(p.getPE1CapacityRemaining −

vm.getRequestedCapacity)
12: break
13: population.add(genes)
14: procedureMUTATION

15: m→ 0
16: while m ≤ mutationCount do
17: c← random(population)
18: i← random(population[c].length)
19: if c[i] == 0 then
20: c[i]← 1
21: else
22: continue
23: procedure CROSS-OVER

24: x ← random(population[c].length)
25: From population, select the best two chromosomes f

and s
26: Swap the first x genes in f with those of s
27: procedure FITNESS VALUE

28: min← genes[0].size
29: for each g ∈ population
30: fv← CountOnes(g)
31: if fv ≤ min then
32: min← fv

to represent rooms/men while VMs represented the user
workloads to be allocated onto PMs. A PM can have multiple
VMs assigned to it, but each VM can only be assigned
to a single PM. Our implementation process is shown
in Algorithm 2.

Our algorithm starts off by setting up preference lists for
both VMs and PMs. VMs however build a second list called
the suitor list. Each PM then propose to all VMs in its
preference list. VMs do not accept the proposal(s) immediate,
instead each proposal is added to a suitor list. Finally, at the
allocation phase, each VM cross references the content of its
suitor list with its preference list and only accepts a single
proposal from the PM with the highest values.

185326 VOLUME 7, 2019



O. O. Ajayi et al.: Fourth Industrial Revolution for Development

FIGURE 4. Gene encoding for GAVA.

FIGURE 5. Illustration of Stable Roommate Allocation.

For this algorithm, we are only concerned with ensuring
that all VMs are allocated; hence, it is possible for some
PM(s) not to be matched at all. This is the main difference
between our work and [5]. In our model, it is desirable for
some PMs to be unmatched, as this implies better resource
utilization and lower energy consumption. Fig. 5 shows an
illustration of the SRAwith four PMs, p1 . . . p4 and fiveVMs,
v1 . . . v5. The figure also shows that each VM has two lists -
preference and suitor list.

C. CLOUD MIGRATION PROCESS
Fig. 6 shows the processes involved in workload migration
in federated Clouds. The process starts with the allocation
of workloads to Cloud resources (physical machines). The
allocation is done in a way that the size of the Cloud resource j
(Rpn(j)) meets or exceeds the workload i’s requirement
(Dvn(i)). With continuous allocation, the Cloud resource j
might become unable to meet workload requirements as
shown in 1, hence the need to migrate workloads to other
viable resources. A monitor within the scheduler handles this
process.

Algorithm 2 Stable Roommate Allocation (SRA)
1: procedure BUILD VM PREFERENCE LISTS

2: for each vm ∈ Vmlist
3: vm.vmPrefList[]← 0
4: vm.vmSuitorList[]← 0
5: for eachp ∈ PmList
6: if vm.getRequestedCapacity <

p.getAvailableCapacity then
7: vm.vmPrefList.add(p)
8: procedure BUILD PM PREFERENCE LISTS

9: for each p ∈ PmList
10: p.pmPrefList[]← 0
11: for each vm ∈ Vmlist
12: if p.getRemainingCapacity ≥

vm.getRequestedCapacity then
13: p.pmPrefList.add(vm)
14: p.setRemainingCapacity =

(p.getRemainingCapacity− vm.getRequestedCapacity)
15: procedure PM PROPOSAL
16: for each p ∈ PmList
17: for each vm ∈ p.pmPrefList
18: p.proposeTo(vm)
19: vm.suitorList.add(p)
20: procedureWORKLOAD ALLOCATION

21: for each vm ∈ Vmlist
22: best = null
23: for each p ∈ vm.vmPrefList
24: if vm.suitorList.contains(p) AND

p.getRemainingCapacity ≥ best.getRemainingCapacity
then

25: best = p
26:

FIGURE 6. Top view of migration process in federated Cloud.

In the competitive federation, the workloads selected for
migration are forwarded to the scheduler for re-allocation to
other resources. This process is depicted in CSP1 of Fig. 6.
In the co-operative federation however, the selected work-
loads are forwarded to the global scheduler for re-allocation
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into a different Cloud resource within the same or different
CSP. This is as illustrated on the right of Fig. 6.

IV. CLASSIC WORKLOAD ALLOCATION SCHEMES
We have described the allocation of workloads to Cloud
resources as a bin packing problem, and also proffered
two model solutions (GAVA and SRA). It is imperative to
bench-mark these schemes against other workload allocation
schemes that exist in literature. In this section, we present
three classic workload allocation schemes considered in
this work for ‘‘packing’’ workloads into servers. They are
described as follows:
1) Best-Fit Descending (BFD): BFD is a greedy heuris-

tic algorithm that has been shown to use (11/9 ∗
optimalBins)+1 bins [16]. When applied in Cloud com-
puting, virtual machines (VMs) are considered items to
be put in bins while the physical machines (PMs) are
considered as the bins. Both the VMs and PMs are of
heterogeneous sizes. The allocation speed of BFD can be
increased if the PMs are sorted in order of their capacity.
In this work only the CPU is considered, thus the PMs
are sorted in decreasing order of CPU. This is done to
allow for a uniform basis of comparison across all the
different workload allocation schemes.

2) First-Fit Descending (FFD): FFD is another variant of
the greedy heuristic algorithm but unlike BFD, it assigns
VMs to the first PM it finds that can accommodate it.
The performance of this algorithm can also be signif-
icantly improved if the PMs are sorted in descending
order.

3) Binary-Search Best-Fit (BSBF): This is an algorithm
proposed in [17], with the main objective of speeding up
the PM search time. Rather than the linear PM search
used by BFD and FFD, it instead builds a Red-Black
Tree (RBT) based on PM capacities (available CPU).
Being a RBT, in theory it has a worse case search time
complexity of log2n which is faster than BFD and FFD
with complexities of at least n. However, there is an
additional time required to build and update the RBT
which also needs to be taken into consideration. Despite
this additional time, BSBF was reported by the authors
to still be significantly faster and conserves resources
better than the other algorithms. It is for these reasons
that BSBF was considered in this paper.

V. RESULTS AND DISCUSSION
For this work, simulations were carried out using
Cloudsim [20] with a data center consisting of a number of
heterogeneous PMs; similar to that used in [11], [15], [17],
[19]. These PMs were of two categories with specifications
and power consumption models based on bench-marked data
from real servers [34] and given as follows: category one had
2 CPU cores clocked at 1,860MHz and 4GB of memory,
while the second category had similar configuration but
with CPUs clocked at 2,600MHz. To model the co-operative
federated Cloud: a data center with a total of 300 PMs was

setup in Cloudsim. User workloads were executed on any of
four types of VMs, viz.: single core @ 2500MHz, single core
@ 2000MHz, single core @ 1000MHz and single core @
500MHz. Data used for this experiment were extracted from
anonymized workload traces of VMs submitted to a Google
cluster and PlanetLab. A total of 168 workload traces were
used for each experiment and distributed as follows:

a) To simulate light user demands, the smallest 56 traces
from the Google cluster TraceVersion1 [33] were used.

b) For heavy demands, 56 of the largest traces were extracted
from PlanetLab dataset of 12th April, 2011 [32] and used.

c) For the medium demands, the 56 traces used were made
up of a mix of large traces from Google cluster and light
traces from PlanetLab dataset.

For the competitive federation, three data centers were set up
to simulate the countries with the most number of DCs as
shown in Fig. 1. For a fair and consistent result, we assigned
equal number of PMs to the countries, at 100 each. Sim-
ilar to the co-operative model, user workloads were split
into light, medium and heavy and ran on VMs with similar
configuration. In presenting the results, the performance of
both federationmodels under light and heavyworkloads were
compared. Those of the medium workloads were omitted for
space conservation. Sixmetrics were considered and obtained
results are presented in subsequent subsections:

A. LIGHT WORKLOAD
1) ALLOCATION DELAY
This is a measure of how long users have to wait before
processing begins on their submitted workloads. Two delays
are considered in this work, pre-processing delay and average
delay. In our experiments, we simply used the system time in
nanoseconds to obtain the value of these delays by subtracting
the start time from the end time.

a) Pre-processing Delay: The pre-processing delay is a
measure of the time spent by each algorithm before allo-
cating the first workload (VM). For BFD and FFD, it is
the time spent sorting all PMs in descending order of
available CPU. For BSBF, it is the time spent sorting the
PMs in descending order plus the time spent on building
the binary search tree. For GAVA, it’s the time spent
encoding genes, building up a population of chromosomes
and iterating through 200 generations to find the best
individual (VM-to-PM mapping). For SRA, it’s the time
spent building the preference list for both PMs and VMs
as well as the time it takes each PM to propose to all its
preferred VMs. Only the pre-processing times of BSBF,
BFD and FFD are reported. This is because GAVA and
SRA had their pre-processing done offline as they took
significantly longer time to complete compared to the oth-
ers. The results of pre-processing times are shown in Fig 7.
From the figure the algorithms had varied pre-processing
times under the two federation models. BSBF has the
longest pre-processing delay for both the co-operative
and competitive models at 3,943,250ns and 4,253,600ns
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FIGURE 7. Comparison of Pre-processing Delay.

FIGURE 8. Comparison of average workload allocation Delay.

respectively. This is due to the extra time spent building
the binary search tree. BFDwas second, at 1,795,000ns for
co-operative and 3,533,900ns for competitive. FFD was
the fastest of the three at 509,300ns for co-operative fed-
eration and 785,833ns for the competitive. Cumulatively,
pre-processing delays were higher in competitive than in
the co-operative federation.

b) Average Delay: This is a measure of the average time
taken to allocate a VM to a PM. The results are shown
in Fig. 8. BFD took the longest time, across both fed-
eration models, at 756,459.00ns for the co-operative
and 1,174,501.67ns for the competitive federation. Con-
versely, FFD reported the least allocation delay. For both
federation models, FFD and BSBF gave almost equal
delays with the competitive federation being marginally
faster (less than 3,000ns) in both cases. This signif-
icant difference in speed between the algorithms can
be attributed to their mode of operation. BFD searches
through the entire list of PMs for one which best fits a
given workload, while FFD assigns the workload to the
first capable PM it finds. The benefit of the binary search
tree used by BSBF is most evident here, as values of
BSBF are much lower than those of BFD and almost at par
with FFD. This observation is in line with results reported
in [17].

2) EXECUTION TIME
In this paper, execution time is taken to mean the total time
spent by a PM while serving user workloads. Equation 3
describes execution time.

max
n∑
i=1

ExeV (i)p, p ∈ P

ExeT (V ,P) ≤ TimeLimit (3)

FIGURE 9. Comparison of overall execution time.

where ExeV (i)p is execution time of a user’s workload
V (i)(i ∈ n) on a PM p(p ∈ P). This execution time should
not exceed the TimeLimit agreed upon in the SLA.

Fig. 9 shows a comparison of execution times of the differ-
ent allocation schemes for both federation models when light
workloads are submitted. For the co-operative federation,
BFD resulted in the shortest execution time, followed by
SRA, FFD, BSBF and finally GAVA. For the competitive
federation, SRA and GAVA were the quickest, followed by
FFD, BSBF and BFD. It is important to note that these time
difference are only in fractions of seconds. For all algorithms,
workload execution took shorter time to complete in the
competitive federation than in the co-operative federation.

3) RESOURCE UTILIZATION
The five allocation algorithms were compared to determine
how well they utilized resources when allocating workloads
to PMs. Two results are presented, the first being resource
utilization immediately after allocating workloads to Cloud
resources and the second being after optimizing the alloca-
tion. Optimizing the allocation aims to reduce the number of
resources used by consolidatingworkloads into fewer number
of PMs. Utilization values were obtained by subtracting the
number of idle PMs from the total number of PMs. This is
simply expressed in 4

min|P| −
n∑

p=1

Pidle(p), p ∈ P

Pidle(p) =

{
1 if PM (p) is idle
0 otherwise

(4)

From the results shown in Fig. 10, for both co-operative and
competitive federation equal number of resources were used
across all but GAVA and SRA. For GAVA, the co-operative
federation was slightly better with 120 PMs versus 123 in the
competitive federation; similar results were obtained for SRA
with 67 PM for co-operative and 69 for the competitive fed-
eration. Across all the allocation schemes compared, BSBF
resulted in the best matching of VMs to PMs and utilized
only 63 PMs. BFD and FFD followed closely with 66 PMs,
while GAVA resulted in the worst. It must however be noted
that, this result is based on a fitness function being set to 65%
utilization and 200 epochs; a lower fitness function and more
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FIGURE 10. Comparison of resource utilization before consolidation.

FIGURE 11. Comparison of resource utilization after consolidation.

epochs might have resulted in lowered values, though at the
cost of an even longer training time. Cumulatively, the co-
operative federation model was slightly better as it utilized
an average of 76 units of resource compared to the 78 used in
the competitive federation.

Fig. 11 shows the utilization after optimizing the allocation
(consolidating workloads into fewer PMs). From the results
and across all algorithms, the co-operative federation was
marginally better than the competitive federation with an
average of 76 versus 77 units of resource.

The main purpose for considering the resource utilization
after consolidation is to determine how well each algorithm
performed in terms of packing workloads into PMs. The
lower the change in number of resources utilized between
‘‘before consolidation’’ and ‘‘after consolidation’’, the better
the algorithms is at packing.

4) ENERGY CONSERVATION
Beyond effective resource utilization, conservation of energy
is also very vital to CSPs. This is because there is a global
drive to reduce energy consumption and carbon emissions for
the purpose of a greener earth. Equation 5 gives a description
of energy consumption of all PMs in a DC.

Ptot =
n∑

p=1

kPmax(p)+ (1− k)Pmax(p)U (p) (5)

where Pmax is the maximum power a PM p can consume in
Watts. Ptot = Total energy of the DC. k = 0.7 is the fraction
of power used by an idle PM. n = number of active PMs in
the DC. U (p) is current utilization level of a p.

Comparisons of the five algorithm with respect to energy
conservation for both federation models are shown in Fig. 12

FIGURE 12. Comparison of energy consumption before consolidation.

FIGURE 13. Comparison of energy consumption after consolidation.

and Fig. 13. In Fig. 12 energy consumption levels were almost
similar across all algorithms and for both federation models.
This is in line with the resource utilization levels shown
in Fig. 10. Overall, energy consumption in co-operative
federation, were slightly better than values in the compet-
itive federation model. Furthermore, BSBF with 34.8KWh
conserved the most energy across both federation models.
It was followed by BFD and FFD both at 35.4KWh; SRA at
36.9KWh (competitive), 35.9KWh (co-operative). GAVAhad
the most energy consumption at 67.4KWh and 65.0KWh for
competitive and co-operative federated Clouds respectively.
Results of energy utilization after consolidation are shown
in Fig. 13. From the graph, the co-operative Cloud federation
model resulted in higher energy consumption compared to the
competitive. This held true for all the fiveworkload allocation
schemes.

5) QUALITY OF SERVICE VIOLATION
This is ameasure of the ‘‘dissatisfaction index’’ of users to the
allocation and services rendered to them. It is often referred to
as Service Level Agreement (SLA) violation. For this work,
the SLA metric used was similar to that used in [11], [15],
[17] and measured as the total duration of time for which a
PM is unable to satisfactory serve its assigned workload(s).
Equation 6 describes the QoS violation metric.

Q =
1
n
∗

n∑
p=1

Tover (p)
Ttotal(p)

(6)

where Tover (p) is the duration of time during which a PM p
is unable to serve its assigned workload(s) and Ttotal(p) is the
total duration of time during which p is active.
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FIGURE 14. Comparison of SLA violations due to consolidation.

FIGURE 15. Comparison of migration counts.

Fig. 14 shows a comparison of the average SLA viola-
tions for each of the algorithms and across the two Cloud
federation models for light workloads. From the figure, vio-
lation percentage remained equal across all the algorithms
and federation models. This result might be attributed to the
fact that the workloads requirements were light and the PMs
had more than sufficient capacity to serve them with minimal
SLA violations.

6) NUMBER OF VM MIGRATIONS
The last metric considered is the migration count. It is a mea-
sure of the number of times user workloads were interrupted
and moved to different PMs, either for consolidation pur-
poses or to reduce SLA/QoS violations. The results in Fig. 15
show that user workloads were migrated more often in the co-
operative federated Cloud than in the competitive federation.
An explanation for this is that there are less resources (PMs)
in the competitive than in the co-operative model, hence lim-
ited migration options. The number of migrations were equal
for all allocation schemes under the competitive federation
model. For the co-operative however, FFD resulted in the
least number of migrations (258), followed by SRAwith 276,
BFD with 288, BSBF with 299 and GAVA with 306.

B. HEAVY WORKLOADS
1) ALLOCATION DELAY
a) Pre-processing Delay: From Fig. 16 and similar to

Fig. 7 BSBF had the longest pre-processing delay for
both the competitive and co-operative federation mod-
els at 4,611,366.67ns and 3,699,650.00ns respectively.
BFD was second, at 2,905,150.00ns for competitive and

FIGURE 16. Comparison of Pre-processing Delay.

FIGURE 17. Comparison of average workload allocation Delay.

1,726,300.00ns for co-operative federation. FFD was the
fastest of the three at 639,500.00ns for the competitive
federation and 579,800.00ns for co-operative federation.
Similar to results obtained with the light weight work-
loads, pre-processing delays were higher in the compet-
itive federation model than in the co-operative model.

b) Average Delay Fig. 17 shows that BFD resulted in
longest delay at 756,459.00ns for co-operative and
1,299,219.00ns for competitive. FFD was the fastest at
123,338.50ns for the co-operative and 111,508.00ns for
competitive federation. Finally, BSBF was much faster
than BFD but not as fast as FFD with 191,440.67ns
for the co-operative federation model and 194,762.00ns
for the competitive federation model. As observed with
the light weight, workloads experienced lower delays in
the co-operative versus the competitive Cloud federation
model.

2) EXECUTION TIME
Fig. 18 shows a comparison of execution times of the dif-
ferent allocation schemes for both federation models when
heavy workloads are submitted. In both the co-operative and
competitive models, BSBF resulted in the quickest execution
time and was closely followed by BFD. For the competitive,
GAVAwas the third fastest, followed by FFD and SRA; while
for the co-operative federation, SRA was the third fastest,
followed by FFD and GAVA. As stated above, these time
differences are only in thousandth of seconds and might not
be overly significant in life environments. In general and
similar to the light weight workloads, execution took shorter
time to complete in the competitive federation than in the co-
operative federation.
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FIGURE 18. Comparison of overall execution time.

FIGURE 19. Comparison of resource utilization before consolidation.

3) RESOURCE UTILIZATION
From the results shown in Fig. 19 for both co-operative
and competitive federation equal number of resources were
used across all but SRA. For SRA, 67 PMs were used in
the co-operative model compared to 69 in the competitive
model. Like with the light weight workloads and across all
allocation schemes, BSBF also resulted in the best matching
of VMs to PMs and utilized the least number of PMs. BFD
and FFD were second with 66 PMs, while GAVA utilized
119 PMs. Comparatively, the co-operative federation model
was slightly better as it utilized an average of 76.2 units
of resource compared to the 76.6 used in the competitive
federation model.

Fig. 20 shows the utilization of resources after workload
consolidation. BSBF utilized the least amount of resources
for both federation models. BFD’s initial allocation was con-
solidated to 18 for the competitive federation and 24 for the
co-operative federation. FFD and SRA gave 24 and 26 for
competitive and co-operative federations respectively, while
GAVA resulted in 28 and 21 for competitive and co-operative
federations respectively. Cumulatively, resource utilization
was tied across both federation models.

4) ENERGY CONSERVATION
Fig. 21 and 22 show comparisons of the energy consumed
when the five allocation schemes were used to allocate heavy
workloads. In Fig. 21 for the competitive federation, FFD and
BFD both gave similar consumption values at 42.87KWh;
while BSBF consumed 42.45KWh; SRA, 44.4KWh and
GAVA, 73.14KWh. For the co-operative federation, BFD
resulted in the consumption of 42.42KWh of energy; FFD,

FIGURE 20. Comparison of resource utilization after consolidation.

FIGURE 21. Comparison of energy consumption before consolidation.

FIGURE 22. Comparison of energy consumption after consolidation.

42.47KWh; BSBF, 42.25KWh, SRA, 43.1KWh and GAVA,
71.09KWh. Overall, less energy was consumed in the co-
operative federation model versus the competitive model.
Results of energy utilization after consolidation are shown
in Fig. 22. From the graph, it can be seen that for each
scheme, significantly more energy was consumed under the
competitive model than in the co-operative federation model.
The only exception was GAVA where the values were closer
at 35.31KWh for the competitive model and 35.03KWh in the
co-operative federation model.

5) QUALITY OF SERVICE VIOLATION
Fig. 23 shows a comparison of the average SLA violations
for each of the schemes and across the two Cloud feder-
ation models, when heavy workloads are considered. They
all performed poorly, with at least 30% SLA violation. This
was expected as a large proportion of the workloads required
resources that could only be provided by the PMs running
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FIGURE 23. Comparison of SLA violations due to consolidation.

FIGURE 24. Comparison of migration count.

at 2,600MHz. Thus only 50% of the resources in the data
center were utilized.

BSBF resulted in the least violation of all the algorithms for
both the competitive and co-operative federation at 30.76%
and 30.85% respectively. This was followed by GAVA with
35.05% for competitive and 40.62% for co-operative. The
other results are as shown in the figure. Overall, workloads
experienced higher violation in the co-operative federation
than in the competitive federation.

6) NUMBER OF VM MIGRATIONS
The results in Fig. 24 show that user workloads are migrated
more often in the competitive than in the co-operative Cloud
federation.

C. SUMMARY OF RESULTS
Tables 1 and 2 provide a summary of the obtained results in a
concise manner. On Table 1, a comparison of the two Cloud
federation models is shown, alongside their performances
for the various metrics considered. From the table work-
loads experienced lower delays in the co-operative Cloud
federation but slower overall execution time compared to
the competitive federation. In terms of resource utilization,
the co-operative model was the better option to use for lighter
workloads while the competitive was best suited for heav-
ier workloads. When energy consumption was considered,
the co-operative federation was better for heavier workloads,
while the competitive was better for light weight workloads.
In terms of providing satisfactory services, the competitive
model was better overall, as it resulted in lower QoS viola-
tions for heavy workloads, while remaining at par with the
co-operative federation for lighter workloads.

Table 2 shows the performance of the five allocation
schemes across the various metrics, workload types and fed-
eration models. From the table, FFD resulted in the shortest
delay, followed by BFD and BSBF. This is understandable
as BFD seeks through the entire PM list for the best-fit,
while BSBF has to create and constantly update its BST
during the allocation process. For overall execution time,
BFD was the fastest while GAVA was the slowest for the co-
operative federation. For the competitive federation model,
GAVA was fastest for light weight workloads while BSBF
was fastest for heavier workloads. With respect to resource
utilization, BSBF was the most effective and was closely
followed by BFD. This can be attributed to both algorithms
seeking to allocate workloads to resources that fit the best.
Similar trends are observed for energy conservation (before
consolidation). For energy conservation after consolidation,
BSBF was better for all but light weight workloads in the co-
operative federation where it marginally lost to BFD. Across
both federation models, all the allocation schemes resulted in
similar SLA violations for the light weight workloads. For
the heavier workloads however, BSBF resulted in the least
violation and was followed by GAVA, SRA, FFD and BFD.
Finally, in terms of VM migrations, for the co-operative fed-
eration the SRA economic model resulted in the least number
of migrations for both heavy and light weight workloads.
It performed equally well in the competitivemodel being only
slightly outperformed by BFD. BSBF and GAVA on the other
hand resulted in the highest number of migrations.

VI. BUSINESS MODELS AND DEPLOYMENT
CONSIDERATIONS
Often times, authors only focus on technical concepts and
models without considering how such models can be actual-
ized. Deployment constraints, sustainability and/or profitabil-
ity of proposed models are often ignored. As an example
and to the best of our knowledge, despite the large number
of published articles on Cloud healthcare, none have looked
at the mapping of medical workloads as well as business
models for African healthcare. In this section, we go beyond
the technical and present a mapping of health information
and activities to Cloud workloads; business considerations,
including opportunities and potential hurdles; and possible
deployment strategies.

a) Mapping of Medical Workloads: The authors in [35],
[36] had presented a number of ways in which Cloud
computing could be applied to medicine. Some of these
application areas are: preservation of medical data, med-
ical training, medical imagery, online billing systems,
medical inventory management systems etc. These are
services that should be available in all standard medical
facilities, however, this is not the case for hospitals in
developing countries across Africa. As stated in the intro-
ductory section of this paper, Cloud federation and collab-
oration can help improve the quality of medical services
in Africa. To put this in perspective and tie it to the models
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TABLE 1. Comparison of federation model.

TABLE 2. Performance of workload allocation schemes in federation models.

TABLE 3. Mapping of medical workloads.

and results presented in this paper, these aforementioned
Cloudmedical applications can be grouped into heavy and
light weight workloads based on our perception of data
size and system (resource) requirements. Table 3 shows
some potential application areas of Cloud computing in

healthcare and their mappings to corresponding workload
categories.

b) Deployment Considerations: In considering new
projects, products or process, the SWOT analysis is often
used by organizations as it easily identifies potential
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TABLE 4. SWOT analysis of cloud federation for Healthcare in Africa.

TABLE 5. Potential business models for cloud federation for Healthcare.

weaknesses and threats. It also sheds light on the unique
advantages of their product as well as potential opportu-
nities. In Table 4, various aspects of the SWOT analysis
of Cloud federation for healthcare in Africa are itemized.

c) Business ModelsA number of business models for Cloud
computing and related technologies have been discussed
in [37], [38]. This section presents some of these business
models that can be applied to Cloud federation based
on a number of perspective. These models are shown on
Table 5.

VII. CONCLUSION
Malnutrition, epidemic diseases and high human mortality
rate are common in many African countries. Many of these

are associated with the high level of poverty and poor state
of infrastructure, especially those related to health. However,
there are a few countries in Africa with better than aver-
age or world-class healthcare facilities. Thus an imbalance
exist across African nations in terms of healthcare. A solu-
tion to this would be to build world-class hospitals in every
cities across the continent, but this is prohibitively expensive.
An alternative solution is to leverage on technology and
Cloud computing in particular. Cloud computing has emerged
as a computing paradigm that converts computing from a
product to a paid service. By leveraging on the Cloud,medical
expertise can be ‘‘imported’’ at a comparatively cheaper cost.
Among the offering of Cloud computing is on-demand access
to computing resources and cost savings. These features are
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however not often achievable by a single Cloud Service
Provider (CSP) without adverse effect on service quality,
which is pertinent to healthcare. In a bid to achieve these
without compromising quality, CSPs have to collaborate and
form Cloud federations. Cloud federation across the African
continent can prove to be an effective solution to some of the
healthcare infrastructural challenges. In this paper, two Cloud
federation models were considered - the co-operative and
competitive. Two new workload allocation schemes Genetic
Algorithm VM Allocation (GAVA) and Stable Roommate
Allocation (SRA) were presented. These schemes were com-
pared with three class workload allocation schemes First-Fit-
Descending (FFD), Best-Fit-Descending (BFD) and Binary-
Search-Best-Fit (BSBF); to determine their performance and
effect on co-operative federation, where participating CSPs
pool resources together and on competitive federation, where
participants utilize their resources independently. Service
delay, resource utilization, energy conservation and adher-
ence to Service Level Agreements (SLA) were metrics con-
sidered and experimental simulations were conducted on both
light and heavy workloads. Obtained results show that the
co-operative federation resulted in the least allocation delays
and utilized resources better, while the competitive federation
was faster in completing user tasks with lower violations on
agreed service level. With respect to the allocation schemes,
FFD was the fastest overall, while BSBF was the most effec-
tive for resources utilization, energy conservation and service
adherence. Finally, this paper presented deployment consid-
erations for federated Cloud for healthcare across Africa as
well as various potential business models. For future works,
the effect of cost and penalties associatedwith SLA violations
might be considered as well as a hybrid combination of these
algorithms in a bid to find an optimal solution. Government
policies, ethical considerations and most importantly a robust
network architecture for this trans-national Cloud federation
for healthcare could also be looked into.
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