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ABSTRACT Most spectrum sensing algorithms mainly use the characteristics of frequency, time, and
geographical dimensions to detect spectrum holes. In this paper, we propose a novel spectrum sensing scheme
from the space domain by using beamspace transformation and the support vector machine technology.
First, a model of beamspace transformation is proposed for the case of complex calculations in a sizeable
multi-antenna system. This beamspace transformation has the ability of spatial filtering, which can not only
decrease the dimension of the receive matrix but also enhance the signal to noise ratio of the received
signal. Then, we employ the support vector machine classification to overcome the problems caused by
the inherent threshold of traditional sensing algorithms. We only need to train the historical samples to
distinguish between noise and primary user signals effectively. This classification algorithm has self-learning
ability, which can adaptively adjust the classification hyperplane according to environmental changeswithout
complex threshold calculation. Finally, simulation results show that the proposed scheme outperforms other
related multi-antenna sensing algorithms, especially under low signal to noise ratio and low snapshot.

INDEX TERMS Cognitive radio, spatial spectrum sensing, support vector machine, beamspace transforma-
tion.

I. INTRODUCTION
In recent decades, with the popularity of Internet-of-Things
(IoT) technology, the scarce spectrum resources have become
more valuable. In order to advocate the concept of green
communication and green IoT, network resource sharing has
become a new trend. Cognitive radio (CR) has come into
being to solve the shortage of spectrum resources [1], [2].
CR [3] can dynamically sense the spectrum allocation of
the surrounding environment and utilize the idle spectrum
accordingly, thereby improving spectrum utilization. An effi-
cient and reliable IoT system model can be constructed based
on CR technology [4]. Therefore, CR technology can pro-
vide substantial spectrum opportunities for IoT devices for
efficient large-scale IoT deployment [5]. In recent years,
CR has been also widely used in vehicular network and
communication security [6]–[8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Nan Cheng.

Under the traditional policy, primary users (PUs) own fixed
spectrums for exclusive use, while secondary users (SUs)
cannot access those spectrums even when they are unoccu-
pied. As one of the significant technologies in CR, spectrum
sensing can help SUs to detect whether PUs are using the
current spectrum. Once the PU signal does not exist, the
SU can access the current spectrum for communication, and
the spectrum utilization will also be increased. Although the
theory of spectrum sensing has matured, with the increasing
demand for communication quality, the study of spectrum
sensing technology in low signal to noise ratio (SNR) and
low sampling snapshot environment has become one of the
current topics.

Traditional spectrum sensing algorithms include matched
filter, energy detection (ED), and cyclostationary feature
detection. The ED algorithm is widely employed because it
has low computational complexity and does not require any
prior knowledge about PUs [9]. However, at low SNR, its
detection capability is severely degraded due to the influence

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 184759

https://orcid.org/0000-0001-5048-8321
https://orcid.org/0000-0003-2006-5410
https://orcid.org/0000-0002-4603-3380


Y. Qi et al.: Improved SVM-Based Spatial Spectrum Sensing Scheme via Beamspace at Low SNRs

of noise uncertainty [10].Many recent approaches were intro-
duced to surmount the effects of noise uncertainty. Authors
in [11] proposed to decrease the noise uncertainty to minimal
level by co-estimating the noise intensity [12]. Matching
filtering [13] and cyclostationary detection [14] have high
sensing performance, but both of them require prior informa-
tion. Such algorithms are difficult to apply to actual scenarios
because the information of PUs is generally unknown. The
relevant characteristics of the received signal can be reflected
by the sample covariance matrix and its eigenvalues with
the development of multi-antenna technology, which can
be used as the test statistic of spectrum sensing [15], [16].
The maximum-minimum eigenvalue detection (MME) [17]
is robust to noise and does not require any prior information
from the PU. Assuming that the dimension of the covariance
matrix and the sampling number are infinite, the performance
of the MME algorithm is optimal. However, this impractical
assumption makes the actual detection threshold and the
real threshold have errors, which led the MME algorithm
is restricted in practice [18]. Authors in [19] presented a
dynamic matching scheme to overcome the problem of fixed
threshold. The spectrum sensing schemes [20], [21] based
on Cholesky decomposition were proposed to overcome
the difficulty of decision thresholds [22]. Authors in [15]
designed a semi-blind maximum eigenvalue-based goodness-
of-fit (GoF) detection scheme using the ratio of the maximum
eigenvalue to the noise power. A multiple antenna sensing
scheme was proposed in [23] using the higher-order moments
of eigenvalues.

In the concept of CR, cognitive devices have the capac-
ity to self-learn and recognize the surrounding environment.
So, researchers naturally apply machine learning and neural
networks to spectrum sensing. Authors in [24] trained the
Artificial Neural Network model for spectrum sensing with
the test statistic obtained by the ED algorithm and the cyclic
characteristic algorithm. A blind spectrum sensing method
based on deep learning was proposed that used three kinds
of neural networks together, namely convolutional neural
networks, long short-term memory, and fully connected neu-
ral networks [25]. In [26], the authors introduced Support
Vector Machine (SVM) algorithm to distinguish the presence
or absence of signals. Thilina et al. applied SVM classifi-
cation and K -Nearest Neighbors (KNN) to spectrum sens-
ing [27]. However, [26] and [27] do not make full use of the
characteristics of the signal. Therefore, authors in [22] trained
the characteristics obtained by Cholesky decomposition to
achieve better performance. Genetic algorithm was also used
for spectrum sensing in [28].

The aforementioned methods are analyzed from the fre-
quency or time domain, but the spatial properties are not
fully utilized. The spatial sensing algorithm is proposed to
detect spectrum holes while acquiring relevant information of
spectrum holes. SUs can access from different angles at the
same frequency and time, so as not to interfere with the pri-
mary user. Traditional methods [29]–[31] divided detection
and positioning into two phases. However, these algorithms

only combine traditional spectrum sensing algorithms with
spatial positioning algorithms, and they do not fully consider
the inherent characteristics of the spatial signal [32]. In order
to overcome these problems, authors in [32] proposed a
new spatial spectrum sensing scheme by constructing new
test statistic using the noise features in angle estimation.
A novel spectrum sensing technique based on the higher-
order statistics of spatial samples was proposed in [33]. Sim-
ilarly, multiple signal classification (MUSIC) was applied to
spatial spectrum sensing in [34]. However, authors in [34]
did not give a reasonable threshold derivation scheme, and
the computational complexity would increase exponentially
as the number of array elements increases.

A novel spatial spectrum sensing scheme based on
beamspace transformation and SVM classification algorithm
is proposed in our paper, considering the problems of the
above-mentioned spectrum sensing algorithms, especially the
poor detection performance under low SNRs and low sam-
pling snapshots. Specifically, the main contributions of this
paper are as follows.
• Beamspace transformation is performed on the received
signal matrix, based on [34]. The proposed beam trans-
formation model can improve the output signal-to-noise
ratio in the observation range while reducing the matrix
dimension. On the other hand, it has the effect of sup-
pressing out-of-band interference.

• Employing the SVM classification algorithm not only
solves the threshold problem in [34] but also improves
the classification accuracy by adjusting the parameters.
The proposed scheme can adapt to various environ-
ments and can effectively distinguish between signals
and noise because of its self-learning ability.

• The simulation results show that the proposed scheme
has more significant detection performance under low
SNRs and low snapshots conditions. The method can
obtain the angle information of PUs while detecting
the spectrum hole, which can greatly improve spectrum
utilization.

The rest of the research is organized as follows. Amultiple-
antenna system model of spatial spectrum sensing is pre-
sented in section II. In section III, we first propose
a beamspace transformation model and its construction
method. Secondly, we analyze the shortcomings of the tra-
ditional threshold construction and present the SVM classifi-
cation algorithm. Finally, the specific steps of our scheme are
proposed. Section IV verifies the significant performance of
the proposed algorithm through simulation comparisons and
analyses. The conclusions are summarized in Section V.

II. SPATIAL SPECTRUM SENSING
A. SYSTEM MODEL OF SPATIAL SPECTRUM SENSING
Suppose that there is an isotropic uniform linear array (ULA)
with M antennas, and the spacing of array elements is
d ≤ λs/2, where λs denoting the wavelength of the source
signal. When K narrow-band far-field signals are incident on
the uniform linear array, they can be approximately regarded
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FIGURE 1. The receive model of the multi-antenna system.

as plane waves. Therefore, when signals arrive at different
array elements, they will generate equidistant wave-path dif-
ferences, resulting in equal interval delays. A typical receive
model of the multi-antenna system is shown in Fig.1, and
we can use this time delay characteristics for array signal
processing.
θi(i = 1, 2, · · · ,K ) denotes the direction of arrival (DOA)

of the source signals in Fig 1. So the model of the received
signals can be expressed as

Y(t) = AS(t)+ N(t), (1)

where t indicates the time index for sampled signals.
In addition, A = [a (θ1) , a (θ2) , . . . , a (θK )] is the steering
matrix composed of steering vectors. The steering vector is

given by a (θi) =
[
1, e−j

2πd
λ

sin(θi), . . . , e−j
2πd
λ

(M−1) sin(θi)
]T

,

where [·]T denotes the transpose operator. S(t) =

[s1(t), s2(t), . . . , sK (t)]T andN(t) = [n1(t), n2(t), . . . nM (t)]T

denote the source signals and the zero-mean white Gaus-
sian noise vectors whose variance is σ 2. Similarly, Y(t) =
[y1 (t) , y2 (t) , . . . , yM (t)]T represents the received signals
matrix, and yi(t) denotes the signal received by the i-th array
element. Meanwhile, we generally assume that the source
signals are not correlated with noise.

In general, spectrum sensing can be replaced by a binary
hypothesis test problem, that is, condition H0 indicates that
the PU signal does not exist, and H1 stands for the opposite.
According to the above system model, the following judg-
ment can be obtained

Y(t) =

{
N(t), H0

AS(t)+ N(t), H1
t = 1, 2, . . .N . (2)

N is the number of sampling snapshots.

B. WEIGHTED SUBSPACE MULTIPLE SIGNAL
CLASSIFICATION ALGORITHM
The weighted subspace multiple signal classification
(WMUSIC) algorithm improves the classical DOA estima-
tion algorithm-MUSIC algorithm to achieve spatial spectrum
sensing without any prior knowledge. This algorithm eigen-
decomposes the covariance matrix of the received signals

and sorts the eigenvalues and the corresponding eigenvec-
tors according to the eigenvalue size. The eigenvectors cor-
responding to the first K large eigenvalues constitute the
signal subspace, and the rest of the eigenvectors is the noise
subspace, which is orthogonal to the signal subspace.

According to (1), the covariance matrix of the received
signals is

Ry = ARsAH
+ σ 2IM , (3)

where Rs and [·]H denote the covariance matrix of the
source signals and the conjugate transposition, respectively.
Ideally, if we sort the eigenvalues obtained by eigen-
decomposing Ry, we can get K large eigenvalues andM −K
small eigenvalues. Correspondingly,Us = [u1,u2, . . .uK ]
and Un = [uK+1,uK+2, . . .uM ] represent the signal sub-
space and noise subspace spanned by the signal eigenvectors
and the noise eigenvectors, respectively. Because the noise
subspace is orthogonal to the signal subspace, we can easily
derive from the derivation in [34]

AHUn = 0. (4)

So, the expression of MUSIC algorithm can be expressed as

PMUSIC =
1

aH (θ )UnUH
n a(θ )

. (5)

Traditional MUSIC algorithm needs to know the number
of source signals to get accurate noise subspace Un, but
for spectrum sensing, it is difficult to know the number of
sources. Therefore, we can adjust the proportion of noise
subspace by weighting eigenvectors according to [34]. The
eigenvectors space of the received signals are redefined as

U = [
1
λα1

u1,
1
λα2

u2, . . . ,
1
λαM

uM ]. (6)

where α(α > 0) represents the weighted coefficient and
λi(i = 1, 2, . . .M ) is eigenvalue. Because the eigenvalues of
the noise subspace are extremely smaller than those corre-
sponding to the signal subspace, multiplying the i-th eigen-
vector by 1

λαi
can suppress the signal subspace components

and enhance the noise subspace components at the same time.
Increasing α can suppress the signal subspace, but reduce the
peak value at the same time. Therefore, a reasonable α should
be set according to actual needs. Then we can replace Un
in (5) by the weighted eigenvector space U to avoid estima-
tion of the number of sources. Similarly, the expression of
WMUSIC algorithm can be expressed as

PWMUSIC =
1

aH (θ )UUHa(θ )
. (7)

The geometric meaning of this expression is that once
a signal is present, its spatial spectrum curve will show a
significant peak at the incident angle of the signal. The curve
approaches zero when there is no incident signal. Accord-
ing to the difference of spatial spectrum curve in the pres-
ence or absence of signals, the maximum-minimum spectrum
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FIGURE 2. The model of beamspace transformation.

ratio detection algorithm can be designed as

TWMUSIC =
max(PWMUSIC )
min(PWMUSIC )

> τ

≤ τ

H1
H0

. (8)

That is to say, the test statistic TWMUSIC is maximum-
minimum spectrum ratio obtained by WMUSIC algorithm.
When TWMUSIC is greater than the threshold τ , H1 is proved
to be true. Otherwise it is determined that there is no signal
in the current spectrum.

III. IMPROVED SPECTRUM SENSING SCHEME USING
BEAMSPACE AND SVM
The improved spectrum sensing scheme is proposed in this
section. The contribution of the improved scheme mainly
includes beamspace transformation and SVM classification.
Therefore, relevant theories about SVM and beamspace will
be introduced below respectively. Finally, the implementation
steps of the improved scheme are proposed.

A. BEAMSPACE WMUSIC ALGORITHM
The WMUSIC algorithm needs to decompose the covariance
matrix of the received signals, and its computational com-
plexity is O(M3). Therefore, for large arrays and few signal
sources, such algorithms are difficult to implement in real-
time and are susceptible to interference signals. Beamspace
transformation can effectively solve the above problems.
The beamspace transformation refers to synthesizing the
M -dimensional array element signal into a B-dimensional
beamspace signal by beamforming technology, and then
replacing the array element signal with the beamspace signal
for subsequent processing. The algorithm model is shown
in Fig 2.

In brief, beamspace transformation can be seen as a spatial
domain filter, which can effectively receive the target signal
of the sector of interest angle while suppressing noise and
interference in other directions (out-of-band), thus improving
the signal-to-noise ratio. At the same time, for large arrays
(the number of array elements is as high as tens or even hun-
dreds), beamspace transformation can effectively reduce the
signal dimension and reduce the complexity of the operation,
which is of great significance in engineering practice.

The MUSIC algorithm requires that the number of array
elements is larger than the number of source signals to

estimate the directions of the signals accurately. Assuming
B is the number of beams, then B should satisfy K ≤ B ≤ M .
Beamspace transformation of received signals can be
expressed as

YB(t) = THY(t). (9)

T is an M × B-dimensional beam transformation matrix.
Its function is to transform the original M × N -dimensional
received signalY(t) intoB×N -dimensional beamspace signal
through beamspace preprocessing. It should be emphasized
that the beam transformation matrix T should be an orthog-
onal matrix, which should satisfy THT = I. In some appli-
cations, the beam transformation matrix does not satisfy the
orthogonal condition, so the following transformation should
be used to turn it into an orthogonal matrix

T0 = T
(
THT

)− 1
2
. (10)

1) BEAMSPACE WMUSIC
According to the model in Fig. 2, an improved
WMUSIC algorithm based on beamspace transformation is
proposed. The beam transformed received signal matrix can
be expressed as

YB(t) = THAS(t)+ THN(t). (11)

Accordingly, the covariancematrix of the received signals can
also be expressed as

Ry = THARsAHT+ σ 2I. (12)

Then the expression of the beamspace WUISC algorithm
(BWUSIC) is

PBWMUSIC =
1

a(θ)HTUUHTHa(θ)
. (13)

It is not difficult to see that the performance of the
algorithm is affected by the beam transformation matrix T.
Constructing a reasonable beam transformation matrix can
effectively suppress interference and improve the accuracy of
the algorithm. So, it is necessary to discuss how to construct
the beam transformation matrix T in the following part.

2) CONSTRUCTION OF BEAM TRANSFORMATION MATRIX
Assuming that sin(θi) = vi, the steering vector can be written
as

a(θi) = [1, e−j
2πd
λ
vi , . . . , e−j

2πd
λ

(M−1)vi ]T . (14)

In addition, consider the vector consisting of the M -point
discrete Fourier transform factors

F = [1, e−j2π/M , . . . e−j2π (M−1)/M ]T . (15)

The steering vector is also a form of DFT, and the DFT of
the t snapshots data can be expressed as

f (v, t) =
M−1∑
k=0

xk (t)e−jkπv = aHM (v)x(t), (16)
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FIGURE 3. The CDF of TBWMUSIC .

where xk (t) is the data received by the k-th element at the
t-th snapshot. The steering vector is actually a beamformer
with the main lobe pointing to v = sin(θ ). When the angle
interval is −90 ≤ θ ≤ 90, the interval corresponding to v
is −1 ≤ v ≤ 1. Apparently, f (v; t) is a periodic function of
v with a period of 2, assuming that t is fixed. If the spacing
of array elements is not half wavelength, the period should
be λ/d .

A beamspace transformation T matrix can be constructed
by continuously extracting B DFT beamforming vectors
from (15) and performing normalized weighting.

T=
1
√
M

[a(m
2
M

), a((m+1)
2
M

), · · · , a((m+B−1)
2
M

))].

(17)

m represents the position of the starting beam. The pointing
angle interval of each beam is 1v = 2/M .

B. SUPPORT VECTOR MACHINE
Traditional spectrum sensing algorithms need to set a fixed
decision threshold that was restricted in practice. It is com-
monly used to estimate the corresponding decision threshold
by giving a false alarm probability Pf . The definition of false
alarm is as follows

Pf = P(H1|H0) = P(TBWMUSIC > τ |H0). (18)

The cumulative distribution function(CDF) of TBWMUSIC is

FH0 (TWMUSIC = τ ) = P(TWMUSIC ≤ τ |H0)

= 1− P(TWMUSIC > τ |H0)

= 1− Pf . (19)

Therefore, assuming Pf = 0.1, the decision threshold is
the value of the abscissa corresponding to FH0 (TWMUSIC =
τ ) = 0.9 underH0 condition. The CDF curve can be obtained
by multiple Monte Carlo simulations assuming that there are
only different intensity noises. Fig. 3 is the CDF curve of
TWMUSIC .
It can be seen from Fig. 3 that the decision threshold τ

is 6.745 under the condition of Pf = 0.1. The detection

FIGURE 4. The model of the support vector machine.

accuracy of the algorithm is related to the accuracy of the
decision threshold. However, the decision threshold is easily
influenced by surroundings so that the method needs huge
calculation complexity to adapt to the real changing environ-
ment. All in all, the traditional threshold selection method
can neither adaptively adjust the threshold value with envi-
ronmental changes nor guarantee a high detection accuracy
for each threshold due to artificial selection error. Therefore,
an adaptive decision method is presented in this paper that
exploits SVM theory to implement spectrum sensing.

SVM is a supervised classification algorithm in machine
learningwith the purpose of finding the optimized hyperplane
of linearly separable feature vectors to maximize margin for
generalization ability while minimizing the misclassification
error [35].

As is shown in Fig.4, the binary hypothesis problem in
spectrum sensing can be replaced with binary classification.
The red circle and the blue star in Fig.4 represent the samples
that indicate the existence or absence of the signals, respec-
tively. The SVM trains the original data set containing the
state information of the signal and optimizes the hyperplane
by tuning the parameters to obtain the optimal classification
accuracy.

Suppose the training set can be represented as D ={(
TWMUSICi , fi

)
|i = 1, 2, · · · ,L

}
, where L denotes the num-

ber of training set. fi ∈ {−1, 1} is called label, indicating
the hypothesis H0 or H1 corresponding to the test statis-
tic TWMUSIC . The classification hyperplane can be repre-
sented as

w · ϕ(TWMUSIC )+ b = 0, (20)

where b and w denote the bias and the weighting vec-
tor respectively. ϕ(TWMUSIC ) denotes the mapping function
which maps TWMUSIC into a high dimensional space. There-
fore, the conditions below are satisfied by the classifier for

w · ϕ(TWMUSICi )+ b ≥ 1, if fi = 1. (21)

w · ϕ(TWMUSICi )+ b ≤ −1, if fi = −1. (22)

The received signal is inevitably affected by noise, so the
data set satisfying linear separability is not practically feasi-
ble. A slack variable ξi is introduced in [36] to form the soft
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margin hyperplane to accommodate linear indivisible data.
Assuming the slack variable ξi ≥ 0, the constraint condition
after introducing ξi is amended as

fi
[(
w · ϕ(TWMUSICi )+ b

)]
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, · · · L. (23)

When the classification is wrong, ξi > 0. Therefore,
L∑
i=1
ξi

is the upper bound of the classification error in the training
set. Then, the above constraint problem can be transformed
into a convex optimization problem

min
w

1
2
‖w‖2 + C

L∑
i=1

ξi

s.t. fi
[(
w · ϕ(TWMUSICi )+ b

)]
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, · · · L, (24)

where C is the penalty factor that can be used to control the
degree of penalty for classification error. It takes into account
the empirical risk and confidence range, and it can also com-
promise the minimize misclassified samples and the maxi-
mum classification interval. The solution to the optimization
problem is the saddle point of the following Lagrangian norm
function

La(w, b, α, β)

=
1
2
‖w‖2 + C

(
L∑
i=1

ξi

)

−

L∑
i=1

αi
{
fi
[(
w · ϕ(TWMUSICi )

)
+b
]
−1+ξi

}
−

L∑
i=1

βiξi.

(25)

αi and βi are Lagrangian multipliers, which are non-
negative. Calculate the partial derivative of La with
respect to w, b,and ξ . From ∂La

∂w = 0, ∂La
∂b = 0,

and ∂La
∂ξ
= 0 we can get

w =
L∑
i=1

αifiϕ(TWMUSICi ) (26)

L∑
i=1

αifi = 0 (27)

αi + βi = C, i = 1, 2, · · · ,L (28)

So, the above problem can be replaced by following dual
optimization problem

max
a
−
1
2

L∑
i=1

L∑
j=1

αiαjfifjK (Ti ,Tj )+
L∑
i=1

αi

s.t.0 ≤ αi ≤ C, i = 1, 2, · · · L and
L∑
i=1

αifi = 0, (29)

where K (Ti ,Tj ) = ϕ(TWMUSICi ) · ϕ(TWMUSICj ) is the ker-
nel function which denotes a legitimate inner product in

eigen space. In practical applications, most of the data are
linearly inseparable, but nonlinearly separable. Therefore,
a kernel function K (Ti ,Tj) is the best way to solve the prob-
lem of nonlinear classification by transforming the original
train set into a higher dimensional space. Some commonly
used kernel functions are linear, polynomial, sigmoid, and
Gaussian radial basis function (RBF).

The problem at hand has a unique solution due to applying
the Karush-Kuhn-Tucker (KKT) conditions. After solving
(29), the final decision function is given as

F(TWMUSIC ) = sgn[
L∑
i=1

fiαiK (Ti ,Tj )+ b], (30)

where sgn denotes the Signum function. Finally, we can give
a specific spectrum sensing algorithm scheme.

Step 1: Perform beamspace transform on the received sig-
nal matrix according to (9) to obtain YB.

Step 2: Calculate the covariance matrix of YB. Due to the
finite number of snapshots in practice, we can only obtain the
sample covariance matrix R̂B

R̂B =
1
N

N∑
n=0

YB(n)YH
B (n). (31)

Step 3: Eigen-decomposes the covariance matrix YB and
calculate the weighted signal space U according to (6).
Step 4: Calculate the value PWMUSIC (θi) of each search

angle θi by peak search, and then find out the maximum and
minimum values of PWMUSIC (θi). Then, calculate the statics
Ttest according to (8).
Step 5: Generate the SVM classification model using the

training set D =
{(
TWMUSICi , fi

)
|i = 1, 2, · · · ,L

}
obtained

by simulation experiments. Make the model achieves higher
classification accuracy by selecting the kernel function and
adjusting the related parameters.

Step 6: Generate the prediction model with the statistic
Ttest and trained model. If the predicted result is ’’+1’’,
the PU signal exists. Otherwise, ’’-1’’ indicates no signal.

IV. SIMULATION COMPARISONS AND ANALYSES
This section provides the numerical simulations and result
analyses based on the ULA system. All of the simulations are
assumed to be implemented in an ideal wireless environment.
Wireless signals are simulated in BPSK modulation. The ele-
ment spacing of the receive array defaults to half-wavelength
(d = λ/2). The noise at the receive antenna is additive white
Gaussian noise. Some simulation results which need to do the
Mentor Carlo experiment are obtained by at least 1000 times
independent experiments.

A. PERFORMANCE ANALYSIS OF BEAM TRANSFORM
ALGORITHMS
Generally speaking, for beamspace transformation, it is
hoped that the signal can be well received in the range
of observation angle, while the signal outside the range of
observation angle can be suppressed. We can evaluate the
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FIGURE 5. The beam gain curve of the proposed algorithm with different
beam numbers.

performance of the beam transformation based on the beam
gain, which is defined as follows

g(θ ) =
aH (θ )TTHa(θ )

aH (θ )a(θ )
. (32)

Since the beam transformation matrix T satisfies
THT = I, the beam gain is generally less than 1. Therefore,
a good beam transform matrix should be such that the beam
gain of the detection range approaches 1 and is as small as
possible outside the detection range.

Figure 5 shows the beam gain curve of the proposed
method in different beam numbers. Assuming that the start-
ing angle is constant, increasing the number of beams can
increase the range of observation angles. However, the slide
lobes outside the observation range also increase as the num-
ber of beams increases, and the performance of interference
suppression will reduce. We can flexibly set a reasonable
number of beams and observation range according to the
needs of the real detection environment. If we know the
approximate angle of the prime user signal, we can set a small
angle range for very accurate detection. We can also achieve
blind spectrum sensing by setting multiple sectors. For exam-
ple, the total azimuth coverage of the array is restricted to
[−90◦, 90◦] so that we can set 6 sectors with an angle range
of 30◦ to cover the whole observation range.

On the other hand, as is shown in Fig. 5, beam transfor-
mation is equivalent to a spatial domain filter. Interference
outside the observation angle range can be suppressed by
lower side lobes. Assuming that the beam direction and the
signal incident angle are θ0, the received signal model can be
expressed as

y(t) = aH (θ0)a(θ0)s(t)+ aH (θ0)n(t). (33)

On any array element, the input power of the signal is
assumed to be

Ps = E(|s(t)2|). (34)

Similarly, the input power of noise is

Pn = E(|n(t)2|) = σ 2. (35)

FIGURE 6. The spatial spectral curve without interference.

Then input SNR of the array signal can be expressed as

SNRin =
Ps
Pn
=

ps
σ 2 . (36)

According to the expression of the steering vector, it is not
difficult to get

aH (θ )a(θ ) = M . (37)

The output power of the array signal after beamspace trans-
formation can be expressed as

Psout = E
{
|aH (θ0)a(θ0)s(t)|2

}
= M2

· Ps. (38)

The output power of the array noise is

Pnout = E
{
|aH (θ0)n(t)|2

}
= M · σ 2. (39)

Then the output SNR is

SNRout = M
Ps
σ 2 = M · SNRin. (40)

According to the above analysis, for the signal within the
observation angle, the signal-to-noise ratio can be improved
by beam transform preprocessing. Then, we will analyze
from the angle of arrival (AoA). Suppose there are two signals
incident from−5◦ and−15◦ respectively, and the observation
range is [−30◦, 0◦]. The number of beams and the number
of array elements are 10 and 32, respectively. The sampling
snapshot is set to 2000, and the SNR is 0 dB.

Fig. 6 shows the spatial spectrum curve drawn according
to (7) and (13). The value of the abscissa corresponding to
the peak is the angle of arrival of the incident signal. Com-
pared with the original algorithm, the peak of BWMUSIC
is sharper. The sharpness of the peak indicates the angular
resolution of the algorithm. The sharper the peak, the higher
the resolution. On the other hand, after normalizing the curve,
the peak value of the proposed algorithm is higher than that
of the original algorithm. In other words, the maximum-
minimum spectral ratio has a more significant difference,
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FIGURE 7. The spatial spectral curve with interference.

TABLE 1. The estimation of the AoA using different algotithms in Fig.7.

which indicates that its detection sensitivity is higher than
the original algorithm. All of these results show that the
output signal-to-noise ratio can be increased by beamspace
transformation, and the detection accuracy can be improved.

Fig. 7 shows the spatial spectrum curve when a strong
interfering signal is added outside the observation range.
It is not difficult to find the proposed algorithm has better
anti-interference performance than the original algorithm.
By comparing the data in Table. 1, the angle estimation of
the proposed algorithm is more accurate under strong inter-
ference conditions.

B. DETECTION PERFORMANCE ANALYSIS AND
COMPARISONS
The proposed scheme is based on multi-antenna system,
so we mainly compare the performance with other spectrum
sensing scheme of multi-antenna system. The RBF kernel
function is used for SVM classification through theoretical
analysis and practice. The parameters in RBF are obtained
by the grid search method.

Fig. 8 shows the variation of detection probability with
different SNRs under different sampling snapshots. Under the
same sampling snapshot condition, the detection probability
of the proposed scheme is better than the traditional WMU-
SIC and MME algorithms. When N = 100, the proposed
algorithm significantly outperforms others and even reaches
the performance of MME at N = 500. The detection proba-
bility approaches 1 at −16 dB. These are obvious indicators
that the proposed algorithm has excellent performance under
low SNRs and low snapshots conditions. Good performance
is attributed to the beam transformation and SVM classifi-
cation. Firstly, through the analysis in the previous section,

FIGURE 8. The detection probability curves of different algorithms with
different snapshots.

FIGURE 9. The average error rate curves of different algorithms with
different snapshots.

beamforming can improve the output SNRs of the received
signals. Therefore, under low SNR conditions, beamforming
has higher detection accuracy. On the other hand, the decision
threshold of the traditional spectrum sensing algorithm is
fixed. The WMUSIC algorithm does not even specify the
calculation method of the threshold in [34]. A fixed decision
threshold is often inaccurate in real environments, so the
detection performance is seriously deteriorated. The SVM
algorithm trains the historical data in the current environment
to obtain the optimal classification hyperplane. The SVM
algorithm does not need to set a fixed decision threshold.
SVM can adaptively adjust the hyperplane as the environ-
ment changes to ensure its classification accuracy. Therefore,
the proposed sensing algorithm can achieve significant per-
formance under low SNRs and low snapshots conditions.

Fig. 9 shows the average error rate curve with increased
SNRs under different sampling snapshots. Compared with
other sensing algorithms, the proposed sensing algorithm
decreases more rapidly and has a lower average error rate
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under the same conditions. The reason for the high average
error rate of traditional algorithms is due to inaccurate thresh-
old settings. Under low SNR conditions, the calculated test
statistic is generally close to the threshold. Therefore, inac-
curate thresholds increase the probability of missed or false
alarm. The performance of the proposed solution benefits
from the optimal decision boundary established by the SVM
maximizes the margin between the separated hyperplane and
the received data.

V. CONCLUSION
We have proposed an improved spatial spectrum sensing
algorithm based on beamspace transformation and SVM.
The proposed algorithm can obtain the angle information of
the PU signal while detecting the spectrum hole. Even if the
PU exists, SUs can access from other angles by beamform-
ing technology. Spectrum utilization would increase signifi-
cantly. Beamspace transformation has been used to reduce the
dimensionality of the predecessor algorithm. Both theories
and simulations have shown that beamspace transformation
could improve detection accuracy while reducing dimension-
ality. In order to solve the problem caused by the fixed thresh-
old in the traditional algorithm, we have exploited the features
of the spatial-spectral curve to generate the SVM training
model. SVM algorithm presents a superior performance in
small sample conditions and can adapt to the sensing environ-
ment for real-time. Under low SNRs conditions, beamspace
transformation can improve the SNRs of received signals,
which also makes the SVM classification accuracy improve.
Therefore, simulation results have demonstrated that the pro-
posed algorithm outperforms the conventional multi-antenna
spectrum sensing schemes at low SNRs and low sampling
snapshots.
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