
SPECIAL SECTION ON DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE FOR PROGNOSTICS
AND HEALTH MANAGEMENT (PHM) USING DISPARATE DATA STREAMS

Received November 14, 2019, accepted December 8, 2019, date of publication December 18, 2019,
date of current version December 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960537

Deep Learning for Track Quality Evaluation of
High-Speed Railway Based on Vehicle-Body
Vibration Prediction
SHUAI MA 1, LIANG GAO 1, XIUBO LIU 2, AND JING LIN 3, (Member, IEEE)
1School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
3Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden

Corresponding author: Shuai Ma (ms5274@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant U1734206 and Grant 51827813, and in
part by the Fundamental Research Funds for the Central Universities under Grant 2018JBM042.

ABSTRACT Track quality evaluation is fundamental for track maintenance. Around the world, track
geometry standards are established to evaluate track quality. However, these standards may not be capable
of detecting some abnormal track geometry conditions that can cause considerable vehicle-body vibration.
And people gradually realized that track quality evaluation should be based not only on track geometry
but also on vehicle performance. Vehicle-body vibration prediction is beneficial for locating potential track
geometry defects, and the predicted accelerations can be used as an auxiliary index for assessing track
quality. For this purpose, this paper gives a method to predict vehicle-body vibration based on deep learning,
which represents one of the newest areas in artificial intelligence. By integrating convolutional neural
network (CNN) and long short-term memory (LSTM), a CNN-LSTM model is proposed to make accurate
and point-wise prediction. To achieve the optimal performance and explore the internal mechanism of the
model, structural configurations and inner states are extensively studied. CNN-LSTM can take advantage
of the powerful feature extraction capacity of CNN and LSTM, and outperforms the fully-connected neural
network and the plain LSTM on the experimental data of a high-speed railway. In detail, CNN-LSTM has
superior performance in predicting vertical vehicle-body vibration below 10 Hz and lateral vehicle-body
vibration below 1 Hz. Moreover, analysis shows that the predicted vehicle-body acceleration can act as a
performance-based evaluation index of track quality.

INDEX TERMS Track quality evaluation, track geometry, vehicle-body vibration, convolutional neural
network (CNN), long short-term memory (LSTM), CNN-LSTM.

I. INTRODUCTION
With the development of high-speed railway (HSR), people
are paying more attention to the safety and ride comfort.
As railway track provides the running surface for the vehi-
cle, track geometry is the main cause of vehicle responses,
among which vehicle-body vibration is the evaluation index
for ride comfort. Nowadays, railway administrations utilize
comprehensive inspection train (CIT) to routinely inspect
track geometry, such as longitudinal level, alignment, gage,
cross-level, and so on. Statistical quantities of the inspection
data are then calculated to assess track quality and guide
maintenance according to predefined limits in current track
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geometry standards [1]–[3]. However, these standards may be
incapable of identifying some potentially adverse track geom-
etry conditions that can cause undesirable vehicle response.
Because vehicle response is simultaneously affected by sev-
eral nonlinear excitations and various frequency components
of track geometry [4], [5], simple track geometric statistics
are not always an accurate indicator for vehicle performance.
This situation is a hindrance to fulfilling performance-based
evaluation of HSR track. Since the last decade, there has been
a growing trend in track quality evaluation based not only on
track geometry but also on vehicle response. And this neces-
sitates a prediction model that can effectively relate track
geometry to vehicle-body vibration, as ride comfort is one
of the most concerned issues for HSR. There are two benefits
for this task. The first is identifying latent locations where
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significant vehicle-body acceleration (VBA) frequently
occurs. The second is utilizing the predicted accelerations
as an additional index for performance-based track quality
evaluation. Furthermore, the model is valuable in understand-
ing the complex correlation between track geometry and
vehicle-body vibration, and in further studying the contribu-
tions of different track geometry parameters to vehicle-body
vibration.

In the literature, generally two kinds of methodologies,
based on mechanism model and data model respectively, are
proposed to predict vehicle response by using track geom-
etry. Mechanism models simulate the vehicle-track system
with motion equations and typically use numerical iteration
methods to calculate vehicle response [6]. With the support
of modern simulation packages, such as VAMPIRE and SIM-
PACK [7], it is more convenient to simulate various vehicle
types and speed conditions. However, the performance of
mechanism models depends largely on the authenticity and
reliability of system parameters. Besides, these models tend
to be time consuming and therefore mostly used for off-line
analysis. Data models can be further categorized into signal
processing-based models and machine learning-based mod-
els. The former simulates the vehicle-track dynamic charac-
teristics by using transfer functions, which can be obtained
either in the frequency domain by using FFT or in the time
domain by constructing a parametric filter function based
on system identification [8]. Correspondingly, the predic-
tion process can be carried out either by using IFFT or
by the filter function. Signal processing-based models share
the merits of calculation efficiency and conceptual clarity,
but they are inherently linear models and only applicable
to constant speed conditions. The latter takes advantage
of intelligent models, such as artificial neural network and
support vector machine, to recognize complex patterns and
nonlinear relationships between track geometry and vehicle
response [4], [9]. Among them, fully-connected neural net-
work (FNN) has been acting as a core role in the well-known
performance-based track geometry (PBTG) technology [4]
for more than ten years. Nonetheless, PBTG is based on
statistical indices of track geometry, such as the maximum
and 95th percentile, which are typically generated from a
railway section, thus unable to make point-wise prediction
yet. Besides, machine learning-based models tend to take
in well-crafted data features, which may require time con-
suming calculations or profound expertise. To make the best
of the above two methodologies, some researchers also pro-
pose to combine mechanism model with system identifica-
tion [10]–[12]. But these endeavors are focused on predicting
wheel-rail forces only and have not been extended to vehicle-
body accelerations yet.

The last decade has witnessed revolutionary advances in
deep learning, which represents one of the newest trends
in machine learning and artificial intelligence. Every now
and then, new deep learning models are being born, outper-
forming state-of-the-art techniques in the fields of computer
vision and natural language processing [13]. Convolutional

neural network (CNN) and long short-term memory (LSTM)
are classic deep learning models particularly designed for
image and sequential data respectively, and have already been
adopted in safety surveillance [14], disease prediction [15],
human kinematics interpretation [16], health condition moni-
toring [17], and vehicle fault diagnosis [18], [19]. These mod-
els tend to demonstrate better performance than traditional
machine learning models, for example, some deep convolu-
tional nets have even surpassed human-level performance in
visual recognition tasks [20]. This drops a hint for the pos-
sibility of relating track geometry to vehicle-body vibration
with the support of deep learning models. The rationales lie
in that vehicle-body vibration can be collected as spatially
sequential data and has correlations with track geometry
waveforms. Fortunately, LSTM and CNN are specialized in
learning sequential information and shape characterizations
respectively. Nonetheless, few research has been found that
focused on vehicle-body vibration predictionwith deep learn-
ing models.

Considering the above motivations, we extensively studied
CNN and LSTM for predicting vehicle-body vibration by
using track geometry. The main contributions of this paper
include:

1. An effective model combining CNN and LSTM is
proposed to predict VBA. In order to obtain the optimal
performance, some structural hyper-parameters are carefully
studied. By fine-tuning, this model can also be utilized in
predicting other vehicle responses, such as wheel-rail forces
and so on.

2. The proposed model outperforms FNN of PBTG and
plain LSTM in terms of accuracy.Moreover, themodel allows
point-wise prediction, thus facilitates precise track mainte-
nance.

3. By utilizing the predicted VBA as an evaluation index,
the correlation between evaluation quantities and vehicle
response is enhanced, thus the predicted VBA can be taken
as a performance-based index of track quality.

The rest of the paper is organized as follows: In Section II,
typical deep learning models and the proposed model are
introduced. In Section III, the specifics of the data source,
the process of configuringmodel hyper-parameters, as well as
model assessment are given. Besides, visualization of model
inner states and comparison between track geometry-based
and VBA-based evaluation indexes are illustrated. Finally,
the conclusions are given in Section IV.

II. THE PROPOSED MODEL
A. CNN FOR SHAPE FEATURE LEARNING
CNN is specifically designed to deal with the variability
of two-dimensional (2D) shapes, and typically has a stan-
dard structure − stacked convolutional layers and pooling
layers followed by several fully-connected layers, as shown
in Figure 1. Convolutional layers act as the feature extractor,
which transforms the inputs into multi-channel activations
containing distinctive features. There are several kernels in
each convolutional layer, and each kernel contains a set of
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FIGURE 1. Typical architecture of CNN for 2D data.

FIGURE 2. Classical architecture of a LSTM cell.

learnable weights. When applied to sequential data, CNN
conducts 1D convolution with one-dimensional kernels [21].
Following convolutional layers, pooling layers reduce the
resolution of activations for the purpose of detecting higher-
scale features. Finally, fully-connected layers are used as
classifiers, which synthesize a complex decision surface to
categorize high-dimensional features.

With the property of shift and scale invariance [22],
CNN is able to extract geometric shape features. The fea-
tures are contained in local track geometry waveforms and
have correlations with vehicle-body vibration. For HSR
vehicles, vehicle-body vibration tends to be sensitive to
multi-wavelength components of track geometry, thus neces-
sitating stacking convolutional layers for a balanced extrac-
tion of multi-scale shape features. For the optimal depth of
stacking layers, it can be determined by using the trial method
and will be discussed in Section III.

B. LSTM FOR SEQUENTIAL FEATURE LEARNING
Compared with feed-forward neural networks (like FNN in
PBTG), recurrent neural network (RNN) is strengthened by
a time step edge that introduces a notion of time. In order
to jump over the optimization hurdles that plague RNN,
long short-term memory (LSTM) architecture was formu-
lated [23]. The central idea behind the LSTM architecture is
a memory cell maintaining its state over time and nonlinear
gating units which regulate the information flow into and out
of the cell, as shown in Figure 2.

The information flow inside a LSTM cell can be described
as follows:

z(t) = Tanh(Wzhh(t−1) +Wzxx(t) + bz) (1)

i(t) = σ (Wihh(t−1) +Wixx(t) + bi) (2)

f (t) = σ (Wfhh(t−1) +Wfxx(t) + bf ) (3)

o(t) = σ (Wohh(t−1) +Woxx(t) + bo) (4)

FIGURE 3. Schematic diagram of CNN-LSTM model.

c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ z(t) (5)

h(t) = o(t) ⊗ Tanh(c(t)) (6)

where Wzh, Wzx , Wih, Wix , Wfh, Wfx , Woh, and Wox are
weights; bz, bi, bf , bo are biases; Tanh(·) and σ (·) represent
hyperbolic tangent function and sigmoid function. The input
modulation gate, input gate, forget gate, and output gate take
in input x(t) and hidden state h(t−1) of the previous time,
and output z(t), i(t), f (t), and o(t) respectively, which are then
synthesized into hidden state h(t) and cell state c(t). With the
assistance of these gates, the LSTM cell keeps absorbing new
key information and discarding obsolete irrelevant informa-
tion. Besides, as LSTM maintains its cell state through time,
the notorious problem of vanishing/exploding gradient [24] is
well settled. This structural design also makes LSTM effec-
tive at capturing long-term temporal dependencies.

Inspection data of track geometry and VBA are
multi-channel sequences with a fixed spatial interval between
every two data points. Each sequence is self-correlated in
nature and the VBA at each point can be considered as a
posterior probability given the preceding VBAs and track
geometry, thus necessitating the LSTMmodule for sequential
feature learning. As stacking multiple LSTM layers enables
the learning of higher level sequential features, the optimal
depth will be discussed in Section III.

C. CNN-LSTM MODEL
Combining CNN and LSTM, a CNN-LSTM model is pro-
posed for the point-wise prediction of VBA by using track
geometry. Suppose x and y as track geometry parameters and
vehicle-body accelerations, respectively. The architecture of
CNN-LSTM is plotted in Figure 3.

While CNN-LSTM makes point-wise prediction, it inputs
a section of track geometry, that is, for every point t , L
data points that locate ahead of it together with x(t), are
considered. This input mode enables CNN to extract shape
features in track geometry waveforms. Average longitudinal
level, average alignment, and cross-level constitute the three
input channels, which has been validated to have the best
performance among all possible combinations. The vertical
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and lateral vehicle-body acceleration (VVBA and LVBA)
constitute the two-channel output for point t .
CNN-LSTM adopts the structure of alternating convolu-

tional and pooling layers. In convolutional layers, 1D ker-
nels with size 5 and stride 1, as well as zero padding,
are employed to fulfill the convolution operation. The out-
put of convolutional layers is activated by Rectified Linear
Units (ReLUs) [25] to add nonlinearity. Then, the resolu-
tion of the activations is halved by a max-pooling layer.
Accordingly, the width of the activations will get small
as the depth gets large. To compensate for this width
reduction, the filter sizes are doubled after each convo-
lution operation, starting from four for the bottom con-
volutional layer. The activations of the topmost pooling
layer are put into stacked LSTM layers, in which the
size of hidden state H (t) (including h(t) and c(t)) is 128
and H (0) is initialized by zero. Each LSTM cell corresponds
to an individual pair of VBAs. Above LSTM layers, two
fully-connected layers are taken as a classifier, which finally
outputs the predicted VBA ŷ(t).

In the training process, dropout [26] randomly blocks the
connections between interlayer nodes. This trick is employed
in LSTM layers and fully-connected layers to avoid over-
fitting. Mean square error of predicted VBA ŷ and true
VBA y, adding the L2-norm regularization of model parame-
ters, is taken as the loss function:

Loss =
1
T

∑T

t=1
(y(t) − ŷ(t))2 + λ ‖W‖22 (7)

where W represents the collection of all the trainable param-
eters; λ denotes the regularization parameter. The initial val-
ues ofW are drawn from a normal distributionwith a standard
deviation of 0.1. Adam optimization method [27] is adopted
to train CNN-LSTM and the learning rate is set to 0.001.

III. CASE STUDY
A. DATA SOURCE
Track geometry is one of the most important excitations for
HSR vehicles. Track geometry inspection and track quality
evaluation are essential for railway administrations to control
safety and ensure ride comfort for passengers. Therefore,
track geometry, as well as VVBA and LVBA, is routinely
inspected by the CIT. Nowadays, more than ten CITs are at
service in China. Figure 4 shows a CIT at service and an
intercepted section of track inspection data.

The track inspection data of a HSR line in China is selected
as the data source. The data volume is about 6 million
(300 km), of which ninety percent are for training and the rest
are for testing. The inspection data are collected at 0.25 m
increments along the track with a relatively stable speed
of 300 km/h.

B. MODEL CONFIGURATIONS
Several hyper-parameters that determine the configurations
of CNN-LSTM, including the input length L, depth of CNN,
depth of LSTM, and the convolutional kernel size, have an

FIGURE 4. Track inspection: (a) comprehensive inspection train; (b) track
inspection data.

impact on model performance. Trial method is used for the
coarse range selection and careful determination of these
parameters. When studying one parameter, all the other
parameters are fixed in a proper range. Four assessment
indices formodel performance are employed, includingMean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Theil Inequality Coefficient (TIC), and Pearson Correlation
Coefficient (PCC). Their definitions are as follows:

MAE =
1
T

∑T

t=1

∥∥∥y(t) − ŷ(t)∥∥∥ (8)

RMSE =

√
1
T

∑T

t=1
(y(t) − ŷ(t))2 (9)

TIC =

√
1
T

∑T
t=1 (y(t) − ŷ(t))2√

1
T

∑T
t=1 (y(t))2 +

√
1
T

∑T
t=1 (ŷ(t))2

(10)

PCC =
Cov(y, ŷ)

√
Var(y)

√
Var(ŷ)

(11)

where y and ŷ represent the actual and the predicted VBA,
respectively; T is the volume of y; Cov(·) is covariance;
Var(·) is variance. For absolute indices, such as RMSE and
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FIGURE 5. Effect of input length on model performance. (a) Absolute
indices. (b) Relative indices.

FIGURE 6. Effect of convolutional kernel size on model performance.
(a) Absolute indices. (b) Relative indices.

MAE, smaller values correspond to better performance. For
relative indices, smaller TIC (ranges from 0 to 1) means
higher accuracy, and it is the opposite for PCC (ranges from
−1 to 1).

1) INPUT LENGTH
Several input lengths, including 100, 200, 300, 400, 500, and
600 points, are compared and the assessment indices are given
in Figure 5. Abbreviations are employed for simplicity, for
example, MAE_v and MAE_l represent the MAE of VVBA
and LVBA respectively. It can be seen that CNN-LSTM
reaches the best performance when L ranges from 400 to 500.
As the upper bound of track geometry inspection wavelength
is 120 m, CNN-LSTM employs an input length of 480 points.

2) CONVOLUTIONAL KERNEL SIZE
Different kernel sizes, i.e., 3, 5, 7, and 9, are compared
to analyze their influence on model performance, as shown
in Figure 6. As standard 1 × 1 convolution is equivalent
to cross channel pooling [28], kernel size 1 is neglected in
this study. It can be seen that CNN-LSTM performs the best
when the kernel size is 5 (1 × 5 to fit for 1D convolution).
While small kernels are welcomed by newly proposed CNN
structures [29]-[30], they may not the best choice for the
application of vehicle-body vibration prediction here.

3) STACKING LAYERS OF CNN
There is a trend for CNN that newly proposed structures
are getting extremely deep, for example, the deep residual
network has more than 1000 stacking layers [31]. Although
deep networks are proven to be generally accurate in image
recognition, they may be too complicated and thus unsuitable
for the application concerned. To determine the optimal depth
of CNN, several options ranging from 1 to 5 are compared,
as shown in Figure 7.

FIGURE 7. Effect of CNN stacking layers on model performance.
(a) Absolute indices. (b) Relative indices.

FIGURE 8. Coherence between track geometry and VBA. (a) VVBA.
(b) LVBA.

The optimal CNN depth for VVBA and LVBA is 2 and
4 respectively. To explain the difference, coherence between
track geometry and VBA is calculated, as given in Figure 8.
Coherence between two signals X and Y can be obtained
according to the following equations:

CXY (ω) =
|SXY (ω)|2

SXX (ω)SYY (ω)
(12)

where CXY is coherence; SXX and SXY are the power spectral
density of X and Y ; SXY is the cross-power spectral density
between X and Y ; ω is frequency.

According to Figure 8, VVBA is most correlated with lon-
gitudinal level in a wide frequency bandwidth, while LVBA
is most correlated with alignment and cross-level only in a
narrow bandwidth at relatively low frequencies. In the spa-
tial frequency domain, lower frequency correspond to larger
wavelength. Besides, it is known that activations in deeper
convolutional layers tend to contain more abstract informa-
tion, which is equivalent to long wavelength contents of track
geometry. Accordingly, the activations of the second CNN
layer tend to evenly contain multi-wavelength information,
while those of the fourth CNN layer tend to have more long-
wavelength information. This resonates with the coherence
between track geometry and VBA, and may justify the differ-
ence in optimal CNNdepths for predictingVVBAandLVBA.
Considering the accuracy and efficiency of CNN-LSTM, two
convolutional layers are employed.

4) STACKING LAYERS OF LSTM
As stacking multiple LSTM layers has the benefit of learning
higher-level sequential features, the optimal depth of the
LSTMmodule is investigated. By comparing different depths
ranging from 1 to 5, the assessment indices of CNN-LSTM
are obtained, as shown in Figure 9. It can be seen that
CNN-LSTM has the best performance when stacking two
LSTM layers.
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FIGURE 9. Effect of LSTM stacking layers on model performance.
(a) Absolute indices. (b) Relative indices.

TABLE 1. Specifics of the CNN-LSTM model.

TABLE 2. Assessment indices of FNN, LSTM, and CNN-LSTM model.

According to the above discussions, the specific configu-
rations of CNN-LSTM are given in Table 1.

C. MODEL ASSESSMENT
CNN-LSTM is constructed on the TensorFlow framework
with the support of two GeForce GTX 1080Ti GPUs. The
inference time for the testing data (30 km) is about 110 s,
which is faster than the running speed of a HSR vehicle (360 s
for 30 km).

Besides, another twomodels were also constructed to com-
pare with CNN-LSTM. One is the FNN employed by PBTG
and the other is the plain LSTM. Taking Formula (8) − (11)
as assessment indices, the results are listed in Table 2.

CNN-LSTM has superior performance compared with
other models. This is benefited from the combination
of CNN and LSTM as well as the careful design of

FIGURE 10. Performance comparison of different models. The line in
black represents the measured VBA and the lines in color are the
predicted VBA by different models. According to [3], VVBA signal is
processed by 20 Hz low-pass filtering and LVBA signal is processed by
10 Hz low-pass filtering. (a) Waveform of VVBA. (b) Waveform of LVBA.
(c) PSD of VVBA. (d) PSD of LVBA.

model configurations. To further illustrate model perfor-
mance, a section of VBA waveforms and the power spectral
density (PSD) of the whole testing data are given in Figure 10.

As can be seen from Figure 10, the waveforms predicted
by CNN-LSTM stay closest to the inspection data. Further-
more, CNN-LSTM outperforms LSTM in predicting VVBA
at frequencies below 10Hz, and in predicting LVBA at spatial
frequencies below 1 Hz. The performance gain is mainly
generated from the extraordinary feature extraction capacity
of CNN. Meanwhile, CNN-LSTM performs well in predict-
ing VVBA at frequencies of 2.6 Hz and 12.9 Hz, which are
activated by multi-span simply-supported girders (32 m in
length) and continuously-spread track slabs (6.5 m in length),
respectively. However, the VBA predicted by FNN deviates
greatly from the actual value, thus FNN cannot be used for
point-wise prediction.

D. VISUALIZATION OF MODEL INNER STATE
To delve into the black box characteristic of the proposed
model, the activation and the hidden state of CNN and
LSTM are extracted and visualized. This is helpful for gain-
ing insight into the internal behavior of these deep learning
models. A track section (120 m) of track geometry wave-
forms is intercepted and the corresponding activations of
CNN pooling layers are extracted, as shown in Figure 11.
It can be seen that the multi-channel activations are different
from each other, showing that different convolutional ker-
nels can extract different features. Besides, the activations in
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FIGURE 11. Comparison of CNN activations with track geometry
waveforms. (a) Track geometry and activations of the first pooling layer.
(b) Activations of the second pooling layer.

Channel 4 of the first pooling layer has similar patterns with
longitudinal level, and this is a sign of shape features learning.
Moreover, the activations also seem to havemulti-wavelength
contents, which may be learned from the multi-wavelength
correlation between longitudinal level and VVBA. However,
the activations of the second pooling layer are too abstract to
understand, except that they are sparser than those of the first
layer.

The hidden state of the top LSTM layer is plotted
in Figure 12a. To facilitate comparison, the corresponding
VBA waveform is also given in Figure 12b. Figure 12a is

FIGURE 12. Visualization of the hidden states in the LSTM module.
(a) Hidden states of the top LSTM layer. (b) VBA waveforms.

FIGURE 13. Comparison of track geometry-based and VBA-based
evaluation indexes. (a) Comparison in the vertical direction.
(b) Comparison in the lateral direction.

plotted from the hidden state matrix where each column
represents the hidden state vector (128 elements) of a LSTM
memory cell. It can be seen that the color tends to be strength-
ened, i.e., the hidden state vector has many large activations,
where there is a peak or valley in the VVBA waveform. This
indicates that LSTM can automatically learn to emphasize
or suppress inner states according to the pattern of the data.
Besides, it has been verified that two consecutive hidden
states have higher similarity than those staying apart. This
reveals that the hidden states change gradually as the informa-
tion flows inside the LSTM layer, which is a sign of sequential
features learning.

E. COMPARATIVE ANALYSIS
In the European Standard EN 13848-5 [1], extreme value,
mean value, and standard deviation over a defined length
of track geometry are taken as the evaluation index of track
quality. Meanwhile, the standard defines three limit levels for
evaluation indexes, including Alert Limit, Intervention Limit,
and Immediate Action Limit, to guide track maintenance.
Such a track geometry standard provides a convenient way
to evaluate track quality. However, a track quality evaluation
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index should be derived from vehicle response in order for
it to be ‘‘performance-based’’ [32]. Therefore, this paper
advocates to take the VBA predicted by CNN-LSTM as an
additional evaluation index.

Scatter plot can be used to compare VBA-based evaluation
index and geometry-based evaluation index [8], as shown
in Figure 13. In the figure, the actual VBA is taken as
reference index and all the indexes are calculated by the
standard deviation over a track section of 200 m (defined in
EN 13848-5). Besides, the indexes are centralized for a better
illustration. The solid line has slope 1 and the dashed lines are
±15% deviations of the solid line.

In the vertical direction, the VBA-based index is approx-
imately proportional to the reference index. Moreover,
it can be seen that the VBA-based index have a strength-
ened correlation with reference index, compared to track
geometry-based index. In the lateral direction, however,
the correlation between evaluation index and reference index
is weaker than that in the vertical direction. This is mainly due
to the complicated wheel-rail lateral interaction [8]. Accord-
ing to the above, the predicted VBA is more closely related
to vehicle performance than track geometry. So that they are
suggested to be taken as a performance-based track quality
evaluation index on the foundation of existing track geometry
standards.

IV. CONCLUSION
For the purpose of promoting track quality evaluation,
a CNN-LSTM model is proposed for the point-wise
prediction of HSR vehicle-body vibration by using track
geometry. To achieve the premium performance, structural
configurations are extensively studied. By visualizing the
model inner state, it is easier to understand the working
mechanism of CNN-LSTM. Analysis shows that CNN can
learn shape features contained in track geometry waveform,
and LSTM is capable of learning the sequential information
of vehicle-body acceleration. Owing to the combined effect
of these feature extraction capacities, the proposed model
outperforms the fully-connected neural network adopted in
PBTG and the plain LSTM in terms of accuracy. According
to assessment on the inspection data of a HSR line, the root
mean square error and correlation coefficient of CNN-LSTM
are 0.008 g and 0.898, respectively. Besides, spectral analysis
also shows that CNN-LSTM has superior performance in
predicting vertical vehicle-body vibration below 10 Hz and
lateral vehicle-body vibration below 1 Hz. By fine-tuning,
this model can be used for predicting other vehicle responses,
such as wheel-rail forces and so on. Finally, by synthesizing
the predicted vehicle-body acceleration into the evaluation
index of track quality, the correlation between evaluation
index and vehicle performance can be enhanced. In the long
run, CNN-LSTM has the potentiality in reducing the high
cost of sensors installed in CITs and in promoting the health
monitoring of HSR track.

However, the proposed model still needs validation by
more tests for practical applications. In the future, more

vehicle types and running speeds will be taken into consid-
eration and the discrepant contributions of track geometry
parameters to vehicle-body vibration will be further studied.
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