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ABSTRACT In this study, the structural characteristics of malware distribution networks (MDNs) were
examined and the network centrality of the relationships between websites containing malware, infection
sites, intermediate connection sites, and initial connection sites were analyzed. The core malware sites within
MDNs that contribute to the success of cyberattacks were identified, and the overall risk of theMDNs, which
changes dynamically, was examined quantitatively to predict additional attacks. As such, real-time security
events occurring in the information security systems of target organizations were collected and analyzed,
and different types of security intelligence were assessed to recreate various MDNs. In addition, the risk
levels of malicious URLs, IPs, etc. in MDNs were analyzed continuously over time, and a model suitable
for predicting potential attack times was developed. The developed model identified the characteristics of
potential future cyberattacks based on the analyzed initial MDN risk level, as well as the connectivity of
and malware associated with the MDN, which change over time, thereby maintaining an average prediction
accuracy of 94.9% over one week.

INDEX TERMS Advanced persistent threat, information security, malware distribution network, network
centrality analysis, risk assessment.

I. INTRODUCTION
Recently, intelligent cyberattacks (advanced persistent threats
(APTs)) [1], have become continuous, targeted, and special-
ized. In response to these threats, various information security
solutions are being developed, and research and development
projects are being conducted. However, it is still difficult for
decision-makers, such as directors of computer emergency
response teams and information security solution operators,
to determine the importance of numerous malware sites and
malware types that are detected or the order of priority for
related event processing, such as blocking [2]. In addition,
inserting blocking policies unilaterally without an order of
priority results in false positives, false negatives, and system
malfunctions in information security solutions.

Conventionally, decision-making has been in the form of
qualitative decisions by cybersecurity experts or generalized
decisions by information security systems; consequently, var-
ious problems have occurred, including poor judgment, inad-
equate management, difficulty in determining risk weights,
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and limitations in information processing capabilities.
Furthermore, in the case of risks from malware sites and
malware, different information security solutions and infor-
mation security experts have different standards for making
decisions. Thus, it is necessary to develop a standardized pro-
cess for assessing the quantitative risks of malware sites and
malware, as well as the potential risks of malware distribution
networks (MDNs), which are composed of malware sites and
malware, to achieve objective decision-making. A network
centrality analysis (NCA) method is proposed herein for cal-
culating the potential risks of malware sites and MDNs. Our
proposed NCA model supports multidimensional analysis of
the relationship between nodes.

This allows the relationship between various nodes
(malicious sites, malware) to be analyzed in depth by cen-
trality analysis for degree, betweenness, and eigenvector. The
final risk level of the MDN is determined through a linear
combination of various computational results such as the self-
risk of malicious code, the possibility of propagation, and
proximity to malicious sites. Thus, the complex redirection
relationships of MDNs are identified and the magnitude of
the risk is determined quantitatively.
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Furthermore, changes in the risks of attacker groups within
MDNs are described and the prediction of potential attack
times is addressed by calculating the accumulated MDN risk,
measuring risk changes based on a timeline, and determining
the overall cyber threat level.

Ultimately, the model proposed in this paper provides
a structured understanding of the various Landing Sites,
Hopping Sites, and Distribution Sites related to the core mali-
cious sites in terms of the Computer Emergency Response
Team (CERT) mission. It avoids the simple prevention poli-
cies of identified malicious sites and identifies various mal-
ware associated with core malicious sites that have potential
risks. The model enables an active response system against
possible APT attacks as organizations aremultidimensionally
aware of cyber threats. In addition, it can produce critical
threat information that may be used to establish an active APT
attack defense strategy.

The remainder of this paper is organized as follows.
Section II describes the structural characteristics of MDNs
and the differences between this study and previous studies.
Section III introduces the proposed quantitative risk calcula-
tion model for malware sites and malware (referred to as the
potential risk analysis method for malware distribution sites,
PRiAM), as well as the accumulated MDN risk and attack
time prediction method—in which PRiAM is used for each
MDN. Section IV describes the experimental environments
employed to analyze various MDN configuration scenar-
ios and presents the actual experimental results, evaluations
of accumulated MDN risks, and attack predictions. Finally,
Section V summarizes the conclusions and topics requiring
additional research.

II. BACKGROUND AND RELATED WORK
A. MALWARE DISTRIBUTION NETWORK (MDN)
MDNs are intelligent malicious networks that are built by
attackers to perform persistent cyberattacks on unspecified
users or selected organizations. Specifically, MDNs are com-
posed of various types of malicious URLs containing mal-
ware (including landing sites, exploit sites, hopping sites,
and distribution sites) that have mutually dependent relation-
ships [3], and they are normally in an attack posture that is
determined by the strategy of the attacker.

Fig. 1 shows how the malware in an MDN infects or is
disseminated to internet users through various types of URLs,
which is the basis for research on calculating risk levels.

As shown in Fig. 1, the malware infection process starts
with the Internet user (a) connecting directly to a distribution
site (b). The attacker then induces an advanced infection by
redirecting the user [2] to a landing site (e), which is an ini-
tial malware dissemination site, through several intermediate
hopping sites (c) or exploit sites (d) via the distribution site,
which is the initially accessed site; subsequently, the malware
is downloaded.

The attacker creates an advancedMDN in advance to infect
normal Internet users with malware and to attempt various
secondary cyberattacks (such as seizing personal informa-
tion, disabling systems, and attacking other hosts). Therefore,
in this study, multidimensional quantitative analysis was per-
formed on the various malware infection cases that occur in
such an MDN. In addition, objective qualitative analysis of
the potential cyber threats that can occur in the future was
conducted.

B. RELATED WORK
Most studies on malware site analysis involve i) assessment
and detection of the direct distribution of malware from the
URL, as in the case of a distribution site, or ii) investigation
of redirection from an exploit site to a landing site (e).

Typical examples of studies in the first group are those
involving analysis of malware URLs or web content based
on static characteristics such as URL lexical patterns,
HTML page content (malware), JavaScript features, and host
attributes [4]–[11], followed by classification of cyber threats
through machine learning or data mining. In addition, stud-
ies have been conducted in which sandbox-based virtual
machines were used to detect abnormal API calls in the
target content that perform malicious behaviors (such as file
creation, registry changes, host file tampering, and backdoor
installation). Furthermore, many studies involved the detec-
tion of malicious iFrame injection [12]–[14] through browser
vulnerabilities. This process is considered the basic malicious
behavior that is employed to create MDNs.

Studies of the second type can reveal the volumes or sizes
of MDNs based on number of redirections occurring between
malware sites. Therefore, it is necessary to consider the agents
through which redirections occur. First, studies have been
conducted in which redirections to distribution sites were
analyzed by identifying search poisoning events [15].

In this case, redirection occurs automatically and is not
based on the search queries of normal users. In addition,

FIGURE 1. Malware infection process on an MDN.
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redirections created by users who click on malicious URLs
published on social networks such as Twitter [16] have been
focused on. Finally, malware is downloaded when redirection
is started by various malicious banner advertisements [17]
that are included in web pages.

Studies have also been conducted involving structural anal-
ysis of the MDN. Chuang et al. [18] analyzed the traffic
of a particular organization by visualizing and analyzing
the behavior of malicious sites and connection attempts.
However, their proposed analysis method focused only on
visualization and did not perform quantitative analyses of
the various connectivity threats in the graph analysis. Our
proposed model can improve the effectiveness of CERT con-
trol systems by integrating various network analyses of each
malicious site and malicious code to quantitatively reproduce
the new risk index.

Peryt et al. [19] analyzed both the topology structure of a
malicious site that distributedmalicious code directly and that
of the MDN, which includes sub-networks. However, visual
representations do not reflect the various changing archi-
tectural characteristics of MDNs. In contrast, our method
provides quantitative figures to predict future cyber threats
through continuous tracking of the cumulative rate of change
in MDN based on a specific timeline.

Wang et al. [20] proposed a system that detects landing
sites distributing malicious code inside the MDN. Their pro-
posed system conducts continuous observation using honey-
pots and is able to track and manage the mutations of MDNs
based on landing pages. However, as the main purpose is
searching for malicious sites, it is limited to inferring an
attacker’s intelligent attack strategy. In contrast, our proposed
method continuously analyzes MDNs managed by groups
of attackers and quantitatively analyzes potential threats to
establish an intelligent intrusive response system.

Whereas existing studies are focused on detecting malware
sites that constitute MDNs, our approaches are focused on
performing reconfiguration with MDN risk levels through
network centrality analysis of various forms of security intel-
ligence (malware DNSs, IPs, C&Cs, URLs, etc.) collected by
the information security systems of the target organizations.
In addition, in this study, the overall MDN risk level was
determined according to the distance between malware sites,
involvement of malware or lack thereof, and the risk level of
the malware.

Finally, MDN risk levels undergo various changes over
time, and can thus be used to create defensive strategies that
minimize or prevent damage to organizations by predicting
when secondary and tertiary attacks will occur.

III. PROPOSED MODEL
A. POTENTIAL RISK ANALYSIS METHOD (PRiAM)
To assess the risk level of an MDN, it is necessary to ana-
lyze the form and structural characteristics of that MDN and
perform multidimensional analysis considering the effect of
malware that are connected to the MDN sites. Hence, threat

information was collected and the centrality of an MDN
was analyzed based on the collected intelligence, as shown
in Fig. 2.

FIGURE 2. Potential risk analysis process for MDN.

In this study, the risk levels of the core component URLs
of theMDN (landing, exploit, hopping, and distribution sites)
as well as those of each piece of malware, were calculated,
and the ultimate risk level of the MDN group was assessed
quantitatively. In addition, theMDN processed in this manner
was defined as a single attack group, and the extent to which
the risk level changed over time was observed to analyze the
future potential risk.

B. NETWORK CENTRALITY ANALYSIS OF MDN
To assess the risk level of a dynamically changing MDN,
it is necessary to analyze the risk of each malware site.
Hence, an optimal analysis theory was selected from among
the network centrality analysis theories listed below. (Herein,
the connections between nodes in malware sites are called
links.)

1) DEGREE CENTRALITY ANALYSIS
This analysis method involves measuring neighbor nodes that
are directly linked and is suitable for measuring direct influ-
ence. When directionality exists between nodes or networks,
in/out degree centrality is measured. Nodes that have numer-
ous links are important nodes. In MDNs, these nodes are
important for continuously disseminating malware through
directly linked neighbors; however, because global search
methods are required to find MDNs in large networks such
as the Internet, this method is limited.

CD(i) =
ki

N − 1
(=

∑
j Aij

N − 1
) (1)

where
N: Overall system size (number of nodes),
Aij: Adjacency matrix
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Aij = 1: If a link exists between nodes i and j
Aij = 0: If link exists between nodes i and j
ki: Number of links of node i
d ij: Shortest distance between nodes i and j

a: BETWEENNESS CENTRALITY ANALYSIS
This analysis method involves measuring the frequency at
which links between nodes are passed through. It is suitable
for measuring the control that occurs during information
transfer. In this analysis method, it is assumed that informa-
tion moves along the shortest distance. However, when mal-
ware is disseminated by an MDN, it is disseminated not via
the shortest path, but rather via all reachable paths. Therefore,
this analysis method is not suitable for an MDN, in which all
paths must be considered.

CB(i) =

∑
j
∑

k gjk (i)/gjk
(N − 1)(N − 2)

(2)

where
gjk: Number of paths that have the shortest distance

between nodes j and k
gjk(i): Number of paths that passes through node i among

the paths that have the shortest distance between nodes
j and k

b: EIGENVECTOR CENTRALITY ANALYSIS
This analysis method involves measuring the sum of cen-
trality of directly linked neighbor nodes. Therefore, it is
assumed that nodes with high centrality have a high capacity
for dissemination, and an intuitive phenomenon is defined
in which neighbor nodes that are linked to important nodes
have high importance. As such, a method of assessing risk
as proportional to the centrality (risk) of nearby neighbors
is necessary. To reflect the assumption that risk decreases as
distance increases, it is necessary to define an advanced con-
cept of centrality (risk). Consequently, this analysis method is
considered suitable for determining the risk of an entireMDN
because the risk of linked URLs increases as the risk of the
malware or the importance of the landing site increases.

CE (i) =
1
λ

∑
j
AijCEj (3)

where
λ: Largest eigenvalue of the adjacency matrix

c: CLOSENESS CENTRALITY ANALYSIS
This analysis method involves measuring the link distances
between all nodes in an MDN. It is suitable for calculating
the immediacy of the influence between nodes. Therefore,
when this analysis method is used, it is necessary to consider
the risk levels of the actual malware and the malware site
according to distance. The precondition that the initial source
(malware) and target (first hopping site) are fixed, but not all
possible paths are fixed, must be satisfied. However, because
this method is not suitable when dissemination is performed

through redirection by intermediate connection sites (hop-
ping sites) when the distance is large, only the definition for
risk between malware and malware sites with a primary link
relationship is considered herein.

CC (i) =
N − 1∑

j dij
(4)

C. RISK ASSESSMENT FOR MDNs
Importantly, risk is assessed for each malware site because
the degree of risk differs according to the network location of
the malware site (malicious URLs) and the related malware
that exists within the MDN. More specifically, quantified
analysis results regarding risk, which changes because the
risk level of an MDN varies according to the intentions of
the attacker, are used as data that serve as the basis for var-
ious decision-making and intelligent response capabilities.
Therefore, to analyze the risk of each malware site quanti-
tatively, the following basis for calculations was defined in
this study.

1) To understand the various link relationships between a
certain malware site (exploit / hopping / landing site) and
the malware, it is necessary to perform centrality closeness
analysis. This must be achieved based on multiple scenarios.
First, as shown in Fig. 3(a), the risk increases according to
the closeness of the link relationship between the hopping
site and the landing site that contains the malware. Further,
as shown in Fig. 3(b), the risk increases according to the
direct and indirect connections between URLs and multiple
malware items. The changes in risk of the malware [21] are
used as factors for determining the overall scale of the risk.

2) As depicted in Fig. 4(a), the analysis considers closeness
to the landing site, from which the initial malware download
occurs, and the risk of the landing site itself. Further, the risk
of the malware sites that disseminate malware through the
landing site (hopping/exploit sites) increases with the number
of visitors, as illustrated in Fig. 4(b), because malware sites
that contain malware dissemination paths to multiple landing
sites have high risks. Ultimately, if the two cases above
are combined and analyzed, the dissemination of malware
becomes more definite and risk increases near the landing
site.

3) As shown in Fig. 5(a), the risk increases with the risk
of the malware itself that is directly or indirectly linked to
the malware site (hopping/exploit site). Therefore, the risk of
the MDN is determined according to the malware category.
As illustrated in Fig. 5(b), the risk of the overall MDN is
determined because the importance of the landing site varies
according to the number of visitors, that is, the risk of linked
URLs increases with the risk of the malware itself or the
importance of the landing site. Using this information, it is
possible to assess the centrality eigenvector, which describes
networks from the perspective of expansion and dissemina-
tion centrality.

4) As shown in (5) and (6), the distance between the
malware and landing site and the number of malware and
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FIGURE 3. Analysis of closeness with malware and risk of malware itself.

landing sites are factors that determine the risk of the MDN,
which is assessed through closeness centrality analysis.When
defining risk as the inverse of distance, the risk decreases
as the distance increases. To compensate for this behavior,
an exponential function is used as a control parameter to
represent the risk in the form of a monotonic decrease with
respect to distance. As shown in (7), the risk of the malware
itself and the importance of the landing site according to
the number of visitors are factors that determine the risk of
the MDN. This is assessed through eigenvector centrality
analysis, which obtains the centrality of expansion and dis-
semination. Therefore, using a formula that simultaneously
applies both the aforementioned closeness and eigenvector
centrality CM (i) is the risk based on the closeness to the
malware and the dissemination of the malware risk itself.

CM (i) =
∑

j∈{Malware}
M (j)·λ[dij−1] (5)

where
d ij : Depth between nodes i and j
λ: Control parameter of decrease rate
M(j): Risk index of malware
V (j): Risk index of the landing site,

which is based on the number of visitors

FIGURE 4. Analysis of closeness to landing site and risk of the landing
site.

CL(i) is the risk that is based on closeness to the landing site
(user access site) and risk dissemination of the landing site; it
is expressed as follows:

CL(i) =
∑

j∈{LandingSites}
V (j)·λ[dij−1] (6)

Equation (7) defines the overall ultimate risk index of
the URL, which is assessed via CM (i) from (1) and CL(i)
from (2).

CURL(i) = α ·
∑

j∈{Malware}
M (j)·λ[dij−1]

+ (1− α) ·
∑

j∈{LandingSites}
V (j)·λ[dij−1] (7)

where 0 ≤ α ≤ 1
As shown in (7), CURL(i) reflects the malware-caused risk

CM (i) in the URL risk index as α approaches one. CL(i),
which is the risk caused by the linked landing site, is reflected
in the malware site risk index as α approaches zero. When
α = 1, only the malware-caused risk CM (i) is reflected in the
malware site risk index. When α = 0, only CL(i), which is
the risk caused by the landing site, is reflected in the malware
site risk index.

However, the final MDN risk value is not normalized,
because it varies according to the characteristics of the sur-
rounding nodes, even if the malware site has the same risk.
Consequently, it is difficult to determine the threshold index
of the risk. Here, the threshold index is the value that dis-
tinguishes whether a node has a risk above a certain value.
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FIGURE 5. Analysis of risk dissemination of the malware itself and
importance of the landing site.

In other words, when the risk is unilaterally normalized to
a value between zero and one, it is difficult to reflect subtle
changes in the actual risk value. However, the actual rate of
increase of the risk can be depicted by expressing it as a
relative value rather than limiting it to an absolute value.

D. RISK ASSESSMENT FOR MALICIOUS CODES
Because the overall risk of an MDN changes according to the
changes in risk caused by the malware type (such as viruses,
worms, trojans, ransomware, ad/spyware, hybrids, and exotic
forms), M(j) [18], which is the risk according to the initial
malware type classification and analysis, is expressed as a
quantitative value (between zero and one); i.e., the risk of the
malware itself is assessed.

In addition, as shown in (6), if the closeness to the user
access site (landing site) and the risk of the landing site are
considered, the risk of the malware sites (hopping / exploit
sites) that disseminate through the landing site increases the
number of visitors to the landing site increases or the impor-
tance of the site increase. Furthermore, the risk of malware
that contains dissemination paths through multiple landing
sites is large; risk dissemination becomes more definite as
one approach the landing sites, and the risk becomes higher.
Therefore, the final malware risk formula is as follows:

CMAL(i) = α ·M (j)+ (1− α) · CL(i) (8)

where 0 ≤ α ≤ 1

Equation (8) shows that as α approaches one, the malware-
caused risk is reflected more in the URL risk index, and as
α approaches zero, the risk caused by the linked landing site
is reflected more in the URL risk index. When α = 1, only
the risk of the malware itself is reflected in the initial malware
risk, and when α = 0, only the risk caused by the landing site
is reflected in the initial malware risk.

E. RISK ASSESSMENT FOR ACCUMULATED MDN
In Section III.D, different methods of employing the risks
of various malware within an MDN in risk calculations and
those of measuring the initial MDN risk were discussed.
Calculating the initial risk of an MDN is important; however,
changes occur in the MDN over time owing to several rea-
sons, as shown in Fig. 6(a).

The initial MDN properties change variously as URLs
(landing sites, exploit sites, hopping sites, and distribution
sites) are created, shut down, or modified. Currently, only
the MDN characteristics and exploit types can be deter-
mine based on the types of connections between URLs.

FIGURE 6. Accumulated MDN.
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Therefore, limitations exist in performing various addi-
tional analyses, such as analyses of future MDN trends and
predictions.

As such, it is necessary to examine the overall charac-
teristics of an MDN by analyzing the accumulated MDN
characteristics, which incorporate the characteristics of both
current and past MDNs. This necessity originates form the
fact that the overall MDN changes according to variations
in web pages (frames) over time. Therefore, by observing
the changes and continuously measuring the accumulated
(merged) changes, certain attacker groups that cannot be
determine currently can be detected, and potential threats can
be predicted and assigned with various meanings.

Moreover, constant readiness for APT attacks can be main-
tained and intelligent defensivemeasures established. For this
type of MDN, weights must be assigned to the link informa-
tion between URLs, as shown in Fig. 6(b). Thus, it is possible
to maintain the most recent MDN information, which better
reflects the current information, if larger link weights are
assigned as one approach to the current time and the time
period in which link connectivity exists during the overall
accumulation period. For the weights, d ij in (5) and (6) is
defined as the link strength.

F. RISK ASSESSMENT FOR ATTACKER GROUPS
To distinguish between specific attack groups in the accumu-
lated MDN described above, attacker differentiation analysis
is performed through component analysis, which is a typical
cohesive subtype of social network analysis. Here, the max-
imum group that is connected without interruption from the
initial observation time becomes the base of a component.
Therefore, the following are assumed.
- The malware within the same component is assumed to be
from the same attacker. That is, the malware in an MDN
comprising a single component is considered to be from
the same attacker.

- A single attacker is assumed if the IP bandwidth is the same.
Malware in the same IP bandwidth is assumed to be from
the same attacker based on the fact that the same C&C
server is used.
The risk for each attack group that is assessed based on the

assumptions above exhibits the following characteristics.
- The sum of risks of the landing sites within the same
attacker group is assessed.

- The landing sites are accessed, and infection occurs.
- The risk of a user being infected with malware increases
with the landing site risk.

- Landing site risk reflects malware risk.
Therefore, the risk of each attack group is assessed as

in (9):

CAtt (i− th component)=
∑

j∈{LandingSites
in i−th component}

CURL(j) (9)

where the i-th component is the network group that is
expected to be the same attacker via the component analysis
described above. Because the degree of threat changes over

time according to the specific attacker groups observed, it is
necessary to specify the following causes and perform a trend
analysis.

- The risk of theMDN increases with the number of malware
items.

- The risk of the MDN increases with the number of distri-
bution sites.

The following processes are required to perform this type
of prediction analysis:

- Measure the changes in statistical values and compare with
those on the previous day.

- Assume that changes between variables are independent.
- Measure theMahalanobis distance [22].

The Mahalanobis distance is obtained because it quanti-
fies how rarely the initial measurement value occurs or how
abnormal it is, and the distance from the mean is expressed
in terms of multiples of the standard deviation. Thus, it is
concluded that additional actual cyberattacks will occur if an
abnormal increase in risk is detected.

IV. EXPERIMENT AND RESULTS
A. BUILDING THE EXPERIMENTAL ENVIRONMENT
To test and verify the proposed model, reverse analysis was
performed on security event information generated by certain
organizations. For example, common civil, administrative,
and military organizations have their own information secu-
rity systems (IDSs; IPS, anti-spam, anti-virus, DDoS, APT
solutions, etc.) based on various networks. Each system
collects data related to external links (malicious DNSs, IPs,
C&Cs, URLs, etc.), which constitute secondary analysis
results obtained by analyzing the malware collected from
the systems being monitored (servers or PCs), as well as
primary analysis results (malicious DNSs, IPs, C&Cs, URLs,
etc.) regarding the in/out network traffic that is generated by
the organization. Therefore, the experiment started with this
information and an MDN centered on the target organization
was created.

Various forms of risk were assessed, and the degree of
threat exposure, which changes over time, was observed to
predict how the forms of attack would change. An infor-
mation security system, such as those built by typical orga-
nizations was established, and various types of malware
intelligence were collected for approximately one year.
Fig. 7 presents an outline of the overall configuration and
infrastructure for the experiments.

To create an environment similar to the service environ-
ments operated by actual organizations, an open source-based
information security environment was created, as shown
in Fig. 7. For the purpose of the experimentation in this study,
it was composed of security solutions that can be built within
the enterprise. Above all, it is structured around open source
software to faithfully collect information about threat intel-
ligence. As such, analysis was conducted only on datasets
for which the initial cyber threat information collection was
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FIGURE 7. Experimental environment.

trusted. The results also focused on quantitative analysis to
ensure final reliability of the conclusions.

However, we did not wait until the actual attack behav-
ior occurred; instead, we used various attack information
collected from the threat intelligence (TI) collection server
(malicious DNSs, malware sites, spam information, malware
analysis data, zombie PC, C&C IPs, etc.) and generated ran-
dom malicious traffic to perform the experiment for 60 days,
as summarized in Table 1.

TABLE 1. Experimental environment configuration details.

B. INTEGRATED RISK ESTIMATION OF MDN
To conduct detailed experiments over 60 days, 51 distribution
sites, 312 landing sites, and 48 items of ultimately down-
loaded malware were analyzed as the threat information in
the collection analysis.

Table 2 presents the risk of the MDN and the various
related connection information (landing site, distribution site,
hash value, and related IP information fields) for each time
slot. As presented in Table 3, the overall risk of the MDN
changes according to the detailed information (full URL,
queried domain, ranking domain, ranking, previous ranking,
and count) regarding the URLs (landing/distribution/exploit)
connected to the MDN. The relationships between multiple
malicious URLs and themalware that exists in theMDNwere
analyzed, as summarized in Tables 2 and 3.

TABLE 2. MDN-related information for each date.

TABLE 3. Information regarding URLs within MDN.

The final MDN risk is depicted in Fig. 8. Fig. 8(a) shows
the risk of the malware-centered MDN in the order of priority
at a specific point in time.

Fig. 8(b) presents the URL-centered (landing /
distribution / exploit) MDN risk in the order of priority
at a specific point in time. The exploit sites in Fig. 8(b),
which are malware sites connected to the MDN that directly
infect users, must be monitored closely. They are important
for predicting the subsequent moment of attack of a certain
attacker group. The URL http://www.lottoxxxx.xx.xx of the
MDN, which is marked by a red box in the table in Fig. 8(b),
is the exploit site that has the highest risk, of 103.1. Because
the potential risk of the MDN is large, the probability that
an attack will occur from this site in the future is high.
To obtain the accumulated MDN, the MDN configuration
must be constantly observed, and the degree of risk that can
be predicted based on this configuration estimated.

Reanalyzing Figs. 8(a) and 8(b) using the accumulation
concept illustrated in Fig. 6, the final MDN form at the
prediction time is observed, as shown in Fig. 9. Fig. 9 depicts
the final accumulated MDN considering the initial MDN
configuration of http://www.lottoxxxx.xx.xx on February 4,
2019 and the MDN configuration at the specific observation
time of February 9, 2019. According to the accumulated
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FIGURE 8. (a) (ex) Top risk index of MDN based on malicious codes.
(b) (ex) Top risk index of MDN based on malware sites.

FIGURE 9. (ex) Final accumulated malware distribution network.

MDN values of the site up until February 9, an actual risk
occurs in the MDN on February 9.

Therefore, it is concluded that a certain attack group is
infecting the MDN (http://www.lottoxxxx.xx.xx) and using
it to perform cyberattacks continuously, as shown in Fig. 10.

FIGURE 10. Accumulated risk index of top attacker group.
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On February 9, 2019, the accumulated risk increases
slightly. Consequently, it is determined that the attack group
will perform actual attack behaviors via the target site starting
on that day. Because the accumulated risk increases by a small
amount on February 9, 2019, the actual risk (current risk
index, CRI) peaks on February 10 when the attack actually
occurs. Additionally, the predicted index risk (PRI), which
predicts this attack, increases simultaneously. Ultimately,
the actual main attack point can be predicted one day earlier
via the accumulated risk.

Time series analysis was also performed based on the accu-
mulated risk index (ARI). The results show that the calculated
PRI was 147.5 on February 10. The CRI for the actual day
is 130, indicating a high prediction rate with an accuracy
of 88.1% at that time. Here, the CRI value is the result of cal-
culating CMAL(i) in (8). The ARI is the result of calculating
CAtt(i) in (9). The PRI is the time series analysis result of the
ARI. Overall, the comparison between the PRI and the CRI
of the observedMDN during the same period reveals an aver-
age prediction accuracy of approximately 94.9%, as shown
in Table 4.

TABLE 4. Information on URLs in MDN.

In addition, the accuracy of the predicted PRIs increases
without distortion because the relative ARI of the attack
group over time is incorporated without any normalization
process, and the changes in the ARI can be understood
intuitively.

C. THREATS TO VALIDITY
In this study, a method of analyzing the risk of MDNs by
attacker groups observed in APT attacks that target specific
organizations was developed. Accordingly, we performed
network centrality analysis based on the associations between
local security events (IDS, IPS, anti-spam, anti-virus, DDoS,
APT detection solutions, etc.) and global intelligence. The
following threats to validity have been identified.

- The estimated risk of the MDN is a quantitative value
limited to the perspective of the victim organization, which
possibly prevents observations in other organizations.

- If an attacker continues to generate various redirect
paths, the risk of observed MDNs may be reduced. However,
an attacker can create many malicious sites that can limit

the use of malicious codes. In the future, we will continue
to observe the rate of change of an attacker’s MDN volume
to analyze the relationship with newly created redirect sites.
In addition, we will analyze the malicious codes and strains
frequently used by groups of attackers to identify their rela-
tionships.

- A comparative analysis was performed, focusing on the
proposed study and research in similar fields. However,
it is difficult to make quantitative comparisons with related
studies owing to differences in the experimental environ-
ments. The proposed research method adopts a variety
of application methods—such as multidimensional net-
work analysis methodologies and malicious code analysis
methods—not used in previous studies. As such, this study
demonstrates a novel analysis method as well as presenting
results of MDN analysis.

- Nevertheless, this risk assessment method, which is spe-
cific to the target organization, can be considered an integral
approach for intelligent threat responses to APT attacks.

V. CONCLUSION
In this study, the structural characteristics of MDNs, which
are created by attackers to target multiple unspecified orga-
nizations or specific organizations, were examined and net-
work modeling (group analysis) was performed to model
the relationships between websites that contain malware
(landing sites), infection sites (exploit sites), intermediate
connection sites (hopping sites), and initial connection sites
(distribution sites). Subsequently, the risk levels of various
MDNs were assessed.

In addition, the ARIs of exploit sites, which are directly
related to cyberattacks, were calculated and time series anal-
ysis was performed to obtain the PRI. The PRI was then com-
pared to the actual CRI, and a high prediction accuracy was
obtained. In terms of active cyber defense, the method devel-
oped in this study can be used to perform multidimensional
risk-based analyses on various security threat intelligence
data, establish active defense strategies for APT attacks, and
implement aggressive intrusion responses.

In future studies, continuous machine learning of attack
patterns (static and dynamic analyses of new/variant malware
and the connections between URLs) that are used to classify
attack groups based on MDNs and malware analysis results
will be conducted. Additional studies will also be performed
to analyze attacker-centered networks and establish active
defense strategies for cyberattacks that are based on various
malicious behaviors.
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