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ABSTRACT Driver distraction is one of the major causes of accidents. Most methods for inferring distracted
driving behaviors are vision-based systems that determine the head’s orientation. One of the significant
challenges of this approach is to develop robust algorithms that detect face and eye features under various
lighting conditions. Our approach is based on inferring the vehicle’s cabin spot drawing the driver’s attention
through head-mounted inertial sensors. To achieve this aim, we collected accelerometer, gyroscope, and
magnetometer data from ten participants who drove under semi-naturalistic conditions. We generated
classifiers by using the Support Vector Machine (SVM linear and RBF), k-nearest neighbor (k-NN), and
Random Forest (RF) machine learning techniques. These techniques, except SVM linear, produced an
accuracy, precision and recall higher than 96%. Our results demonstrate that raw signals collected from
the inertial sensors provide enough information about the head posture associated with the car’s cabin spot.

INDEX TERMS Machine learning, vehicle driving, sensor systems and applications, distraction.

I. INTRODUCTION
Driver’s inattention, in its various forms, is considered an
essential factor in road crashes [1]. It refers to drivers’ status
in which their alertness diminishes due to drowsiness caused
by fatigue or distractions caused by the lack of continuous
attention for engaging in other tasks while driving. These
tasks can be any diversion of attention like cognitive (e.g.,
being lost in thought), physical (e.g., adjusting the infotain-
ment system), and visual distractions (e.g., looking away
from the road) [2]. Additionally, the increasing use of in-
vehicle information systems (IVISs) and the prevalence of
mobile devices may affect driving performance in different
ways by inducing visual and cognitive distractions [3]. Dis-
tractions are estimated to cause 23% of accidents or near-
accidents [4] and could be reduced by 10-20% through
systems that monitor and predict driving behaviors [5], [6].
Drowsy driving is a significant public health and safety prob-
lem around the world [7]. Thus, different methods for detect-
ing driver distraction and drowsiness have been explored [3],
[6], [8], [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

The head position is a reliable cue of the visual field and the
current focus of the attention of drivers [8], [9]. Based on this,
inferring the head position is considered essential to monitor
the level of alertness of drivers. Most of these methods rely on
the analysis of extracted characteristics from video images,
which are subsequently used to infer the orientation of the
head and the behavior of the gaze point [6]. In contrast, our
work aims at inferring the car’s cabin spot upon which drivers
focus their visual attention based on raw signals from head-
mounted inertial sensors. They included the accelerometer,
magnetometer, and gyroscope sensors integrated into smart
glasses.

In this paper, we first characterize the inertial sensors.
Then, we carried out experiments to train classifiers using
the sensing data collected from ten participants who drove in
semi-naturalistic conditions. Finally, we compared the perfor-
mances of Support Vector Machine (SVM), k-Nearest Neigh-
bor (k-NN), and Random Forest (RF) learning-methods.

Before presenting the experiments, we first highlight the
novelty of our approach through a mapping review of related
works. Then we describe the design of the experiments con-
ducted to train the classifiers. We discuss the implications of
our results for implementing applications related to driving,
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FIGURE 1. Number of papers (X axis) focused on detecting inattention behaviors (Y axis) by using different cues.

and the potential of our approach to be used in other appli-
cation domains. Finally, we conclude and explain possible
future directions for this work.

II. RELATED RESEARCH
We conducted a mapping review of relevant literature report-
ing similar approaches to ours in the last decade.

A. SEARCH AND SELECTION OF STUDIES
Our search process was by nomeans exhaustive.We opted for
defining a conventional search strategy and complemented it
with other techniques [10]. We searched on Scopus since it
is one of the most extensive databases that index high-quality
literature in different areas.We formulated a query string with
the words: driver, inattention, distraction and drowsy; and
applied search filters to retrieve papers related to the engineer-
ing and technology area. We complemented the search with
the ‘‘Snowballing’’ technique [10], for which we decided to
scan the references list of related literature review papers,
i.e., [11], [12]. From these reference lists, we selected papers
highly related to our work, except those reporting using a
camera-based approach, since it was the most found from our
search in Scopus.

To incorporate consolidated research, we selected papers
written in English, published in journals, conferences and
book chapters, and reporting experimental results about using
sensing technologies that contribute to the development of
monitoring systems of driver inattention. To this end, we first
removed duplicate references to papers. The first selection
stage was a binary rating of papers’ abstracts (0: exclude;
1: consider for inclusion) by one of the authors. Afterward,
three authors carried out a full-text review of the included
papers to identify the technological approaches used for
inferring inattention.

B. ANALYSIS OF STUDIES
We retrieved 1983 papers, from which 1659 were identified
as not relevant when screening their titles and abstracts (first

selection stage). From the resulting papers, we excluded
263 because they estimate head pose but not in the driv-
ing context, resulting in 61 included papers [9], [13]–[71].
As depicted in Fig. 1, most of the studies are on dis-
traction behavior [9], [13]–[52], for which the cue most
studied is head dynamics and motion. On the other hand,
most of the papers that focus on inferring drowsiness use
physiological cues, such as signals from electroencephalo-
gram (EEG) [20], [53], electrocardiogram (ECG) [54]–[56],
electro-oculography (EOG) [57], and surface electromyo-
gram (sEMG) [56]. Besides, few works have studied hand
[35] and body postures [47] through camera-based techniques
to infer secondary tasks such as eating and talking on amobile
phone. Monitoring more than one cue is a strategy used to
improve the inference of inattention behaviors. For instance,
head pose and vehicle dynamics were used to predict distrac-
tion in [23] and were used to predict drowsiness in [58].

Each kind of sensor has pros and cons for detecting driving
behaviors. As shown in Fig. 2, most of the technological
approaches for monitoring distraction require instrumenting
the vehicle with one or more sensors, mainly cameras, in-
vehicle devices such as on-board diagnostics (OBD) devices,
and infrared sensors.

Electrode-based sensors are mainly used to predict drowsi-
ness since physiological signals such as the EEG are reliable
predictors [72]. However, these sensors can be uncomfortable
to wear and therefore perceived as intrusive. In this sense,
cameras are less invasive than electrodes but require devel-
oping sophisticated and robust computer vision algorithms
for detecting face and eyes features under various lighting
conditions. For instance, changes in light intensity when
entering or leaving a tunnel or non-uniformity of light sources
cause asymmetric shades on the driver’s face [12], making
the detection process complex. On the other hand, wearable
computing has been becoming mainstream, as evidenced by
the large-scale market uptake of smartwatches and smart
glasses [73]. These devices embed motion sensors that can
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FIGURE 2. Number of papers (X axis) studying how to detect the cues (Y axis) associated to inattention through different sensors.

make the detection of driving behaviors more feasible and
affordable in real-world settings.

Based on our search, we identified only two works that
made use of the inertial sensors of smart glasses [23], [42],
both from the same research group. In [23], the authors focus
on detecting drivers head motion through a dual compass-
based system that estimates the angular velocity from a
head-mounted compass (magnetometer) and then subtract
the angular velocity from a vehicle-end compass. In [42],
they used raw data from the accelerometer, gyroscope, and
magnetometer of smart glasses to estimate seven specific
head postures based on rotation angles of yaw, pitch, and
roll (e.g., ‘yaw right’, ‘yaw left’, ‘pitch right’, and ‘pitch
left’) [42]. Thus, in the abovementioned approach, additional
processing is required to infer the drivers’ visual focus of
attention. On the contrary, our work aims to generate classi-
fiers that infer the cabin spot drawing the driver’s visual focus
of attention. To reach this end, we conducted experiments
with several machine learning techniques. We next describe
the methods used.

III. METHODS
A. CLASSIFICATION PROBLEM SCOPE
As explained in [74], not only secondary tasks are risky,
but also those tasks highly related to driving, which demand
glances away from the road. There are four types of driver
inattention: i) secondary task distraction, which refers to the
diverting of the driver’s attention away from the driving task,
for instance, handling a CD, and reaching for an object on
the back seat; ii) driving-related inattention from the road;
it is directly related to the driving task such as checking
the speedometer and mirrors; iii) drowsiness, which includes
eyes closures and repeated yawing; and iv) non-specific eye-
glance away from the road; it involves glances at no dis-
cernible object, person, or unknown location outside the car
and away from the road [75]. Our work aims at the two
first categories in which drivers conduct activities that may
involve glancing at spots of the car’s cabin.

Thus, our classification problem can be described as infer-
ring a set of spots based on the drivers’ head postures.
We hypothesize that the unprocessed signals, collected from
the inertial sensors mounted on the driver’s head, provide
enough information about the head posture associated with
the car’s cabin spot. The scope of our study is limited to
inferring the eleven spots depicted in Fig. 3 (S0-S10), which
are the classes for our classification problem.

B. CLASSIFICATION ALGORITHMS AND TUNING
PARAMETERS
We selected some of the most popular classification tech-
niques.We chose SVM and RF over artificial neural networks
(ANN) since the former is insensitive to noise and handle
unbalanced data well [76]. Moreover, SVM, k-NN, and RF
generally outperform other traditional supervised classifiers
in several application contexts, such as for recognizing human
activities fromwearable inertial sensors data [77], and remote
sensing images applications [78]. In this section, we briefly
describe the supervised classification techniques used in this
study and the parameters that were tuned to find the best
classification performance for each of the algorithms.

1) SUPPORT VECTOR MACHINE
A classification task usually involves separating data into
training and testing sets. Each instance in the training dataset
contains one target value (i.e., the class labels) and several
features (i.e., the observed variables) [79]. The Support Vec-
tor Machine (SVM) is a classifier derived from statistical
learning theory, which produces a mapping function or model
from the training dataset. The model can predict to which
class each of the instances of the test dataset belongs [80].
SVM finds the linear hyperplane that provides the most
significant separation margin between two classes. How-
ever, pairwise classifications can be used to address multi-
class classification problems, which can be time-consuming
when the training dataset is large. Another alternative for
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FIGURE 3. Setting for collecting data: (a) cabin’s spots of the car used for
collecting data, (b) route followed during the driving sessions in a private
parking lot, (c) instruments used to collect data.

multi-class problems is to apply kernel-based methods, and
one of the suggested is the RBF kernel [79]. Nevertheless,
when the number of features is considerable, this kernel
may not be suitable. The effectiveness of SVM relies on the
selection of the kernel and the soft margin parameter c.
For the kernel RBF, two parameters need to be tested c,

in addition to the kernel width parameter, namely γ . The
c parameter decides the size of misclassification allowed
for non-separable training data, and γ parameter affects the
smoothing of the shape of the class-dividing hyperplane.
Given the uncertainty about whether the size of our dataset
can be considered small or large, we decided to assess the
SVM by comparing its performance when applying the linear
and the RBF kernels, in addition to varying the c parame-
ter. Following the recommended values for these parameters
given in [79], in this study, we tested the SVM performance
for our dataset with 15 values of c (2−3, 2−2, 2−1, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 210, 211) for the linear SVM. And for
the RBFwemade 15 pairs of these c values with the following
values of γ : 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24,
25, 26, 27, 28.

2) K-NEAREST NEIGHBOR
The k-NN algorithm [81] is a direct classification method
because, unlike other supervised learning algorithms, such as
SVM, it does not produce a mapping function from a training
stage. It merely uses the training dataset at the test time to
make predictions. Thus, k-NN requires the storage of the
whole dataset. For classifying a new observation, k-NN uses

the principle of similarity (Euclidean distance) between the
training dataset and the observation to classify. Then, it is
assigned to the most common class through a majority vote
of its k nearest neighbors. With our experiment, we varied
the value of k (from 1 to 20) to find a satisfactory algorithm
performance.

3) RANDOM FOREST
Random Forests (RF) consists of building a combination
of decision trees at the time of training [76]. RF improves
the classification performance of a single-tree classifier by
combining the bootstrap aggregating (bagging) method and
the random assignment in the selection of partition data nodes
in the construction of the decision tree. The assignment of
a new observation to a class is based on the majority vote
obtained from the trees that constitute the forest. RF needs a
large training dataset to achieve good performance. For our
dataset, we decided to assess the RF performance by varying
the number of trees: 1,50, 80, 100, 200, 300, 400,. . . ,1200,
and 1300.

C. DATA COLLECTION AND INSTRUMENTS
We collected data from ten recruited participants (P1-P10),
six males and four females, with a mean age of M = 31.50
and SD = 9.05 years. Each participant drove approximately
10-15 minutes in an empty parking lot of our university
for safety reasons (see Fig. 3). Also, the following condi-
tions were controlled to collect a balanced and representa-
tive dataset. Thus, everyone drove down the same low-speed
road and were asked to see each cabin’s spot while driving
in a straight direction. Participants worn a Google Glass
V3 (XE-C model) with a Java-based app implemented with
GDK (Glass Development Kit). The app provides functional-
ities that facilitated the data collection and their labeling (see
Fig. 4). This app requires selecting the spot to record through
a sliding gesture, and a tap gesture to control the recording of
the data collected.
The researcher (first author) accompanied each of the par-

ticipants. He instructed them to fix their gaze on each of
the cabin spots for approximately 2-3 seconds. Participants
used the java-based app of Fig. 4 to record the data, which
was labeled with the selected class. That is, the first dataset
gathered was labeled as spot S0; then the drivers stop the
recording, and select the next spot with a sliding gesture to
start recording data labeled as S1, and so on. This process was
repeated three times. By using the Google Glass screencast
function, the researcher monitored the information recorded
from his Android phone (see Fig. 3c). This allowed him
to provide instructions to the participants on when to start
and stop the recording of each spot through the interaction
gestures depicted in Fig. 4. For all sessions, the sampling rate
was set at 50 Hz.

D. DATASET DESCRIPTION
The dataset consisted of tuples (see Fig. 5). Each of them
containing the x, y, and z values of the accelerometer (Accx,
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TABLE 1. Instances captured for each participant (P1-P10) and labeled as spots classes (S0-S10).

FIGURE 4. Interaction with the Java-based application implemented for
the Google Glass, which requires selecting the spot to record through a
sliding gesture, and a tap gesture to control the recording of the data
collected.

Accy, Accz), gyroscope (Gyrx, Gyry, Gyrz), and magne-
tometer (Magx, Magy, Magz); in addition to the timestamp
in which they were collected. Each tuple was labeled with
the spot class (S0-S10) through the Java app. As shown
in Table 1, we collected 19,521 readings from the inertial
sensors.

E. DATA TRAINING AND TESTING
The platform used to train and test the performances of SVM,
k-NN, and RFwasWEKA (Waikato Environment for Knowl-
edge Analysis, version 3.8.2) [82]. WEKA offers a collection
of automatic learning algorithms for data mining tasks and
contains tools for pre-processing data classification, cluster-
ing, association, and visualization rules. Additionally,WEKA
allows normalizing the data before the training. We used

FIGURE 5. Structure of the collected dataset.

the 10-fold cross-validation training technique. It consists of
dividing the dataset into n partitions (n = 10 in this case),
where we used n-1 partitions for training the classifier, and
the remaining one for testing. This process is done n times,
in which the testing set is shifted in every iteration.

F. DATA ANALYSIS
We used accuracy, precision and recall as performance met-
rics of the classifiers [83]:
• Precision is the proportion of elements classified as
positive that are true positives (tp) and false positives
(fp).

Precision = tp/(tp+ fp) (1)

• Recall is the proportion between positive ele-
ments or correctly classified (tp), and false negatives
elements (fn) [76].

Recall = tp/(tp+ fn) (2)

• Accuracy is a measure of general efficiency to evaluate
the performance of a classifier, and refers to instances
classified correctly, where tn are the true negatives [76].

Accuracy = (tp+ tn)/(tp+ tn+ fp+ fn) (3)

IV. RESULTS
A. ANALYSIS OF THE BEHAVIOR OF THE SENSORS
Figures 6a-c present plots of data collected from one of
the participants of our study. It is noticeable how the
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FIGURE 6. Raw data collected from the (a) accelerometer,
(b) magnetometer, and (c) gyroscope, corresponding the cabin’s spots
depicted in Fig. 3a.

accelerometer and magnetometer signals (Fig. 6a and 6b)
change their magnitude based on the head’s orientation,
unlike the gyroscope signal (Fig. 6c). However, the tree sig-
nals provide relevant information [84].

Kunze and Lukowicz [84] suggest using an accelerometer
for identifying changes in the orientation of an object if
the movement of translation dominates the movement of the

FIGURE 7. Performance results of linear SVM.

object. And they suggest utilizing a gyroscope when dom-
inated by rotational motion. Additionally, knowing the ori-
entation of the phone’s magnetic sensor axis concerning the
user’s body can be used to determine the direction to which
the user is facing [84]. However, our problem is characterized
bymonitoring an object (driver’s head) inside anothermoving
object (a vehicle). Therefore, the rotational and translational
motion might arbitrarily dominate [84]; therefore, the three
inertial sensors provide relevant information about the head
pose.

B. EFFECTS OF TUNING PARAMETER ON CLASSIFICATION
PERFORMANCE
In this section, we review the performances obtained for each
classifier.

1) SUPPORT VECTOR MACHINE
As depicted in Fig. 7, the linear SVM produces the best result
for c = 8, with an accuracy of 26.71%. We found that the
SVM with the RBF kernel shows that the accuracy improves
when the c value increases (see Fig. 8). We obtained the best
accuracy (98.82%) when c = 128 and γ = 16. Therefore,
the SVM with the RBF kernel method shows better accuracy
than the linear SVM.

2) K-NEAREST NEIGHBOR
In the case of the k-NN algorithm, the best accuracy (96.90%)
was gotten for k = 1 (see Fig. 9). We found that as the value
of k increases, the accuracy decreases.

3) RANDOM FOREST
As presented in Fig. 10, all the tests with RF resulted in
an accuracy greater than 90%. The best performance was
obtained for 1200 trees with an accuracy of 98.64%.

C. CLASSIFIERS COMPARISON
Table 2 compares the results obtained from each classi-
fier based on the performance metrics used for this study.
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TABLE 2. Best performance obtained from each classifier.

FIGURE 8. Performance results of SVM with RBF kernel.

We conclude that all the classifiers, except the linear SVM,
show an accuracy, precision and recall higher than 96%.
Additionally, the classifiers behave similarly according to
the confusion matrixes presented in Fig. 11. They tended to
confuse instances of the same spot classes; i.e., S0 with S4
(dashboard), S9 (storage compartment) with S10 (passenger
seat), and S6 (climate/audio system) with S7 (center console).
SVM (RBF) provides the best accuracy; however, it required
the highest training time (see Table 2) and we consider that
this is the algorithm most complex to implement to be exe-
cuted in real-time. On the other hand, to implement the RF
model, it is crucial to consider that fewer number of decision
trees (e.g., 50 and 80) obtained a similar accuracy to that
obtained with 1200 decision trees (see Fig. 9). In this case,
a further analysis is needed to determine whether there is
an optimal number of trees, that is, a threshold from which
increasing the number of trees would bring no significant
performance gain and would only increase the computational
cost.

V. DISCUSSION
This study provides evidence that enables us to conclude that
the raw signals, collected from the inertial sensors mounted
on drivers’ heads, provide enough information about the head
posture associated with the car’s cabin spot. However, one
limitation of this study is that it was conducted in a semi-
naturalistic setting. It was semi-naturalistic since the par-
ticipants drove under controlled conditions, which included
driving on the same low-speed and in a straight direction

FIGURE 9. Performance results of k-NN.

FIGURE 10. Performance results of RF.

while staring the cabin’s spots. Therefore, more studies have
to be conducted to understand how different road and driv-
ing conditions must be taken into account since they affect
the signals of the inertial sensors. For example, potholes
and vehicle acceleration affect accelerometer signals. From
the aforementioned, we identify as a research opportunity
to develop new computing-based mechanisms to recognize
these conditions and counteract their effect on the inertial
sensors mounted on the head.

Our approach could be useful to develop not only appli-
cations that help identify distracted driving, but also that
help research communities analyze driving behaviors. For
instance, assessing seniors’ driving performance decline
for detecting effects of preclinical Alzheimer’s disease
[85], or analyzing the attention and behavior of older adults
with cognitive impairment for assessing their autonomy for
driving [86], [87]. Driving has been identified as an activity
that could be safely performed in the early stages of dementia.
However, tomonitor older adults’ fitness to drive, a set of tests
should be used to assess different cognitive functions such as
visual-spatial skills and attention-processing speed [86], [87].
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FIGURE 11. Confusion matrix obtained from each classifier.

In this sense, our approach may help to collect data to under-
stand seniors’ attentional behavior during driving.

Another potential application of our approach is in scenar-
ios in which head-pose is used to deduce user’s interaction
intention and interest in displayed information items. For
instance, this model could be used to analyze how the user
looks at information items distributed in different regions
of a large public display [88]. Similarly, the interaction of
users with head-worn Augmented Reality (AR) devices can
be improved throughmultimodal techniques that combine the
tracking of head pointing and eye gaze [89]. To the best of
our knowledge, these works have explored vision-based tech-
niques [89]. A research opportunity can be to study how the
conditions of the setting affect the models’ performance, such

as the user mobility in an AR environment or the distance
between the user and a public screen.

Finally, we consider that our approach could bemore prone
to be accepted by users when it is used in controlled sessions
conducted to assess driving behaviors than during daily driv-
ing scenarios. However, from our literature review, we identi-
fied that none of the studies had evaluated the acceptability of
their approaches. Therefore, we conclude that further studies
are needed to know the users’ acceptance of applications that
monitor daily driving behaviors.

VI. CONCLUSION
Thus far, our results provide evidence that using the raw data
collected from the head-mounted inertial sensors are accu-
rate predictors of visual focus of attention under controlled
driving conditions. As future work, we plan to implement
the SVM and Random Forest classifiers to evaluate their
performance to predict in real-time during driving sessions.
We will analyze how to incorporate strategies to handle the
uncertainty that the classifiers could generate to use the pre-
dictions to determine if drivers are fixing their attention at
a spot or staring at it frequently. Both of these behaviors
are highly related to distractions, such as secondary tasks.
Also, to reduce the computation time and complexity through
reducing the size of a training dataset of classificationmodels,
we consider exploring classical dimension reduction algo-
rithms. Finally, we plan to compare our results with those
obtained through other prediction approaches, such as the
Extreme LearningMachine (ELM), which is characterized by
reducing the training time. Thus, it will let us understand how
EML improves not only the time to generate the prediction
models, but the accuracy.
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