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ABSTRACT Atmospheric turbulence (AT) tends to impair the performance of free space optical (FSO)
communication systems. Detecting AT strength is significant for turbulence effect mitigation, which can
appropriately guide the selection of turbulence mitigation techniques and modulation formats. Orbital
angular momentum (OAM) beam aberrations received through the turbulence channel are closely related
to the turbulence strength. In this paper, we experimentally detect the AT strength using an OAM beam
based on a convolutional neural network (CNN). We collect 8 kinds of superposed OAM beam intensity
images after 5 levels of turbulence in the laboratory as datasets and test the AT detector performance with
respect to the number of pixels, mode number of OAM beams, different AT sets and training set size. The
results show that the AT detection accuracy is near 100% for 3 kinds of ATs, and the accuracy remains at
approximately 85% for 5 kinds of ATs. In addition, using data augmentation methods or a hybrid dataset can
improve the AT detection accuracy. The CNN-based method in this paper can help detect the AT strength
in atmospheric channels and provide references for choosing appropriate techniques to mitigate turbulence
effects and then enhance the OAM-FSO system performance.

INDEX TERMS Free space optical communication, orbital angular momentum, atmospheric turbulence

detection, pattern recognition.

I. INTRODUCTION
In recent years, the study of optical vortex beams carrying
orbital angular momentum (OAM) has been a popular topic in
the free space optical (FSO) communication field [1]. OAM
beams have a particular helical phase term of exp(il¢), where
the OAM mode [/, an infinite integer value, is the number
of 2 phase shifts across the beam and ¢ is the azimuthal
angle [2]. Beams with distinct OAM states are orthogo-
nal to each other, which considerably improves the capac-
ity of communication systems by OAM encoding or OAM
multiplexing [3].

When OAM beams propagate in atmospheric
turbulence (AT) channels, the random fluctuations of the
refractive index cause intensity scintillation, angle of arrival
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fluctuation, beam wander, and wave-front distortion, which
seriously damage the orthogonality of the beams and degrade
the OAM-FSO communication system performance [4]-[7].
Researchers have proposed many turbulence effect miti-
gation techniques under OAM-based FSO communication
links [8]—-[12]. If the AT channel condition is known in
advance, it is possible to guide the selection of optimal
approaches to mitigate the effects of AT. In particular,
multiple-input multiple-output (MIMO) equalization or spa-
tial diversity combined with MIMO equalization is used
to combat the effects of different ATs [1], [8], [9]. More-
over, for the OAM-FSO communication, advance knowledge
of the AT strength can help select an appropriate modu-
lation format, specify OAM modes interval and estimate
the transmission quality [13]. Thus, it is vitally impor-
tant to study AT strength detection to enhance system
performance.
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There have been many methods developed to detect
AT. In airborne weather radars, the Doppler spectrum
width (DSW) of a weather target echo has been used to
determine AT. The pulse pair processing method calculates
the DSW by estimating the correlation function of the adja-
cent pulse echoes; the fast Fourier transform (FFT) method
calculates the DSW according to the second-order moment
of the echo power spectrum [14]. In wireless optical commu-
nication, the refractive index structure constant C,% is used to
characterize the AT strength [7], and the traditional methods
for calculating C? are to measure the scintillation index,
variance of the angle of arrival fluctuations and beam wander
variance [15]-[17]. These methods above need empirical for-
mulas that are established in advance. The measuring results
would be limited by the selection and correctness of the
mathematical models.

When OAM beams propagate through the AT channel,
the AT information is contained in the intensity images, where
different ATs cause diverse wave-front distortion and further
deform their appearances [13]. Therefore, it is possible to
estimate the turbulence strength according to the distorted
intensity images. Liu ef al. [18] proposed and investigated
a convolutional neural network (CNN)-based method to
retrieve the turbulent phase from the intensity distributions of
Gaussian probe beams for correcting distorted vortex beams.
In addition, it is possible to deduce the AT strength from
the turbulent phase distribution [19], [20]. Furthermore, due
to CNNs’ strong ability to find intrinsic features with little
manual operation [21], pattern recognition based on a CNN
can directly detect the AT strength by employing superposed
OAM beams [13], which is not bound by empirical formulas
or parameterized models. Meanwhile, because OAM beams
with different mode numbers have a unique spatial distri-
bution and sensitivity to turbulence, utilizing multiple OAM
beams for AT detection increases the diversity of datasets in
CNN and has the potential to improve the detection accuracy.

In this paper, we experimentally study AT detection using a
CNN for OAM-FSO communication. In Section 2, we intro-
duce the structure of the OAM-based AT detection system,
including AT emulation and the CNN architecture. Addi-
tionally, we describe our laboratory experimental setup and
sample collection. In Section 3, we provide some results
about the influence of the number of pixels, mode number
of OAM beams, different AT sets and training set size on AT
detection accuracy. Finally, in Section 4, we summarize the
results of our analysis. The experimental results show that
the approach can effectively detect the turbulence strength in
atmospheric channels.

Il. CONCEPT AND PRINCIPLE

A. OAM-BASED AT DETECTION SYSTEM VIA CNN

A conceptual diagram of the AT detection system based
on a CNN is shown in Fig. 1. At the transmitter, the spa-
tial light modulator (SLM), loaded with a series of phase
holograms, accordingly modulates the Gaussian beam from
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CNN. SLM: spatial light modulator, CCD: charge-coupled device.

the laser into OAM beams. Then, OAM beams propagate
through the turbulence channel. At the receiver, a charge-
coupled device (CCD) camera is used to capture the OAM
beam intensity images, which are input to the CNN for AT
detection.

1) EMULATION OF ATMOSPHERIC TURBULENCE

In this paper, assuming that in a clear weather condition
with little attenuation, we emulate the turbulence channel
by adding a random phase screen to the beam propagation
path. The modified von Karman AT model is adopted, and
the spatial power spectrum of the turbulent refractive index
fluctuations ¢, (k) can be expressed as [22]-[25]

¢n (k) = 0.033C3 . exp(_Kz/Km) . (K2 i K(%)_“/6 )

where « denotes the spatial wavenumber and «,,, = 5.92 / lo,
Ko = 2 / Lo, Ly and [ are the outer scale and inner scale of
turbulence, respectively, C,f is the refractive index structure
constant, representing the turbulence strength.

According to the Markov approximation, the phase spec-
trum can be written as [22]

by (k) = 27k 2, (i) 2)

where k is the wavenumber and z is the propagation distance.
The AT phase screen P can be generated by

p=g"! {\/qu,,c] 3)

where .Z ~! is the inverse 2D Fourier transform and C is a
collection of complex Gaussian random variables. To match
up with the theory, we add subharmonics to Eq. (3) to com-
pensate low spatial frequencies [23].

In this paper, the refractive index structure constant C,%
is set in the range of 1 x 1071® — 5 x 107 m=2/3. The
turbulence outer scale is 50 m, and the inner scale is 0.02 cm.
The simulated turbulent propagation distance is 1000 m, and
the number of grid points per side is 512.

2) CONVOLUTIONAL NEURAL NETWORK

The LeNet-5 network, a typical and efficient CNN for hand-
written character recognition with a small computational
complexity and low memory consumption [26], is selected for
tentative AT detection experimental research. Here, the CNN
model is used to recognize the AT strength contained in OAM
intensity images, and the LeNet-5 network architecture is
shown in Fig. 2.
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FIGURE 2. Architecture of the LeNet-5 network used as the AT detector.
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FIGURE 3. Components of the experimental system. M: mirror, OA:
optical attenuator, BE: beam expander, AS: aperture stop, Pol: polarizer,
HWP: half-wave plate, L: lens.

It should be mentioned that the overfitting problem is
caused by an excessive number of network layers or a small
amount of training data [27], which can be avoided by using
a CNN with a moderate number of layers. Thus, we adopt
8 layers in this paper. Layer 1 in the CNN model is an input
layer, and layers 2 and 4 are convolutional layers with 6 and
16 feature maps, respectively, adopting a 5x 5 convolutional
kernel to extract features. Layers 3 and 5 are subsampling
layers with a nonoverlapping 2x2 region for max pooling
to reduce the parameters in the network but retain the main
features. Layers 6 and 7 are fully connected layers with the
tanh function as the activation function, and layer 8 is an
output layer to obtain the AT information in OAM intensity
images.

The CNN parameter settings are set as follows: the input
image is 48 x 48 pixels, the learning rate is 0.1, the size of
each mini-batch is 50, and the number of images is 200 per
training class and 100 per testing class.

B. EXPERIMENTAL SETUP

A diagram of the experimental setup is presented in Fig. 3.
The fundamental Gaussian beam, emitted from a laser
with a wavelength of 532 nm, passes through an optical
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TABLE 1. Turbulence types used in the following sections.

AT Types AT Strength C:/ m?
AT, 1x107'
AT, 1x107™"
AT; 5%107"°
AT, Ix107"
ATs 5x107

attenuator (OA) and a beam expander (BE), which are used
to adjust the beam power and diameter, respectively. The
aperture stop (AS) next to the BE is set to filter stray light.
As the two reflective SLM1 and SLM2 (Meadowlark Optics,
P512-0532-DVI, phase only) are polarization sensitive [28],
a polarizer (Pol) is used to convert the Gaussian beam into a
linearly polarized beam aligned with the polarization orien-
tation of SLM1. The SLM1, uploaded with different specific
phase holograms, is utilized to convert the Gaussian beam to
different superposed OAM beams. Similar to Pol, a half-wave
plate (HWP) is placed to adjust the OAM beam polarization
after SLM1 in alignment with the SLM2 polarization orien-
tation. A pair of lenses is set up for collimation and beam
expansion, and the AS next to the lens (L2) is used to filter the
extra diffraction orders of OAM beams. The SLM2, uploaded
with different turbulence phase holograms, is used to simulate
the AT effect on OAM beams. At the receiver, the lens (LL3) is
placed to allow the far-field intensity to be observed, so as to
simulate any propagation distance. Then, the beam is incident
to a CCD camera.

C. SAMPLE COLLECTION
The distorted OAM beam images captured by the CCD are
displayed in Fig. 4. To simplify the expression of turbulence,
we list different AT types and the AT strengths in Table 1.
Fig. 4(a) — (e) shows the 8 kinds of superposed OAM
beams propagating through the 5 kinds of turbulence {AT},
AT,, AT3, ATy, ATs}, with C? in the range of 1 x 107'6 —
5 x 107 m~23. For each column, with the increase in the
level of turbulence, the OAM beam intensity images become
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FIGURE 4. Intensity images of different superposed OAM modes
I ={+1,+2,..., +8} after different turbulence {AT,, AT,, ATz, AT,, ATs}.

TABLE 2. Turbulence sets used in the section.

Sets AT Types
{AT,, AT, AT,}

3ATs

5ATs {AT,, AT,, AT,, AT,, AT}

increasingly distorted. Thus, according to the turbulence
strength, we can classify the images into 5 categories by
row for each OAM beam. Note that we simulate 300 tur-
bulence phase screens for each kind of turbulence strength
and randomly load them on SLM2, resulting in 300 different
superposed OAM beam intensity images at the receiver for
each value of OAM modes [ = {£1, 2, --- , £8}.

IIl. RESULTS AND DISCUSSION

In this section, we combine the five typical turbulence men-
tioned in Table 1 into two turbulence sets, denoted as 3AT's
and 5ATs. As shown in Table 2, the 3ATs set includes AT,
AT3, and ATs, representing weak, medium and strong tur-
bulence, respectively [13], [29]. Then, we remain the 3ATs
unchanged, and decrease the turbulence interval by adding
two other turbulence to form the 5ATs set, including ATj,
ATz, AT3, AT4, and AT5.

First, we take the OAM mode of / = £6 as an example to
make a comparison with the AT detection accuracy employ-
ing the Gaussian beam (I = 0) in the case of 5ATs. In Fig. 5,
the testing accuracy versus the number of iterations is shown.
When the testing accuracy achieves saturation, the value of
| = =6 is nearly 90%, while the value of / = 0 is about
80%. We can see that the AT detection testing accuracy with
| = %6 is higher than that with the Gaussian beam.

In Fig. 6, the training accuracy versus the number of iter-
ations is shown. Here, we display the training process for
detecting SATs employing OAM modes with/ = 1,/ = £5
and [ = +£8. It can be clearly seen that upon increasing
the number of iterations, all the curves escalate and then
reach saturation. In addition, the overall training accuracy
of the larger mode curves is relatively higher than that of
smaller mode curves with the same number of iterations.
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FIGURE 5. The AT detection testing accuracy versus the number of
iterations in the case of 5ATs.
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FIGURE 6. Training accuracy versus the number of iterations in the case
of 5ATs.

Because the OAM beam with a large mode is more affected by
the turbulence [30], the turbulence features contained in the
large mode are more obviously distinguishable by the CNN
model.

Then, we take the OAM mode of / = +6 as an example to
study the effect of the number of pixels in the input images on
the AT detection performance in the case of SATs. We show
the testing accuracy histogram versus the number of pixels
in Fig. 7. It can be clearly seen that the more pixels we set,
the higher the accuracy is because the feature details in the
input images increase with an increasing number of input
pixels [13]. Moreover, we find that when we increase the pixel
value to 96 x 96, the detection accuracy achieves saturation.
However, increasing the input image resolution also increases
the CNN processing time. We calculate the time consumption
for 48 x 48 pixels as approximately 2.7 times that for 32 x 32
pixels, while 64 x 64 pixels consume 4.7 times that of 32 x 32
pixels and 96 x 96 pixels consume 10.5 times that of 32 x 32
pixels. In this paper, considering a trade-off between the
detection accuracy and time consumption, we set the image
resolution to 48 x 48. In the case of 48 x 48 pixels, the CNN

VOLUME 7, 2019



X.Yin et al.: Experimental Study of AT Detection Using an OAM Beam via a CNN

IEEE Access

Testing Accuracy (%)

55 b

50

32x32 48x48 64x64 9696
Pixel Numbers

FIGURE 7. The AT detection testing accuracy versus the number of input
image pixels, set as 32 x 32, 48 x 48, 64 x 64 and 96 x 96.
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FIGURE 8. The AT detection testing accuracy for OAM modes of
I ={+1,+2,...,+8} in the cases of 3ATs and 5ATs.

model trained to detect the AT intensity takes approximately
3.4 ms per picture on a personal computer with an Intel Xeon
CPU E5-1620 and 32 GB RAM.

Then, we explore the effects of different superposed OAM
modes and the interval between ATs on the AT detection
testing accuracy. As shown in Fig. 8, the detection accuracy
with each OAM mode is almost 100% in the case of 3ATs.
Additionally, the accuracy decreases to approximately 85%
in the case of SATs because when the AT interval decreases,
the distortion effect on the OAM modes caused by the
AT becomes similar, which increases the difficulty of AT
detection. Moreover, the experimental results reveal that the
change trend of the AT detection accuracy is not apparent
when employing the superposed OAM beam with a mode
number from %1 to £8.

To determine the detection testing accuracy and classifi-
cation error of each AT in one turbulence set, we take the
5ATs as an example and illustrate the AT detection accuracy
histogram versus AT types in Fig. 9. It can be found from
Fig. 9 that the detecting accuracies of the weakest AT; and
strongest ATs are approximately 99% and 95%, respectively.
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FIGURE 9. The detection testing accuracy and classification error of each
AT in the 5ATs set.
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FIGURE 10. Accuracy versus the number of samples in the case of 3ATs
with [ = {+2, +4, +6, +8}.

Additionally, we find it more likely for adjacent ATs in the
intermediate range to misclassify each other.

Next, we study the effect of training set size on AT
detection testing accuracy. We reduce the training set size
of the 3ATs set from the original 600 samples to 30 sam-
ples, but the original test set size of 300 samples remains
unchanged. The accuracy curves versus the number of sam-
ples are obtained, as shown in Fig. 10. We can see that upon
reducing the set size by half, the turbulence detection accura-
cies of the 4 OAM modes of [ = {£2, 4, +6, +8} remain
above 98%. Then, reducing the size to 150 samples, the
accuracies still remain above 90%. Because the training time
is related to the training set size, network architecture and
computer hardware, an appropriate reduction in the training
set size with the same computer hardware and CNN model
structure can obtain a lower time consumption.

According to Fig. 10, when reducing the number of sam-
ples from 150 to 30, the accuracies decrease appreciably.
In the case of the small training set size in Fig. 10, we use
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FIGURE 11. Accuracy versus OAM beams of / = {+2, +4, +6, +8} with or
without data augmentation.

TABLE 3. The effect of the hybrid dataset o at detection accuracy.

OAM Modes
Set
[=+2 I=+4 I=£6 1=£8
Single dataset 84.80% 87.00% 87.20% 88.40%
Hybrid dataset 85.60% 88.20% 88.60% 90.80%

data augmentation methods, that is, generate more sample
data from the existing image samples using rotations and
flips, to make the CNN model more robust [31]. We rotate the
30 sample images towards the left or right and flip them hor-
izontally or vertically, creating a new dataset of 150 samples.
As displayed in Fig. 11, a better result is produced in which
the AT detection accuracy with the 4 OAM modes is greatly
improved, from approximately 68% to more than 80%, when
we employ data augmentation methods.

Finally, we study the effect of the hybrid dataset on detect-
ing AT in the case of 5ATs. All the datasets, including differ-
ent OAM modes of [ = £2, +4, £6, £8 (200 x 5 images
per OAM mode), are combined to form a new training set
(a total of 4 x 1000 images), and the single test sets remain
unchanged. The results are shown in Table 3, which shows
that compared to the single dataset, the accuracy of the model
trained with the hybrid dataset is higher. This result is because
the hybrid dataset utilizing multiple OAM beams increases
the diversity of the intensity images.

IV. CONCLUSION

In this paper, we experimentally demonstrate the CNN-based
method employing OAM beams for detecting AT. The results
indicate that the higher the number of pixels, the higher the
accuracy. The AT detection accuracy in the case of 3ATs is
nearly 100% and is approximately 85% in the case of SATs.
The influence of different OAM modes in our case on AT
detection is small, and the large mode has a relatively faster
convergence speed than the small mode. We also find that
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appropriately reducing the training set size can retain a high
detection accuracy, and for a small training set size, data
augmentation methods can increase the AT detection accu-
racy. In addition, for the model trained with a hybrid dataset,
the AT detection accuracy is higher than for that trained with
a single dataset. In future work, we plan to investigate the
effects of the OAM mode numbers, the CNN structure and
the overfitting problem on the detection performance.
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