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ABSTRACT This work investigates the remote vehicle tracking issue over constrained monitoring sensors
and unreliable communication networks. A saturation function is used to describe the bounded time varying
acceleration of the vehicle. A set of matrices are introduced to model the sensor monitoring conditions
called captured states (CSs), and a Markov chain with time varying and partially unknown transition
probability (TVPUTP) is proposed to analyze the conditions of the CSs. Then, a CS dependent nonfragile
estimator is designed based on the measured unreliable vehicle information, and the estimation error
system (EES) is derived. Two theorems are established to ensure that the EES satisfies the finite-horizon
(FH) H∞ performance. Finally, an example is introduced to show the effectiveness of the results.

INDEX TERMS Trajectory tracking, constrained sensors, Markov chain, finite-horizon H∞ performance.

I. INTRODUCTION
Vehicle intelligence is a main trend in both automotive and
transportation fields, and the research of intelligent vehicle
mainly focuses on improving the safety, as well as provid-
ing excellent human-vehicle interface, and so on [1], [2].
This field attracts a lot of attention from researchers, and
many theories have been put forward. In [3], a survey of the
frameworks of traffic control and intelligent vehicle highway
systems, and some outstanding issues and future challenges
were identified. In [4], based on the chicken-game-theory
algorithm, the researchers proposed a Cooperative Adaptive
Cruise Control systems to control vehicle movements at
uncontrolled intersections. In [5], according to the special
radio frequency identification, a smart traffic control system
was presented for special vehicle control. However, the vehi-
cle states are indispensable for control and safety, therefore
how to estimate the vehicle’s state (i.e., the tracking problem)
becomes critical.

In general circumstance, tracking for a vehicle needs many
monitoring sensors when it is running on a level road [6], [7].
Under the practical circumstance, it is impossible and unre-
alistic that the monitoring sensors monitor the moving
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vehicle ideally at all times, so the information captured by
the monitoring sensors may be incomplete or missing [8], [9].
Some theories were proposed for vehicle tracking based on
the obtained information by the sensor [10], [11]. According
to the extended Kalman filter, a unique approach for vehi-
cle tracking by simultaneous detection and estimation was
designed to efficiently integrate all available information into
the tracking [12]. A new technique about nonlinear observer
design was proposed by utilizing better bounds on nonlinear
functions in the dynamics for this challenge [13]. Considering
a vehicle with partial observations and varying viewpoints,
the authors proposed a part-based particle filter for vehicle
tracking [14]. In some works, the actual measurement cases
of the monitoring sensor was modeled by random Bernoulli
process [15] and Markov model [16]–[21]. Inspired by these
works, how to study a more general Markov model is an
interesting and important problem, which has not been fully
studied.

For wireless transmission networks, with the increasing
of the amount of data transmitted, packet dropouts and time
delays are inevitable in the case of limited communication
channel capacity [22]–[24]. How to study networked control
systems has become an important problem [25]–[28]. In [29],
considering the unreliable communication link, a stochas-
tic Bernoulli variable was proposed to describe the packet

184866 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-2195-6178
https://orcid.org/0000-0002-3757-0838
https://orcid.org/0000-0002-4068-5986
https://orcid.org/0000-0003-2219-7732
https://orcid.org/0000-0002-7221-6279


C. Liu et al.: Trajectory Tracking With Constrained Sensors and Unreliable Communication Networks

FIGURE 1. The simplified system structure diagram for vehicle tracking.

dropouts. In [30], a finite-state Markov process was used to
describe the packet dropouts, and time varying Kalman filter
was proposed to analyse the peak covariance stability. In [17],
packet dropouts, time delays and sensor nonlinearity caused
by unreliable communication link were simultaneously con-
sidered. In [31], an adaptive transmission policywas designed
for the wireless fading channels with the delay-sensitive and
bursty traffic source. Therefore, it is difficult and necessary
for researchers to design a reasonable transmission model,
which is worth further studying.

This work addresses the issue of vehicle tracking over
limited monitoring sensors and unreliable transmission chan-
nels. The simplified system structure diagram is shown in
FIGURE 1. An estimator is designed based on the available
data, and two results are obtained to ensure that the estimation
error system (EES) achieves the finite-horizon (FH) H∞ per-
formance. Finally, a numerical example is introduced to show
the effectiveness of the derived results. This paper possesses
the following contributions:
• With the purpose of establish a more general model of
the vehicle acceleration, a saturation function σ (·) is
used to describe a bounded vehicle acceleration with a
time varying change rate ρ(k).

• The CSs are introduced to model the sensor monitor-
ing condition. A Markov chain with time varying and
partially unknown transition probability TVPUTP) is
proposed to describe the variation of these CSs, which
is a more general model than [34], [35].

• A CS dependent non-fragile estimator is designed on
the basis of the unreliable measurements to improve
the robustness of the estimator. Besides, the FH H∞
performance of the EES is analyzed.

The organization of the paper is as follows. Amoving vehi-
cle with limited monitoring sensors and unreliable communi-
cation networks are described in Section II. In Section III,
sufficient conditions of the FH H∞ performance are given.
In Section IV, the CS dependent non-fragile estimator gain
design is shown. In Section V, an example is described, and
conclusions are given in Section VI.
Notations: The symbols Rn and Rm×n stand for

n-dimensional vector andm×n real matrix, respectively. The
symbol XT means the transpose of the matrix X , diagn{·}
denotes the diagonal matrix belonging to Rn×n. Pı (k)[0,N ]
denotes the matrix Pı (k), k ∈ [0,N ]. E {·} means the
expectation of a stochastic variable.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. VEHICLE MOVING DESCRIPTION
A vehicle moving with acceleration a on a level road is
considered, where the acceleration a satisfies the following
equilibrium equations [32]:

2(F x1 +F x2 ) = ma
2(F z1 +F z2 )−mg = 0
−2F z1a1 + 2F z2a2 − 2(F x1 +F x2 )h = 0

(1)

where parameters F x1 and F x2 respectively represent the
braking force on the front wheels and rear wheels of a four-
wheel-drive. The parameters F z1 and F z2 are the vertical
forces under the front and rear wheels, respectively. The con-
stant vector g is the gravitational acceleration. The constant
scalar a1 is the length between the vehicle’s mass center and
front axle, a2 is the length between the vehicle’s mass center
and the rear axle, and h is the height of the vehicle’s mass
center.

Considering the all-wheel drive vehicle, and assuming that
the friction coefficients at the tires are equal, and all tires
reach their maximum traction at the same instant,

F x1 = ±µF z1

F x2 = ±µF z2 (2)

where µ stands for the friction coefficient.
In term of the equation (1), the maximum acceleration amax

is

amax = ±µg. (3)

When the vehicle runs in a complex environment,
the acceleration may change within the bound
C , [−µg,+µg], and the change rate of acceleration is
ρ(k) ∈ [−ρ1, ρ2], where ρ1 and ρ2 are positive numbers
and dependent on the mechanical properties of the vehicle.
A saturation function σ (ρ(k)a(k)) ∈ C is introduced to
describe the acceleration at the instant k and is defined as

σ (ρ(k)a(k)) , sign(ρ(k)a(k))min{‖ρ(k)a(k)‖, µg}.
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The kinematics model for the moving vehicle on a level
road is as follows,

s(k + 1) = s(k)+ t0v(k)+
t20
2
a(k)

v(k + 1) = v(k)+ t0a(k)+ ω(k)
a(k + 1) = σ (ρ(k)a(k))

(4)

where the variables s(k), v(k), a(k) denote the displacement,
velocity and acceleration, respectively. The constant scalar t0
is the sampling interval, the one-dimensional variable ω(k) is
the external noise.
Lemma 1 [33]: A nonlinear function ψ(v) belongs to the

sector [c1, c2], if the following inequality:

(ψ(v)− c1v)(ψ(v)− c2v) ≤ 0, ∀v ∈ R (5)

holds for c1 and c2.
Based on the inequality (5) and the characteristic of sat-

uration function, we assume that there exist scalars h1 and
h2 such that 0 ≤ h1 < 1 ≤ h2, the saturation function
σ (ρ(k)a(k)) is supposed to consist of a linear part and a
nonlinear part as

σ (ρ(k)a(k)) = h1ρ(k)a(k)+ ψ(ρ(k)a(k)) (6)

where ψ(ρ(k)a(k)) satisfies a sector condition with c1 = 0
and c2 = h2 − h1, i.e., ψ(ρ(k)a(k)) meets the following
inequality:

ψ(ρ(k)a(k))(ψ(ρ(k)a(k))− c2ρ(k)a(k)) ≤ 0. (7)

Define a state vector x(k) , [s(k) v(k) a(k)]T and an
objective vector z(k), the time varying state space model can
be obtained as the following formula:{

x(k + 1) = A(k)x(k)+ Bψ(ρ(k)Hx(k))+ Eω(k)
z(k) = Lx(k)

(8)

where

A(k) =

1 t0
t20
2

0 1 t0
0 0 h1ρ(k)

 , L =

10
0

T

B =

00
1

 , E =

01
0

 , H =
00
1

T . (9)

B. LIMITED MONITORING SENSORS
In order to improve the transportation efficiency, road safety,
and intelligence, the first important thing is to obtain the
moving states of the vehicle. Thus, when the vehicle runs on
a road, the monitoring sensors are distributed on both sides of
the road, whose measurement output y(k) is

y(k) = Cx(k)+ Dν(k) (10)

where the variable ν(k) ∈ Rm×1 is the external noise and the
known matrices C ∈ R2×3 and D ∈ R2×m.

In fact, sensors are often sparsely distributed, it is impossi-
ble and unrealistic for the monitoring sensors to monitor the

moving vehicle at all times, in view of this, there are four
cases that occur, which are described as follows.

1) The vehicle is missing for the monitoring sensors.
2) The vehicle is captured by the monitoring sensors, but

only the displacement information is detected.
3) The vehicle is captured by the monitoring sensors, but

only the velocity information is detected.
4) The vehicle is captured by the monitoring sensors, and

both information are detected.
A Markov chain ϑ(k) ∈ S , {1, 2, 3, 4} with TVPUTP

is introduced to describe the above cases, whose transition
probability matrix is expressed as

5(k) =
[
πı (k)

]
4×4 (11)

where some elements in matrix 5(k) are unknown,
i.e., denote the S ı

K (k) , { : πı (k) is known} and S ı
uK (k) ,

{ : πı (k) is unknown}, for any ı ∈ S,
∑s
=1 πı (k) =∑

∈Sı
K (k)

πı (k) +
∑
∈Sı

uK (k)
πı (k) = 1. The monitoring

measurement output of sensors (10) can be rewritten as

ỹ(k) = Mϑ(k)y(k) (12)

where Mϑ(k) are CS matrices, and

M1 =

[
0 0
0 0

]
, M2 =

[
1 0
0 0

]
M3 =

[
0 0
0 1

]
, M4 =

[
1 0
0 1

]
. (13)

Remark 1: The vehicle may be missed or captured by
the limited monitoring sensors, which was described by
random Bernoulli process [15], Markov model [16], [17].
In the actual situation, the probability is always not all avail-
able, and not only the cases occur where the target is pres-
ence/absence [16]. Therefore, in this work, we consider the
Markov chain ϑ(k) with TVPUTP, which is a more general
description than the partially unknown probability of transi-
tion Markov model [34], [35] and other existing ones.

With the wide application of remote state estimation,
the issue that communication capacity constraints occur in the
process of transmission is inevitable. In this paper, we aim
at researching the problems of packet dropouts caused by
the communication capacity constraint. In order to describe
the packet dropouts, the received information by estimator is
described as

ŷ(k) = αϑ(k)(k )̃y(k) (14)

where αϑ(k)(k) ∈ {0, 1}, αϑ(k)(k) = 1 denotes the successful
data transmission, otherwise, denotes the packet dropouts,
and αϑ(k)(k) satisfies the following conditions:

E{α1(k) = 1} = 0
E{αi(k) = 1} = ᾱi, i = 2, 3, 4
E{(αi(k)− ᾱi)2} = ᾱi(1− ᾱi) = ς2i .

(15)

Remark 2: The CS matrices Mϑ(k) have four cases.
It needs to be emphasized that the vehicle is missing for the
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monitoring sensors and doesn’t need to transmit the zero data
to remote estimator when ϑ(k) = 1, in this case, we define
α1(k) satisfying E{α1(k) = 1} = 0. In the other cases,
considering the data of transmissions with limited bandwidth,
packet dropout rates are closely related to transfer load,
therefore, different transmission modes have different packet
dropout rates.

C. NON-FRAGILE ESTIMATOR AND EES
ACS dependent non-fragile estimator is designed to estimate
the states of the vehicle based on the received information,
which is as follows,

x̂(k + 1) = A(k)x̂(k)+ Bψ(ρ(k)H x̂(k))
+ αϑ(k)(k)K̄ϑ(k)(k)
×Mϑ(k)(y(k)− C x̂(k))

ẑ(k) = Lx̂(k)

(16)

where the vectors x̂(k) and ẑ(k) are the estimations for x(k)
and z(k), respectively.
The matrix K̄ϑ(k)(k) , Kϑ(k)(k) + 1Kϑ(k)(k) ∈ R3×2,

where Kϑ(k)(k) is the CS dependent non-fragile gain,
4Kϑ(k)(k) is the time varying matrix, which is assumed to
be the following form:

4Kϑ(k)(k) = Fϑ(k)3(k)Nϑ(k)

where Fϑ(k) ∈ R3×2 and Nϑ(k) ∈ R2×2 are known matrices.
3(k) ∈ R2×2 is unknown time varying matrix, and satisfies
the inequality 3(k)T3(k) < I .

The estimation error is defined as e(k) , x(k) − x̂(k),
the noises are described as v(k) ,

[
w(k)T ν(k)T

]T , and
assume φ(ρ(k)H ê(k)) , ψ(ρ(k)Hx(k)) − ψ(ρ(k) H x̂(k)).
In terms of (8) and (16), the time varying EES (17) can be
obtained.{
e(k + 1) = Ā(k)e(k)+ Bφ(ρ(k)H ê(k))+ D̄v(k)
z̄(k) = Le(k)

(17)

where

Ā(k) = A(k)− ᾱϑ(k)K̄ϑ(k)(k)Mϑ(k)C

− (αϑ(k)(k)− ᾱϑ(k))K̄ϑ(k)(k)Mϑ(k)C

D̄(k) = [E − ᾱϑ(k)K̄ϑ(k)(k)Mϑ(k)D

− (αϑ(k)(k)− ᾱϑ(k))K̄ϑ(k)(k)Mϑ(k)D]. (18)

Definition 1 [36]: Given a scalar γ > 0 and a matrix
Q > 0, if the inequality (19) holds for k ∈ [0,N ], then the
time varying EES (17) satisfies the FH H∞ performance.

E
{ N∑
k=0

‖z̄(k)‖2
}
≤ γ 2

{ N∑
k=0

‖v(k)‖2 + e(0)TQe(0)
}
. (19)

Lemma 2 [37]: For matrices 8 = 8T
∈ Rn×n,

01 ∈ Rn×n, 02 ∈ Rn×n, and 3T3 ≤ I . The inequality

8+ 01302 + (01302)T < 0

holds if and only if there exists a positive scalar ε > 0 such
that

8+ ε010
T
1 + ε

−10T2 02 < 0.

III. MAIN RESULTS
In this section, the FH H∞ performance is analyzed for the
EES (17) with TVPUTP.
Theorem 1: Given a scalar γ > 0, and a matrix Q > 0,

the EES (17) with constrained sensors and unreliable com-
munication networks meets the FH H∞ performance with
the initial condition Pı (0) < γ 2 Q, if there exist matrices
Pı (k)[0,N+1] > 0, K̃ı (k)[0,N ], ε1 > 0, such that the matrix
inequalities (20) hold, for ∀ı ∈ S, k ∈ [0,N ].

811 −R1 0 814 815
∗ −2ε1I 0 BT 0
∗ ∗ −γ 2I 834 835
∗ ∗ ∗ 844 0
∗ ∗ ∗ ∗ 855

 < 0 (20)

where

811 = −Pı (k)+ LTL, πK ,ı (k) =
∑

∈Sı
K (k)

πı (k)

814 = A(k)T − ᾱıCTMT
ı K̄ı (k)T

815 = ςıCTMT
ı K̄ı (k)T , 835 = ςı [0 K̄ı (k)MıD]T

834 = [E − ᾱı K̄ı (k)MıD]T , R1 = −ε1c2HTρ(k)

844 = 855 =

{
−P̂−1 (k + 1),  ∈ S ı

K (k)
−P̌−1 (k + 1),  ∈ S ı

uK (k)

P̂ (k + 1) = πK ,ı (k)−1
∑

∈Sı
K (k)

πı (k)P (k + 1)

P̌ (k + 1) = P (k + 1),  ∈ S ı
uK (k).

Proof: The Lyapunov function as in (21) is considered,

V (k) = e(k)TPϑ(k)(k)e(k) (21)

where Pϑ(k)(k) > 0,∀k ∈ [0,N ].
Denote ϑ(k) , ı , ϑ(k + 1) ,  , and the difference of

Lyapunov function in the mean sense is defined as

1V (k) , E{V (k + 1)− V (k)}. (22)

In term of Lemma 1, C , [−µg,+µg] and the
inequality (7), the nonlinear function φ(ρ(k)He(k)) satisfies
the inequality (23) for any scalar ε1 > 0,

2ε1φ(ρ(k)He(k))(φ(ρ(k)He(k))− c2ρ(k)He(k)) ≤ 0 (23)

which is equal to[
e(k)

φ(ρ(k)He(k))

]T [0 R1
∗ 2ε1I

] [
e(k)

φ(ρ(k)He(k))

]
≤ 0. (24)

Considering the inequality constraint (24) for the nonlinear
part of saturation function and submitting the time varying
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EES (17) into (22), we have

1V (k)

≤ E
{
e(k)T (A(k)T − ᾱıCTMT

ı K̄
T
ı (k))

× P̄ı (k + 1)(A(k)− ᾱı K̄ı (k)MıC)e(k)

+ (αı (k)− ᾱı )2e(k)TCTMT
ı K̄ı (k)T

× P̄ı (k + 1)K̄ı (k)MıCe(k)

+φT (ρ(k)He(k))BT P̄ı (k + 1)Bφ(ρ(k)He(k))

+ vT (k)Ď(k)T P̄ı (k + 1)Ď(k)v(k)

+ (αı (k)− ᾱı )2vT (k)D̂(k)T P̄ı (k + 1)D̂(k)v(k)

+ 2e(k)T (A(k)T − ᾱıCTMT
ı K̄ı (k)T )

× P̄ı (k + 1)Bφ(ρ(k)He(k))

+ 2e(k)T (A(k)T − ᾱıCTMT
ı K̄ı (k)T

× P̄ı (k + 1)Ď(k)v(k)

+ 2(αı (k)− ᾱı )2e(k)TCTMT
ı K̄ı (k)T

× P̄ı (k + 1)D̂(k)v(k)

+ 2vT (k)Ď(k)T P̄ı (k + 1)Bφ(ρ(k)He(k))

− e(k)TPı (k)e(k)
}

−

[
e(k)

φ(ρ(k)He(k))

]T [0 R1
∗ 2ε1I

] [
e(k)

φ(ρ(k)He(k))

]
= πK ,ı (k)(ξ (k)T 9́(k)ξ (k))

+

∑
∈Sı

uK (k)

πı (k)ξ (k)T 9̀(k)ξ (k) (25)

where

P̄ı (k + 1) =
∑

∈Sı
K (k)

πı (k)P (k + 1)

+

∑
∈Sı

uK (k)

πı (k)P̌ (k + 1)

Ď(k) = [E − ᾱı K̄ı (k)MıD]

D̂(k) = [0 K̄ı (k)MıD]

ξ (k) = [e(k)T φ(ρ(k)He(k))T v(k)T ]T

9́(k) =

 9́11 9́12 9́13

∗ 9́22 9́23

∗ ∗ 9́33


9̀(k) =

 9̀11 9̀12 9̀13

∗ 9̀22 9̀23

∗ ∗ 9̀33

 (26)

with

9́11 = (A(k)T − ᾱıCTMT
ı K̄

T
ı (k))P̂ (k + 1)

× (A(k)− ᾱı K̄ı (k)MıC)

+ ς2ı C
TMT

ı K̄ı (k)T P̂ (k + 1)

× K̄ı (k)MıC − Pı (k)

9́12 = (A(k)T − ᾱıCTMT
ı K̄ı (k)T )P̂ (k + 1)B− R1

9́13 = (A(k)T − ᾱıCTMT
ı K̄ı (k)T )P̂ (k + 1)Ď(k)

+ ς2ı C
TMT

ı K̄ı (k)T P̂ (k + 1)D̂(k)

9́22 = BT P̂ (k + 1)B− 2ε1I

9́23 = BT P̂ (k + 1)Ď(k)

9́33 = Ď(k)T P̂ (k + 1)Ď(k)+ ς2ı D̂(k)
T

× P̂ (k + 1)D̂(k)

9̀11 = (A(k)T − ᾱıCTMT
ı K̄

T
ı (k))P̌ (k + 1)

× (A(k)− ᾱı K̄ı (k)MıC)

+ ς2ı C
TMT

ı K̄ı (k)T P̌ (k + 1)

× K̄ı (k)MıC − Pı (k)

9̀12 = (A(k)T − ᾱıCTMT
ı K̄ı (k)T )P̌ (k + 1)B− R1

9̀13 = (A(k)T − ᾱıCTMT
ı K̄ı (k)T )P̌ (k + 1)Ď(k)

+ ς2ı C
TMT

ı K̄ı (k)T P̌ (k + 1)D̂(k)

9̀22 = BT P̌ (k + 1)B− 2ε1I

9̀23 = BT P̌ (k + 1)Ď(k)

9̀33 = Ď(k)T P̌ (k + 1)Ď(k)+ ς2ı D̂(k)
T

× P̌ (k + 1)D̂(k).

Adding the following zero term to (25):

‖z̄(k)‖2 − γ 2
‖v(k)‖2 − (‖z̄(k)‖2 − γ 2

‖v(k)‖2) = 0 (27)

then the inequality (25) can be modified as

1V (k) ≤ πK ,ı (k)(ξ (k)T 9́(k)ξ (k))

+

∑
∈Sı

uK (k)

πı (k)ξ (k)T 9̀(k)ξ (k)

+ e(k)TLTLe(k)− γ 2v(k)T v(k)

− (‖z̄(k)‖2 − γ 2
‖v(k)‖2)

= πK ,ı (k)(ξ (k)T 9̂(k)ξ (k))

+

∑
∈Sı

uK (k)

πı (k)ξ (k)T 9̌(k)ξ (k)

− (‖z̄(k)‖2 − γ 2
‖v(k)‖2) (28)

where

ξ (k) = [e(k)T φ(ρ(k)He(k))T v(k)T ]T

9̂(k) =

 9̂11 9́12 9́13

∗ 9́22 9́23

∗ ∗ 9̂33


9̌(k) =

 9̌11 9̀12 9̀13

∗ 9̀22 9̀23

∗ ∗ 9̌33

 (29)

with

9̂11 = 9́11 + LTL, 9̂33 = 9́33 − γ
2I

9̌11 = 9̀11 + LTL, 9̌33 = 9̀33 − γ
2I .
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Taking account into the inequality (28) in FH [0,N ],
we can further have

N∑
k=0

1V (k) = E{V (N + 1)− V (0)}

≤

N∑
k=0

πK ,ı (k)(ξ (k)T 9̂(k)ξ (k))

+

N∑
k=0

∑
∈Sı

uK (k)

πı (k)ξ (k)T 9̌(k)ξ (k)

− (
N∑
k=0

‖z̄(k)‖2 − γ 2
N∑
k=0

‖v(k)‖2). (30)

Utilizing the Schur complement lemma to (20), we have
N∑
k=0

πK ,ı (k)(ξ (k)T 9̂(k)ξ (k))

+

N∑
k=0

∑
∈Sı

uK (k)

πı (k)ξ (k)T 9̌(k)ξ (k) ≤ 0. (31)

In terms of (30) and (31), considering the FH H∞ perfor-
mance defined in Definition 1, we introduce the index J (N )
as follows,

J (N ) ,
N∑
k=0

‖z̄(k)‖2 − γ 2
N∑
k=0

‖v(k)‖2

− γ 2e(0)TQe(0)

< −E{V (N + 1)− V (0)} − γ 2e(0)TQe(0)

= −E{e(N + 1)TPϑ(N+1)(N + 1)e(N + 1)}

+ e(0)T (Pϑ(0)(0)− γ 2 Q)e(0). (32)

In term of Theorem 1, the inequalities E{e(N +
1)TPϑ(N+1)(N +1)e(N + 1)} ≥ 0 and e(0)T (Pϑ(0) − γ 2 Q)
e(0) ≤ 0, the inequality J (N ) < 0 can be derived. Then, based
on Definition 1, the EES (17) meets the FHH∞ performance.

IV. ESTIMATOR DESIGN
Based on the analysis above, we begin to design the non-
fragile estimator gains in Theorem 2.
Theorem 2: Given a scalar γ > 0, the EES (17) over

limited monitoring sensors and unreliable communication
networks satisfies the FH H∞ performance γ with the
initial condition Pı (0) < γ 2Q, if there exist matrices
Pı (k)[0,N+1] > 0, Gı (k)[0,N ] > 0, K̃ı (k)[0,N ] and scalars
ε1 > 0, ε2 > 0, ε1 > 0, such that the matrix inequalities

4̂11 412 413 414 0 416 0
∗ 4̂22 0 0 425 0 0
∗ ∗ 4̂33 0 0 0 437
∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I

 < 0

(33)

and

4̌11 412 413 414 0 416 0
∗ 4̌22 0 0 425 0 0
∗ ∗ 4̌33 0 0 0 437
∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I


< 0, ∀ ∈ S ı

uK (34)

hold for k ∈ [0,N ], where

4̂11 = 4̌11 =

 4̂111 −R1 0
∗ −2ε1I 0
∗ ∗ −γ 2I


412 =

[
4T

121 4T
122 4T

123

]T
413 =

[
4T

131 0 4T
133

]T
414 =

[
4T

141 0 4T
143

]T
416 =

[
4T

161 0 4T
163

]T
4̂111 = −Pı (k)+ LTL

4121 = ATGı (k)T − ᾱıCTMT
ı K̃ı (k)T

4131 = ςıCTMT
ı K̃ı (k)T

4141 = −ε1ᾱıCTMT
ı N

T
ı

4123 =

[
ETGı (k)T

−ᾱıDTMT
ı K̃

T
ı (k)

]
4161 = ε2ςıCTMT

ı N
T
ı , 4122 = BTGı (k)T

4133 =

[
0

ςıDTMT
ı K̃

T
ı (k)

]
4143 =

[
0

−ε1ᾱıDTMT
ı N

T
ı

]
4163 =

[
0

ε2ςıDTMT
ı N

T
ı

]
425 = 437 = Gı (k)Fı

4̂22 = 4̂33 = P̂ (k + 1)− Gı (k) − Gı (k)T

4̌22 = 4̌33 = P̌ (k + 1)− Gı (k)− Gı (k)T , (35)

then the estimator gains are listed as

Kı (k) = G−1ı (k)K̃ı (k). (36)
Proof: Before the proof, we first define the matrices

K̃ı (k) = Gı (k)Kı (k), M̄ı = NıMı

011 =
[
−ᾱıM̄ıC 0 0 −ᾱıM̄ıD 0 0

]T
021 =

[
ςıM̄ıC 0 0 ςıM̄ıD 0 0

]T
012 =

[
0 0 0 0 FTı Gı (k)T 0

]
022 =

[
0 0 0 0 0 FTı Gı (k)T

]
. (37)

Then, according to the Lemma 2, we have

9(k)+ ε10110T11 + ε
−1
1 0T12012

+ ε20210
T
21 + ε

−1
2 0T22022 < 0 (38)
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where

9(k) = 9(k)1 +9(k)2

9(k)1 =

[
4̂11 412 413
∗ 4̂22 0
∗ ∗ 4̂33

]
, ∀  ∈ S ı

K

9(k)2 =

[
4̌11 412 413
∗ 4̌22 0
∗ ∗ 4̌33

]
, ∀  ∈ S ı

uK . (39)

Considering the K̄ı (k) , Kı (k) + 1Kı (k) and
4Kı (k) = Fı3(k)Nı , and applying Schur lemma to
matrix inequalities (38), the obtained matrices are equal
to the matrix inequalities (20) pre- and post- multiplying
diag6{I , I , I , I , Gı (k), Gı (k)} and its transposition, because
of the fact that for any matrices P (k + 1) and Gı (k), the fol-
lowing inequality holds:

P (k + 1)− Gı (k)− Gı (k)T

≥ −Gı (k)P (k + 1)−1Gı (k)T . (40)

Thus the conditions (20) hold, which imply that the
EES (17) meets the FH H∞ performance γ .

V. NUMERICAL EXAMPLE
In this section, the effectiveness of the FH H∞ non-fragile
estimator design method is verified by numerical simulation,
and we assume the FH is k ∈ [1, 20]. Since the monitor-
ing sensors cannot monitor vehicle state information at all
times, there are four cases occur. We consider the TVPUTP
matrix as

5(k) =


0.2|sin(k)| π12 π13 0.5|cos(k)|

0.1 0.1 0.4 0.4
π31 π32 0.2|sin(k)| 0.6|cos(k)|
0.1 0.1 0.3 0.5


(41)

where π12, π13, π31, π32 are unknown probabilities.
The acceleration saturation function is defined as

σ (ā) =


amax , if ā > amax ;
ā, if − amax ≤ ā ≤ amax ;
−amax , else

where ā , ρ(k)Hx(k), and we assume that the change rate
of acceleration is ρ(k) = ρ(k)maxsin(k) ∈ [−1.5, 1.5], the
acceleration changes within the bound C = [−0.5, 0.5],
and saturation parameters are h1 = 0.6 and h2 = 1. The
mathematical expectations of the cases of packet dropouts are

E{α1(k) = 1} = ᾱ1 = 1, E{α2(k) = 1} = ᾱ2 = 0.10,

E{α3(k) = 1} = ᾱ3 = 0.10, E{α4(k) = 1} = ᾱ4 = 0.05.

Besides, we assume the sampling period t0 = 0.1 and the
matrices are

A =

1 0.1 0.005
0 1 0.1
0 0 0.9sin(k)


C =

[
0.3 0.5 0.3
0.4 0.6 0.4

]
, D =

[
0.1
0.1

]
.

TABLE 1. The estimator gains K2(k).

The positive definite matrix Q = diag3{9.0, 9.0, 9.0},
the performance index γ = 2.2361, the external noises
ω(k) = e−0.1ksin(k) and ν(k) = e−0.1ksin(k). The estima-
tor parameter uncertainties are described by the following
matrices:

F1 =

 0.11 0.12
0.12 0
0 0.14

, F2 =

 0.11 0.10
0 0.11

0.13 0


F3 =

 0.15 0.10
0 0.12

0.10 0

, F4 =

 0.11 0.10
0 0.12

0.12 0


N1 =

[
0.15 0.11
0.12 0

]
, N2 =

[
0.12 0.13
0.02 0.10

]
N3 =

[
0.10 0.03
0.02 0.14

]
, N4 =

[
0.13 0.01
0.02 0.15

]
3(k) =

[
sin(0.2k) 0

0 sin(0.3k)

]
.

In terms of the above parameters and the matrix inequalities
(33), (34) and the estimator gains (36), we use the Matlab
toolbox to compute the feasible solution and get the estimator
gains Ki(k) for i ∈ [1, 4], k ∈ [1, 20], where K1(k) ≡ 0 and
K2(k),K3(k),K4(k) are shown in TABLES 1 − 3.
In order to illustrate the effectiveness of the non-fragile

estimator by simulation, the initial states of the vehicle system
and non-fragile estimator are set as

x =
[
1 0.2 0.5

]T
, x̂ =

[
0 0 0

]T
.

Considering the randomness of Markov chains that occurs
in measurement process and random packet dropouts exist
during the transmission, we repeat simulation experiment
` = 100 times under the same system matrices, esti-
mator gains, disturbance and the initial conditions. Then
we get the averages of the states and their estimations as
x̄(k) ,

∑ι=`
ι=0 xι(k)/`, ¯̂x(k) ,

∑ι=`
ι=0 x̂ι(k)/`. Based on the

above, the trajectories of x̄(1, k), x̄(2, k) and their estimations
are shown in FIGURE 2.
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TABLE 2. The estimator gains K3(k).

TABLE 3. The estimator gains K4(k).

FIGURE 2. The trajectories of x̄(k) and their estimations.

VI. CONCLUSION
In this work, a vehicle moving with bounded acceleration on
a level road has been investigated, and a saturation function
σ (·) has been designed to describe the vehicle’s acceleration.
A Markov chain with TVPUTP has been proposed. Then,
the CS dependent non-fragile estimator has been established

to improve the robustness, and the EES has been derived. Two
theorems have been given to ensure that the EES satisfies the
FHH∞ performance. The estimators gains have been derived
byMatlab tools box. Finally, an example has been introduced
to illustrate the results. In future work, this research could be
carried out in the real world to help control AI vehicles.

REFERENCES
[1] S. Moon, W. Cho, and K. Yi, ‘‘Intelligent vehicle safety control strat-

egy in various driving situations,’’ Vehicle Syst. Dyn., vol. 48, no. 1,
pp. 537–554, 2010.

[2] Y. Du, C. Liu, and Y. Li, ‘‘Velocity control strategies to improve automated
vehicle driving comfort,’’ IEEE Intell. Transp. Syst. Mag., vol. 10, no. 1,
pp. 8–18, Jan. 2018.

[3] L. Baskar, B. De Schutter, J. Hellendoorn, and Z. Papp, ‘‘Traffic control
and intelligent vehicle highway systems: A survey,’’ IET Intell. Transp.
Syst., vol. 5, no. 1, pp. 38–52, Mar. 2011.

[4] M. Elhenawy, A. A. Elbery, A. A. Hassan, and H. A. Rakha, ‘‘An inter-
section game-theory-based traffic control algorithm in a connected vehicle
environment,’’ in Proc. IEEE Int. Conf. Intell. Transp. Syst., Sep. 2015,
pp. 343–347.

[5] R. Sundar, S. Hebbar, and V. Golla, ‘‘Implementing intelligent traffic con-
trol system for congestion control, ambulance clearance, and stolen vehicle
detection,’’ IEEE Sensors J., vol. 15, no. 2, pp. 1109–1113, Feb. 2015.

[6] S. Li, Z. Li, Z. Yu, B. Zhang, and N. Zhang, ‘‘Dynamic trajectory planning
and tracking for autonomous vehicle with obstacle avoidance based on
model predictive control,’’ IEEE Access, vol. 7, pp. 132074–132086, 2019.

[7] F. Bi, M. Lei, Y. Wang, and D. Huang, ‘‘Remote sensing target tracking in
UAV aerial video based on saliency enhanced mdnet,’’ IEEE Access, vol. 7,
pp. 76731–76740, 2019.

[8] Y. Xu, R. Lu, P. Shi, H. Li, and S. Xie, ‘‘Finite-time distributed state
estimation over sensor networks with round-robin protocol and fading
channels,’’ IEEE Trans. Cybern., vol. 48, no. 1, pp. 336–345, Jan. 2018.

[9] L. Ma, Z. Wang, Q.-L. Han, and H.-K. Lam, ‘‘Variance-constrained dis-
tributed filtering for time-varying systems with multiplicative noises and
deception attacks over sensor networks,’’ IEEE Sensors J., vol. 17, no. 7,
pp. 2279–2288, Apr. 2017.

[10] N. H. Gholson and R. L. Moose, ‘‘Maneuvering target tracking
using adaptive state estimation,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-13, no. 3, pp. 310–317, 2007.

[11] S. Maresca, M. Greco, F. Gini, and L. Verrazzani, ‘‘Radar tracking of a
maneuvering ground vehicle using an airborne sensor,’’ in Proc. Int. Radar
Conf. Surveill. Safer World (RADAR), Oct. 2010, pp. 1–6.

[12] G.-G.-O. Ricardo, J. L.-S. Roberto, and S. Maldonado-Bascón, and
A. Fernández-Caballero, ‘‘Vehicle tracking by simultaneous detection and
viewpoint estimation,’’ in Proc. Natural Artif. Comput. Eng. Med. Appl.,
2013, pp. 306–316.

[13] W. Jeon, A. Zemouche, and R. Rajamani, ‘‘Tracking of vehicle motion on
highways and urban roads using a nonlinear observer,’’ IEEE/ASME Trans.
Mechatronics, vol. 24, no. 2, pp. 644–655, Jan. 2019.

[14] Y. Fang, C. Wang, W. Yao, X. Zhao, and H. Zha, ‘‘On-road vehicle
tracking using part-based particle filter,’’ IEEE Trans. Intell. Transp. Syst.,
doi: 10.1109/TITS.2018.2888500.

[15] W. L. Yeow, C. K. Tham, and W. C. Wong, ‘‘Energy efficient multiple
target tracking in wireless sensor networks,’’ IEEE Trans. Veh. Technol.,
vol. 56, no. 2, pp. 918–928, Mar. 2007.

[16] Y. Yu, ‘‘Distributed multimodel Bernoulli filters for maneuvering target
tracking,’’ IEEE Sensors J., vol. 18, no. 14, pp. 5885–5896, Jul. 2018.

[17] L. Feng, S. Hao, M. Chen, and Q. Kong, ‘‘Non-fragile finite-time l2-
l∞ state estimation for discrete-time Markov jump neural networks
with unreliable communication links,’’ Appl. Math. Comput., vol. 271,
pp. 467–481, Nov. 2015.

[18] Z.-G. Wu, P. Shi, Z. Shu, H. Su, and R. Lu, ‘‘Passivity-based asynchronous
control for Markov jump systems,’’ IEEE Trans. Autom. Control, vol. 62,
no. 4, pp. 2020–2025, Apr. 2017.

[19] H. Shen, M. Chen, Z. Wu, J. Cao, and J. H. Park, ‘‘Reliable event-triggered
asynchronous extended passive control for semi-Markov jump fuzzy sys-
tems and its application,’’ IEEE Trans. Fuzzy Syst., to be published,
doi: 10.1109/TFUZZ.2019.2921264.

VOLUME 7, 2019 184873

http://dx.doi.org/10.1109/TITS.2018.2888500
http://dx.doi.org/10.1109/TFUZZ.2019.2921264


C. Liu et al.: Trajectory Tracking With Constrained Sensors and Unreliable Communication Networks

[20] S.-Q. Yang and L.-Y. Lin, ‘‘Dynamic output feedback finite-horizon con-
trol for Markov jump systems with actuator saturations,’’ IEEE Access,
vol. 7, pp. 132587–132593, 2019.

[21] Z.-X. Liu and B.-J. Huang, ‘‘The labeled multi-Bernoulli filter for jump
Markov systems under glint noise,’’ IEEE Access, vol. 7, pp. 92322–92328,
2019.

[22] V. M. Revathi, P. Balasubramaniam, H. P. Ju, and T. H. Lee, ‘‘H∞ filtering
for sample data systems with stochastic sampling and Markovian jumping
parameters,’’ Nonlinear Dyn., vol. 78, no. 2, pp. 813–830, 2014.

[23] H. Wang, D. Zhang, and R. Lu, ‘‘Event-triggered H∞ filter design for
Markovian jump systems with quantization,’’ Nonlinear Anal., Hybrid
Syst., vol. 28, pp. 23–41, May 2018.

[24] C. Zhu, B. Yang, X. Zhu, and Z. Wang, ‘‘Stabilization of linear systems
over networks with limited communication capacity,’’ IEEE Access, vol. 7,
pp. 123625–123637, 2019.

[25] Y. Xu, J.-G. Dong, R. Lu, and L. Xie, ‘‘Stability of continuous-time positive
switched linear systems: A weak common copositive Lyapunov functions
approach,’’ Automatica, vol. 97, pp. 278–285, Nov. 2018.

[26] H. Rao, Y. Xu, H. Peng, R. Lu, and C.-Y. Su, ‘‘Quasi-synchronization
of time delay Markovian jump neural networks with impulsive-driven
transmission and fading channels,’’ IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2019.2941582.

[27] H. Rao, F. Liu, Y. Xu, H. Peng, and R. Lu, ‘‘Observer-based impulsive
synchronization for neural networks with uncertain exchanging infor-
mation,’’ IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.
2019.2946151.

[28] H. Ye and L. Wen, ‘‘Robust fault detection filter design of net-
worked control systems,’’ IEEE Access, vol. 7, pp. 141144–141152,
2019.

[29] H. Shen, M. Dai, H. Yan, and J. H. Park, ‘‘Quantized output feedback
control for stochastic semi-Markov jump systems with unreliable links,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 12, pp. 1998–2002,
Dec. 2018.

[30] N. Xiao, L. Xie, and M. Fu, ‘‘Kalman filtering over unreliable commu-
nication networks with bounded Markovian packet dropouts,’’ Nonlinear
Control, vol. 19, no. 16, pp. 1770–1786, 2010.

[31] J. S. Harsini and F. Lahouti, ‘‘Adaptive transmission policy design
for delay-sensitive and bursty packet traffic over wireless fading chan-
nels,’’ IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 776–786,
Feb. 2009.

[32] R. N. Jazar, Vehicle Dynamics: Theory Application. New York, NY, USA:
Springer, 2008.

[33] F. Yang and Y. Li, ‘‘Set-membership filtering for systems with sensor
saturation,’’ Automatica, vol. 45, no. 8, pp. 1896–1902, 2009.

[34] Y. Luo, Z. Wang, G. Wei, and F. E. Alsaadi, ‘‘Nonfragile l2-l∞ fault
estimation for Markovian jump 2 D systems with specified power
bounds,’’ IEEETrans. Syst., Man, Cybern. Syst., doi: 10.1109/TSMC.2018.
2794414.

[35] S. Gai and Z. Yu, ‘‘Stochastic stability for impulsive discrete-time Marko-
vian jump systems with time-varying delay and partly unknown transition
probabilities,’’ in Proc. IEEE Int. Conf. Cyber Technol. Autom., May 2013,
pp. 281–286.

[36] Y. Xu, C. Liu, J.-Y. Li, C.-Y. Su, and T. Huang, ‘‘Finite-horizon H∞ state
estimation for time-varying neural networks with periodic inner coupling
and measurements scheduling,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
doi: 10.1109/TSMC.2018.2791575.

[37] L. Xie, ‘‘Output feedback H∞ control of systems with parameter uncer-
tainty,’’ Int. J. Control, vol. 63, no. 4, pp. 741–750, 1996.

CHANG LIU was born in Xiangcheng, China,
in 1992. He received the B.S. degree from Henan
University, Kaifeng, China, in 2016, and the
M.S. degree in control science and engineering
with the Guangdong University of Technology,
Guangzhou, China, in 2019, where he is currently
pursuing the M.S. degree in control science and
engineering.

His current research interests include net-
worked control systems and finite time control and
estimation.

FEN LIU was born in Hunan, China. She received
the B.S. degree from the Changsha University
of Science and Technology, Changsha, China,
in 2017. She is currently pursuing the M.S. degree
in control engineering with the Guangdong Uni-
versity of Technology, Guangzhou, China.

Her research interests include synchronization
of neural networks and impulse control.

HONGXIA RAO was born in Jiangsu, China,
in 1986. She received the B.S. degree from
Nanchang Hangkong University, Nanchang,
China, in 2007, the M.S. degree from the Nanjing
University of Science and Technology, Nanjing,
China, in 2009, and the Ph.D. degree in control sci-
ence and engineering from the GuangdongUniver-
sity of Technology, Guangzhou, China, in 2019.

She is currently a Lecturer with the School of
Automation, Guangdong University of Technol-

ogy. Her research interests include networked control systems, Markov jump
systems, and neural networks.

YONG XU was born in Zhejiang, China, in 1983.
He received the B.S. degree in information engi-
neering from Nanchang Hangkong University,
Nanchang, China, in 2007, the M.S. degree in
control science and engineering from Hangzhou
Dianzi University, Hangzhou, China, in 2010, and
the Ph.D. degree in control science and engineer-
ing from Zhejiang University, Hangzhou, in 2014.

He was a Visiting Internship Student with the
Department of Electronic and Computer Engineer-

ing, The Hong Kong University of Science and Technology, Hong Kong,
China, from June 2013 to November 2013, where he was a Research Fellow,
from February 2018 to August 2018. He was honored the Pearl River Young
Scholars Program of Guangdong Province, in 2017. He is currently an Asso-
ciate Professor with the School of Automation, Guangdong University of
Technology, Guangzhou, China. His research interests include PID control,
networked control systems, state estimation, and positive systems.

184874 VOLUME 7, 2019

http://dx.doi.org/10.1109/TCYB.2019.2941582
http://dx.doi.org/10.1109/TNNLS.2019.2946151
http://dx.doi.org/10.1109/TNNLS.2019.2946151
http://dx.doi.org/10.1109/TSMC.2018.2794414
http://dx.doi.org/10.1109/TSMC.2018.2794414
http://dx.doi.org/10.1109/TSMC.2018.2791575

	INTRODUCTION
	PROBLEM FORMULATION AND PRELIMINARIES
	VEHICLE MOVING DESCRIPTION
	LIMITED MONITORING SENSORS
	NON-FRAGILE ESTIMATOR AND EES

	MAIN RESULTS
	ESTIMATOR DESIGN
	NUMERICAL EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	CHANG LIU
	FEN LIU
	HONGXIA RAO
	YONG XU


