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ABSTRACT The non-dominated sorting genetic algorithm III (NSGA-III) has recently been proposed to
solve many-objective optimization problems (MaOPs). While this algorithm achieves good diversity, its
convergence is unsatisfactory. In order to improve the convergence, we propose an improved NSGA-III
using a genetic K-means clustering algorithm (NSGA-III-GKM), which can also ensure diversity and
automatically provide the number and direction vector of the subspaces. Compared with the NSGA-III,
the proposed NSGA-III-GKM has two key features. First, the initial reference points are clustered using
a GKM clustering algorithm, which realizes automatic learning of the number of clusters. Second, as the
reference points are replaced by cluster centers, a penalty-based boundary intersection (PBI) aggregation
function is introduced to replace the perpendicular distance. The proposed NSGA-III-GKM and other similar
optimization algorithms (NSGA-III, MOEA/D, U-NSGA-III, DC-NSGA-III and B-NSGA-III) are tested on
DTLZ test problems and UF test problems. The simulation results demonstrate that the NSGA-III-GKM
exhibits better diversity and convergence performance than the other algorithms.

INDEX TERMS Many-objective optimization, genetic K-means clustering algorithm, NSGA-III, automatic
learning.

I. INTRODUCTION
Optimization problems with more than three objectives
are called many-objective optimization problems (MaOPs)
[1], [2]. These problems frequently appear in many research
fields, and are typically solved by a special class of evolu-
tionary algorithms called many-objective evolutionary algo-
rithms (MOEAs) [3]–[5], especially the basic non-dominated
sorting genetic algorithm (NSGA) and its variants. This
basic NSGA proposed by Srinivas and Deb [6] has been
widely used to solve MaOPs, but it has a high computational
complexity. Therefore, Deb et al. [7] proposed the NSGA-II
to reduce the computational complexity through an elite
reserved strategy that is based on a quick sorting of non-
dominated solutions. To solve MaOPs, the NSGA-II can
obtain many non-dominated solutions, but its evolution-
ary pressure decreases. Therefore, Deb and Jain [8] pro-
posed the NSGA-III, in which the crowded distance of the
NSGA-II is replaced by reference points. The performance
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of the NSGA-III is better than that of the NSGA-II. Indeed,
the NSGA-III is currently widely recognised as the best avail-
able algorithm for MaOPs [9]–[11]. However, the NSGA-III
convergence is still not totally satisfactory due to its exclusive
consideration of solutions that are closest to the reference
points in the niche-preservation operation phase [12].

Many improved NSGA-III variants have been proposed in
the literature. Yuan et al. [13] introduced the θ -NSGA-III,
which exploits a θ -dominance relation and a penalty-based
boundary intersection (PBI) aggregation function. While
the θ -NSGA-III framework has diverged significantly from
that of the NSGA-III, the θ -NSGA-III typically outper-
forms the NSGA-III. Seada and Deb [14] proposed a unified
NSGA-III called the U-NSGA-III. The U-NSGA-III main-
tains a constant preference of convergence over diversity.
Abouhawwash et al. [15] integrated the Karush Kuhn Tucker
proximity measure (KKTPM) with the NSGA-III to enhance
its convergence properties towards the true Pareto optimal
front. Seada et al. [16] focused on the diversity and con-
vergence of the NSGA-III (DC-NSGA-III); hence, a local
search and KKTPM were used to improve the performance
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of the NSGA-III. Based on the U-NSGA-III and KKTPM,
Seada et al. [17] proposed a multi-phased NSGA-III capable
of automatically balancing convergence and the diversity of
the population members, which is called the B-NSGA-III.
To solve MaOPs, an alternative to the NSGA-III is the frame-
work based on the decomposition strategy (MOEA/D) [18].
The weaknesses of MOEA/D are that the number and direc-
tion vectors of the subspaces are hard to determine and its
convergence is not good. Based on the framework of the
NSGA-III and the idea of MOEA/D, we propose a new
algorithm that combines the genetic K-means clustering algo-
rithm [19]–[21] andNSGA-III to separate the objective space.
Our proposed algorithm, named the NSGA-III-GKM, adopts
PBI aggregation functions to replace the perpendicular dis-
tances. The advantages of the NSGA-III-GKMare as follows:
(a) The GKM clustering algorithm strengthens the capacity
of developing and exploring the whole objective space, and
hence improves the convergence; (b) the introduction of the
PBI aggregation function in the niche-preservation opera-
tion phase improves the convergence; (c) genetic operations
are executed independently in subspaces, which can ensure
diversity; (d) the GKM clustering algorithm uses non-
subjective reference point data to automatically determine the
number and direction vectors of the subspaces.

This paper is organized as follows. First, we briefly review
the NSGA-III framework in Section 2. Then, we propose
the NSGA-III-GKM and provide its details in Section 3.
Finally, in Section 4, we conduct simulations to compare the
performance of the NSGA-III-GKM, NSGA-III, MOEA/D,
U-NSGA-III, DC-NSGA-III and B-NSGA-III on DTLZ test
problems and UF test problems. The simulation results
demonstrate that the NSGA-III-GKM has better diversity and
convergence performance than the other algorithms.

II. BRIEF REVIEW OF THE NSGA-III FRAMEWORK
The NSGA-III framework is similar to that of the NSGA-II.
Let us assume that an MaOP has M objectives. In the
t th generation, let the size of the parent population Pt be N
and the size of its offspring population Qt , which is obtained
through selection, crossover and mutation operations, be N .
The population members are the points that express the object
values of the solutions. If two points xA and xB satisfy the
following conditions, xA is the non-dominated point [22].{

∀i ∈ {1, 2, · · · ,M}, fi(xA) ≤ fi(xB)
∃j ∈ {1, 2, · · · ,M}, fj(xA) < fj(xB)

(1)

where fi(xA) and fi(xB) are the ith objective values of xA and
xB, respectively; fj(xA) and fj(xB) are the jth objective values
of xA and xB, respectively.
The NSGA-III obtains the t+1th generation by combining

the parent and offspring populations, i.e., Rt = Pt ∪Qt where
the size of Rt is 2N . According to the non-dominated sorting
rules, Rt is then divided into different levels, denoted by F1,
F2, . . ., etc. Starting from F1, each level is selected one at a
time to construct a new population St , and the size of St is

equal to or larger than N for the first time. If the last level
included is the l th level, solutions in St/Fl (levels before Fl)
are chosen for the next parent populationPt+1 while solutions
in the remaining levels are rejected. The key implementation
steps of the NSGA-III are as follows.
Step 1 (Normalization of the Objective Values): The objec-

tive values of the population members are normalized using
the ideal and extreme points. In a population St , use the min-
imum values of all objectives to construct the ideal point [23]
zmin
= (zmin

1 , zmin
2 , · · · , zmin

M ). The objective value of each
solution is translated by subtracting the ideal point zmin,

f ′i (xj) = fi(xj)− zmin (2)

where i = 1, 2, · · · ,M , j ≥ N , xj is the jth solution, and fi(xj)
is the ith objective value of the jth solution xj.

The extreme point is identified by finding the solution that
minimizes the following achievement scalarization function
(ASF) with the weight vector w [24]:

min ASF(xj,wi) =
M

max
i=1

f ′i (xj)/wi (3)

where w = (w1,w2, · · · ,wM ) is a weight vector. For finding
the k th extreme point, we set wk = 1, while the other weights
are set to a small value, e.g., 10−6. We useM extreme points
to obtain an M dimensional linear hyperplane. The f ′i (xj)
objective can be normalized as

f ni (xj) =
f ′i (xj)

ai − zmin
i

(4)

where ai is the intercept of the ith objective axis.
Step 2 (Generation of the Initial Reference Points):The ini-

tial reference points are commonly generated on a normalized
hyperplane using Das and Dennis’s systematic approach [25].
For M objectives and p divisions of each objective, the total
number H of reference points is

H =
(
p+M − 1

p

)
(5)

Step 3 (Perpendicular Distance Computation): After nor-
malizing the objective values and generating reference points,
the perpendicular distance between the objective value of
each solution and a reference line (joining the origin with a
reference point) is computed. For a population St , a solution
is associated with the reference point of the minimum per-
pendicular distance.
Step 4 (Niche-Preservation Operation): The niche count ρi

is equal to the number of solutions in St/Fl , associated with
the ith reference point. The minimum niche count is Jmin =

min ρi, i = 1, 2, · · · ,M . The reference point with Jmin is
chosen. If Jmin > 1, one reference point is chosen randomly.
We set the chosen reference point as the l th reference point.

If ρl ≥ 1 and the l th reference point is associated with
one or more solutions in Fl , a solution in Fl is randomly
selected into population Pt+1, and the value of ρi is incre-
mented by one. If ρl ≥ 1 and no solution in Fl is associated
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with the l th reference point, this reference point is not consid-
ered in the t th generation.
If ρi = 0 and the l th reference point is associated with

one or more solutions in Fl , the solution with the minimum
perpendicular distance is selected into population Pt+1 and
the value of ρi is incremented by one. If ρi = 0 and no
solution in Fl is associated with the l th reference point, this
reference point is not considered in the t th generation.
Step 5 (Genetic Operations): Genetic operations include

selection [26], simulated binary crossover (SBX) [27] and
polynomial mutation [28]. After the parent population Pt+1 is
obtained, the offspring population Qt+1 is obtained by these
genetic operations.

III. THE PROPOSED NSGA-III-GKM
The GKM clustering algorithm is combined with the
NSGA-III to obtain the cluster centers of the initial ref-
erence points and replace these points by cluster centers.
Specifically, after clustering the reference points with the
GKM clustering algorithm, the objective space is partitioned
into several subspaces {S1, S2, · · · , Sk}, where k is the cluster
count. Each cluster center is the direction vector of one
subspace. Objective space partitioning can improve the con-
vergence by overcoming the problem only solutions closest to
the reference points are considered in the niche-preservation
operation phase. The PBI aggregation function [29] is used to
replace the perpendicular distance and hence further improve
the convergence of the NSGA-III. In this paper, the perfor-
mance of the NSGA-III-GKM and other state-of-the-art algo-
rithms is evaluated by the inverted generation distance (IGD)
indicator [30], [31] and hypervolume (HV) indicator [32].

A. ALGORITHMIC DETAILS OF THE NSGA-III-GKM
The NSGA-III-GKM algorithm is as follows:
Step 1 (Initialization): Set the size N of the population Pt ,

and themaximum number TM of functions evaluations (FEs).
Step 2 (Generation of the Populations): Randomly gener-

ate the initial population based on the aforementioned genetic
operations of Section 2. Note that the genetic operations
are executed for each individual subspace. Then perform

non-dominated sorting of the populations Pt =
k∑
i=1

PSit and

Qt =
k∑
i=1

QSit . P
Si
t is the size of the parent population in the

subspace Si, Q
Si
t is the size of the offspring population in the

subspace Si, and P
Si
t is equal to QSit . Combine the parent and

offspring populations, i.e., Rt = Pt ∪ Qt .
Step 3 (Normalization): This normalization step is the

same as the one for the basic NSGA-III scheme (see
Section 2).
Step 4: (Clustering of the Reference Points): The goal of

clustering the reference points is to partition the objective
space. TheK-means algorithm is sensitive to the initial cluster
centers, unable to determine the optimal number of clusters,
and easily trapped into local optima. Genetic algorithms can

overcome the shortcomings of the K-means clustering algo-
rithm and realize automatic learning of the cluster count.
After the reference point generation following the basic
NSGA-III scheme (Section 2), the points are clustered by the
GKM clustering algorithm. First, we review the conventional
K-means clustering algorithm as follows. k reference points
are randomly selected as the initial cluster centers. Then,
each of the remaining reference points is assigned to the
cluster center of the nearest distance. The cluster centers are
recalculated to minimize the squared error criterion E during
convergence.

E =
k∑
j=1

∑
p∈Cj

∥∥p−mj
∥∥2 (6)

where k is the number of clusters, p is the solution, Cj is the
jth cluster and mj is the cluster center of cluster Cj.
The genetic variant of the K-means clustering algorithm

involves the evolution of chromosomes, and the final result is
obtained by genetic operations such as selection, crossover,
and mutation. The steps of the GKM clustering algorithm are
as follows:

a) Real-number encoding is adopted to transform the clus-
ter centers into genes G1,G2, · · · ,Gk on a chromosome,
as shown in Fig. 1 The size of a chromosome varies with the
number of clusters.

FIGURE 1. Encoding of cluster centers as genes of a chromosome.

b) The clustering results should satisfy tightness and sep-
arability requirements. Tightness means that the reference
points within one cluster are as similar as possible, while sep-
arability means that the reference points in different clusters
are as different as possible. Therefore, we define the fitness
function fitD of the GKM clustering algorithm as

fitD =
Gb

b+ aE
(7)

where a and b are positive constant coefficients, andGb is the
sum of the distances between different clusters:

Gb =
2

k (k − 1)

k∑
i=1

k∑
j=i+1

∥∥mi −mj
∥∥2 (8)

which is used to quantify the separability. The fitness func-
tion fitD indicates that the clustering is better when the ref-
erence points in the same cluster are closer to each other
(the value of E is smaller) and the cluster centers of different
clusters are farther from each other (the value ofGb is larger).
Using genetic operations including roulette-based selec-

tion and single-point crossover, we propose a new mutation
operation that leads to automatic learning of the optimal
number of clusters k . The population chromosome with the
largest fitness value is selected as the model chromosome of
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the optimal cluster number. Other chromosomes in the same
population should learn from this model to achieve better
fitness by decreasing and increasing the genes of chromo-
somes. The chromosomes in the initial population have the
same length, a small number of initial clusters is set, and an
increasing trend is assumed when the first mutation occurs.
With the reoccurrence of mutation operation, the offspring
chromosomes decrease or increase based on whether their
lengths are longer or shorter than the model chromosome,
respectively. On one hand, decreasing the number of genes is
achieved by eliminating the nearest genes to cluster centers
of the model chromosome. On the other hand, the genes are
increased by adding the farthest reference point to the cluster
centers of the model chromosome.

After the cluster centers are determined, solutions in Rt
are assigned to clusters based on a criterion of the minimum
Euclidean distance. The crossover and mutation probabili-
ties of GKM are denoted as PcGKM and PmGKM , respectively.
The population and the maximum number of iterations are
denoted by PGKM and TMGKM , respectively.
Step 5 (Niche-Preservation Operation Based on the PBI

Aggregation Function): Based on the niche-preservation
operation (Section 2), solutions with small PBI aggregation
function values are added to the next generation until the tar-
get population size is attained. The PBI aggregation function
value is

d(xj) = di,1(xj)+ θdi,2(xj) (9)

where xj is the jth solution, di,1(xj) and di,2(xj) are the pro-
jection and vertical distances of xj in the ith cluster center
direction, respectively, and θ is a penalty parameter. A smaller
penalty parameter θ is beneficial for selecting solutions with
strong convergence. The distances di,1(xj) and di,2(xj) are
defined as, respectively

di,1(xj) =
∥∥∥(f n(xj))Tλi

∥∥∥ / ‖λi‖ (10)

di,2(xj) =
∥∥f n(xj)− di,1(xj)(λi/ ‖λi‖)∥∥ (11)

where λi is the direction vector from the ideal point to the ith

cluster center.
Step 6 (Terminal Conditions): If the maximum number of

FE TM is reached, output the current solutions and terminate
the program. Otherwise, repeat steps 2-6.

Figs. 2 and 3 illustrate the differences between the pro-
posed NSGA-III-GKM and the basic NSGA-III.

Fig. 2 shows reference points on a normalized hyperplane
with M = 3. After applying the GKM clustering algorithm,
the reference points are assigned to clusters whose centers are
taken as new reference points (as shown in Fig. 3). For exam-
ple, the solution A in cluster 1 has a smaller value of the PBI
aggregation function (with one reference point in cluster 2)
than solution B in cluster 2 (under the condition that solution
B is the only solution in cluster 2). Thus, the solutionAwill be
selected into the next generation according to the NSGA-III
rules. However, this is not good for searching in cluster 2 and
leads to a break of the search equilibrium. If we use the GKM

FIGURE 2. Reference points on a normalized hyperplane with M = 3.

FIGURE 3. Reference points are assigned to clusters based on the GKM
clustering algorithm.

clustering algorithm, the solution B will be selected into
the next generation because this solution is in cluster 2 and
has a higher priority. This example shows that the proposed
NSGA-III-GKM can overcome the problem in which only
the solutions closest to the reference points are selected into
the next generation. Indeed, the NSGA-III-GKM strengthens
the capacity of developing and exploring the whole objective
space and hence leads to improve convergence. In addition,
the genetic operations are executed in each subspace indepen-
dently, which can ensure diversity.

B. INDICTORS
The NSGA-III-GKM, NSGA-III, MOEA/D, U-NSGA-III,
DC-NSGA-III and B-NSGA-III are tested on DTLZ test
problems and UF test problems. The IGD indicator and HV
indicator are used to evaluate the performance, including the
diversity and convergence of each of these multi-objective
evolutionary algorithms. Let P denote the Pareto front (PF)
obtained by these algorithms, P∗ be the true PF, and z =
(z1, z2, · · · , zM )T be a reference point in the objective space
that is dominated by all Pareto-optimal points.
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FIGURE 4. Changing curves of k value in the tenth experiment of each of the DTLZ1-4 problems.

The IGD indicator is defined as

IGD(P,P∗) =

∑
v∈P∗ d(v,P)
|P∗|

(12)

where d(v,P) is the minimum Euclidean distance between a
solution v that belongs to P∗ and P, while |P∗| is the size
of P∗. The IGD value will only be small when both the
convergence and diversity of the solutions in P are good.
Therefore, the smaller the IGD value is, the better the overall
performance of an evolutionary algorithm is.

The HV indicator is defined as

HV (P, z) = Volume

(⋃
F∈P

[f1, z1]× · · · × [fM , zM ]

)
(13)

The larger the HV value is, the better the overall performance
of an evolutionary algorithm is.

IV. SIMULATIONS AND ANALYSIS OF THE RESULTS
A. SIMULATIONS
In this paper, the DTLZ test problems with 3 to 10 objectives
include DTLZ1, DTLZ2, DTLZ3 and DTLZ4 problems, and
UF test problems include UF1, UF2, UF3 and UF4 prob-
lems. These test problems are used to test the performance
of the NSGA-III-GKM, NSGA-III, MOEA/D, U-NSGA-III,
DC-NSGA-III and B-NSGA-III evolutionary algorithms.
A total of 30 independent runs are performed for each
algorithm. The parameters of these five algorithms are as
follows. The population size and the maximum number TM
of FE are set in Table 1. The genetic crossover and mutation
probabilities are set as Pc = 0.85 and Pm = 0.1, respectively.
The penalty parameter θ of the NSGA-III-GKM is set to 5.
The other parameters related to the MOEA/D, U-NSGA-III,
DC-NSGA-III and B-NSGA-III are adopted from references
[14], [16]–[18].

The parameters of the GKM clustering algorithm are as
follows: the crossover probability PcGKM is 0.85, the mutation

TABLE 1. Population size and FES.

probability PmGKM is 0.1, the population PGKM is 5, the max-
imum number of iterations TMGKM is 10, the initial value of
k is 2, and the positive coefficients a and b are 2 and 1.2,
respectively.
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TABLE 2. Average and standard deviation of IGD values obtained by six algorithms on the DTLZ and UF test problems.
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TABLE 3. Average and standard deviation of HV values obtained by six algorithms on the DTLZ and UF test problems.
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FIGURE 5. Changing curves of k value in the tenth experiment of each of the UF1-4 problems.

FIGURE 6. Parallel coordinates of the PFs obtained by six algorithms of the DTLZ1 problem with
10 objectives.

In order to test the differences for statistical significance,
the Kruskal-Wallis test [33] with a 5% significance level is
applied for all pairwise comparisons, and the performance
score [34] is adopted to rank all the algorithms: the smaller
the score is, the better the algorithm is.

B. ANALYSES OF RESULTS
Tables 2 and 3 show the average and standard deviation of
IGD and HV values obtained by six algorithms on the DTLZ
and UF problems. The numbers in brackets in Table 2 and 3
are ranks of the six algorithms for each test problem. We can
see from Table 2 that the NSGA-III-GKM has better perfor-
mance on eleven of the twenty test problems.We can see from
Table 3 that the NSGA-III-GKM has better performance on
ten of the twenty test problems. Tables 2 and 3 intuitively
indicate that NSGA-III-GKMhas better performance than the

other five state-of-the-art algorithms when solving MaOPs
with more than five objectives.

Figs. 4-5 show the changing curves of k value in the tenth
experiments of DTLZ1-4 and UF1-4 problems. We can see
from Figs. 4-5 that the k values of NSGA-III-GKM realize
automatic learning.

Fig. 6 shows the parallel coordinates of the PFs obtained
by five algorithms of DTLZ1(10) problem. The PFs obtained
by NSGA-III-GKM, NSGA-III, U-NSGA-III, DC-NSGA-III
and B-NSGA-III are similar in terms of diversity and con-
vergence. However, the convergence of the PF obtained by
MOEA/D is worse, which verifies the weakness ofMOEA/D.

Fig. 7 shows the parallel coordinates of the PFs obtained
by five algorithms of DTLZ2(10). The PFs obtained by the
NSGA-III-GKM, DC-NSGA-III and B-NSGA-III are similar
in terms of diversity and convergence. The convergence of the
PF obtained by the NSGA-III is worse in the ninth objective.
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FIGURE 7. Parallel coordinates of the PFs obtained by six algorithms of the DTLZ2 problem with
10 objectives.

FIGURE 8. Parallel coordinates of the PFs obtained by six algorithms of the DTLZ3 problem with
10 objectives.

The convergence of results obtained by MOEA/D is worse in
the first, third, sixth, seventh, ninth and tenth objectives. The
convergence of the PF obtained by the U-NSGA-III is worse
in the eighth and tenth objectives.

Figu. 8 shows the parallel coordinates of the PFs obtained
by five algorithms of DTLZ3(10). The PFs obtained by the
NSGA-III-GKM, DC-NSGA-III and B-NSGA-III are similar
in terms of diversity and convergence. The PF obtained by the
NSGA-III loses the part of the seventh objective and the PF
obtained by MOEA/D loses the parts of the third, sixth and
seventh objectives. The convergence of the PF obtained by
the U-NSGA-III is worse in the eighth and ninth objectives.

Fig. 9 shows the parallel coordinates of the PFs obtained by
the five algorithms of DTLZ4(10) problem. The PFs obtained
by the NSGA-III-GKM and B-NSGA-III are better than

those obtained by the NSGA-III, MOEA/D, U-NSGA-III and
DC-NSGA-III. The PF obtained by the NSGA-III loses the
parts of the second and third objectives and the PF obtained
by MOEA/D loses the parts of the second, third and eighth
objectives. The convergence of the results obtained by the
U-NSGA-III is worse in the second, third and seventh objec-
tives. The convergence of results obtained by DC-NSGA-III
is worse in the second and seven objectives.

We can see from Figs. 6-9 that the NSGA-III-GKM
and B-NSGA-III have better diversity and convergence
than the other four algorithms when solving MaOPs with
10 objectives.

Although the GKM operation is added to the NSGA-III,
the computational cost is lightly increased. According to
the results, the NSGA-III-GKM increases the computational
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FIGURE 9. Parallel coordinates of the PFs obtained by six algorithms of the DTLZ4 problem with
10 objectives.

FIGURE 10. Ranking of the average performance score over all test problems for the six algorithms.

time (0.393s) by 1.2% compared to the average computa-
tional time of the other five comparison algorithms after
30 independent runs, which verifies that the addition of the
GKM operation hardly increases the computational cost.

To rank these six algorithms, the average performance
scores over all 20 test problems based on the IGD and HV
indicators are presented in Fig. 10. The smaller the average
performance score is, the better the overall performance
of the algorithm is. The rank of each algorithm is given
in the corresponding bracket. NSGA-III-GKM obtains the
best average performance score based on the IGD and HV
indicators, respectively. Then, the overall performance of
the NSGA-III-GKM is better than that of the NSGA-III,
MOEA/D, U-NSGA-III, DC-NSGA-III and B-NSGA-III on
the DTLZ1-4 and UF1-4 problems.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we propose an improved NSGA-III using a
genetic K-means clustering algorithm, called the NSGA-III-
GKM, which improves the convergence and diversity by sep-
arating the space objective into subspaces and introducing the
PBI aggregation function in the niche-preservation operation
phase.We design a comparative simulation for the NSGA-III-
GKM and five other state-of-the-art algorithms MOEAs. The
results demonstrate that the proposed NSGA-III-GKM has
better overall performance than the other four algorithms.

Although better results are obtained using the NSGA-III-
GKM, there are still several issues worth studying for fur-
ther improvements. Our future research work includes the
following directions: 1) studying the adaptive positive coef-
ficients of GKM clustering algorithm in different MaOPs;
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2) designing local operations in different phases of the
NSGA-III-GKM; 3) attempting to replace GKM with other
clustering algorithms; 4) solving MaOPs with complex con-
straints; and 5) applying the NSGA-III-GKM to real-world
applications.
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