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ABSTRACT This paper presents an innovative mechanism for decentralized data analytics in the Internet
of Things (IoT) networks. In contrast to traditional centralized (eg. Cloud) based solution, our proposed
decentralized framework can avoid the problems raised in data collection such as the constraint in high
latency, and the associated data breach and privacy issues. The invented mechanism enables each IoT node in
the network to independently obtain the global optimal analytics with local computation and communication.
The proposed framework has been tested in seismic imaging and machine learning applications. The
evaluation results validate its fast convergence to the optimal model, and demonstrates that it allows (near)
real-time data analytics in IoT networks under bandwidth and energy limitation, particularly in uncertain
and dynamic environments.

INDEX TERMS Asynchronous algorithms, decentralized data analytics, Internet of Things.

I. INTRODUCTION
[1] The Internet of Things (IoT) is considered to be the
next evolution of the Internet with advances in collecting and
analyzing data that can be ultimately abstracted into insights
and knowledge [2]. In order to extract deep insights, Big Data
and Big Model are usually required and adopted. Thus, most
IoT applications today are built on a centralized architecture:
huge volume of data from IoT devices are firstly collected
and then transferred into a central place (eg. Cloud) for pro-
cessing and analytics. However, this cloud-based ‘‘collecting
then processing’’ architecture raises serious constraints and
issues as follows. a). High data transfer cost. Most of the
Big Data comes in high volume and it is very costly and
sometimes even infeasible to move all the raw data into
Cloud due to bandwidth limitation [3]. b). Relatively high
latency. Cloud-based centralized framework is not suitable
for many time-sensitive IoT applications where near real-
time analytics is critical [3]. c). Data breach issues. If a
cloud-based solution is adopted where data are stored and
processed on remote servers, the risk of data breach is present
and inevitable [4]. d). Privacy-concerned applications. For
applications in some fields where privacy and security is of
prime concern (such as health, military, bank etc.), their raw
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data is not allowed to be shared and has to remain within their
controllship. These industries cannot directly benefit from
traditional cloud-based solution.

To address the issues above, several alternatives have been
proposed such as Fog computing [5] and Edge computing [6].
Both of them aim to push data analytics close to where the
data is generated. In Fog computing, the data is processed
within a fog node or IoT gatewaywhile with Edge computing,
data is usually processed on the devices at the edge of the
network. There are several works in Fog/Edge computing
aiming to reduce the latency by offloading the computa-
tion [7]. Although problem a and b mentioned above can
be addressed in Fog and Edge computing, problem c and
d remain unsolved. Data collection from users to perform
analytics are required in these two alternatives and thus they
are still ‘‘centralized’’ type solutions, which may not solve
the associated data breach or privacy concerns. Considering
the issues above, we propose a novel fast decentralized data
analytics framework for IoT networks in this paper.

II. RELATED WORK
Bringing computing into IoT networks is nontrivial. A mis-
match exists between the ‘‘centralized’’ nature (in traditional
computing) and the spatially ‘‘distributed’’ feature (in sen-
sor networks), making computing and data analytics in IoT
networks very challenging. Designing suitable numerical
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optimization solution is at the core of solving many of these
similar problems. In signal processing community, much
attention has been paid to solving similar distributed estima-
tion problems. For instance, Sayed and Lopes [8] developed a
distributed least-squares estimation strategy by appealing to
collaboration techniques that exploit the space-time structure
of the data. This strategy achieves an exact recursive solution
in a distributed manner. In addition, a cyclic path in the
network is required in order to perform the computation node
by node. However, amaster node usually exists in the network
in order to fuse the estimates from local nodes and spread
mixed information over the network nodes [9]–[14].

Decentralized computing solutions are considered then in
literature. In this decentralized paradigm, each node holds an
objective function privately known and can only communi-
cate with its immediate neighbors (no multi-hop required).
In optimization community, a great effort has been devoted
to solving decentralized (fully distributed) consensus opti-
mization problem, especially in applications like distributed
machine learning, multi-agent optimization, etc. Several
algorithms have been proposed for solving general convex
and (sub)differentiable functions.

Decentralized algorithms can be synchronous or asyn-
chronous. A series of algorithms based on synchronous mod-
els have been proposed in literature. In synchronous model,
each node might need to wait all its neighbors’ information in
order to perform the next computation round. decentralized
(sub)gradient-based methods have been proposed in [15],
[16], [17]–[20]. However, the aforementioned methods can
only converge to a neighborhood of an optimal solution in
the case of fixed step size [21]. Modified algorithms have
been developed in [19] and [20], which use diminishing step
sizes in order to guarantee to converge to an true solution.
Other related algorithms were discussed in [22]–[28], which
share similar ideas. The D-NC algorithm proposed in [20]
was demonstrated to have an an outer-loop convergence rate
of O(1/k2) in terms of objective value error. The rate is same
as the centralized Nesterov’s accelerated gradient method.
However, the number of consensus iterations within outer-
loop is growing significantly along the iteration. Shi et al. [29]
developed a method based on correction on mixing matrix for
Decentralized Gradient Descent (DGD) method [21] without
diminishing step sizes.

Asynchronous distributed solutions have been proposed
in [30], [31] and [24]. For computation, the work in [30]
and [31] leverage the alternating direction method of mul-
tipliers (admm). Regrading communication, unicast (random
gossip) has been used such that in each iteration, one node
randomly wake up one of its neighbors to exchange informa-
tion. Tsitsiklis et al. [24] designed an asynchronous model
for distributed optimization, while in its model each node
estimates a partial vector of the global variable, which is
different from our goal of decentralized consensus such that
every node maintains an estimate for the global model.

The first work for asynchronous decentralized consensus
using random broadcast protocol was developed in [32].

However, the objective is solving the average consensus prob-
lem. The setting of the average consensus problem is that
every node holds some value and all the nodes in the network
want to obtain the average of their values. Nedic considers
general decentralized convex optimization problem (more
general and more difficult) adopting the random broadcast
setting in [33]. For the computation, a (sub)gradient-based
update rule is adopted. By replacing (sub)gradient compu-
tation with full local optimization, an improved algorithm
has been designed in terms of the number of communication
rounds [34]. Our proposed algorithm aims to solve the same
general convex optimization problem and adopts the random
broadcast communication setting since we think this commu-
nication protocol is more practical for IoT networks. The key
difference in our algorithm is that we have a different design
on what local nodes compute and what they communicate
with their neighbors. The idea of our method is combing
neighbors’ (sub)gradient information in order to further speed
up the algorithms in [33], [34]. The main contribution of
this paper is three-fold: 1) We develop a new decentralized
optimization algorithm for data analytics in IoT networks.
2) We provide convergence guarantee on the new algorithm
such that each node in the network would eventually converge
to the same optimal solution. 3) We conduct experiments on
various applications demonstrating that the proposed algo-
rithm outperforms the benchmark, and the resulting frame-
work is a promising solution for efficient data analytics in
IoT networks.

III. PROBLEM FORMULATION
The formulation of the decentralized data analytics problem
can be described as follows. Consider an undirected con-
nected network G = (V, E) where V denotes the node set and
E is the edge set. The size of network is m = |V| (cardinality
of the set V) and two nodes i and j are neighbors if (i, j) ∈ E .
Each node i has a local private objective function Fi : Rn

→

R and it captures the data acquisition process at node i. The
goal is that each node can find the global consensus solution
x ∈ X minimizing the summation of all the local objective
functions. The resulting optimization problem is expressed
as follows.

min
x∈X

{
F(x) :=

m∑
i=1

Fi(x)

}
. (1)

Solving (1) in IoT wireless networks is very challenging.
First, data is generated in a distributed way in nature. Simply
transmit all the raw data from IoT nodes into a Cloud for
post-processing is undesirable due to many issues. First, data
movement would be very costly or even infeasible due to
bandwidth and energy constraints. Second, traditional Cloud-
computing solution is not suitable for time-sensitive IoT
applications due to its high latency. Third, there are privacy
issues involved since the Cloud would be able to access all the
raw data. To address the issues above, a decentralized solution
is highly demanded. We are thus motivated to propose a
decentralized framework for data analytics in IoT networks
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FIGURE 1. Architecture for Decentralized Data Analytics in IoT Networks. Features: Data is distributed and privately owned by the IoT
nodes in the network. All the nodes must converge to a single model. Only the final model rather than the raw data would be
transmitted to Cloud if needed. Only local exchanges between immediate neighbors. No central or coordinate (fusion) node in the
network. Leveraging local IoT node processing power, which has latency around 1 ms while latency for Cloud computing is 100 ms+.

as follows. First, each node maintains an estimate for the
global model. Second, the raw data generated does not leave
the nodes and are processed locally. Each node refines its
estimate by leveraging the local data and exchanging infor-
mationwith its immediate neighbors only. Third, all the nodes
should reach consensus on the estimate for the global model
eventually. The architecture of the proposed framework is
illustrated in Figure 1.

The key challenge in implementing the framework is the
potential high communication cost because each node has
only partial knowledge of the whole network. Hence, a fast
and communication-efficient algorithm needs to be designed
in order to make decentralized data analytics in IoT networks
feasible. In the next section, we will describe the design of
our proposed algorithm.

IV. ALGORITHM DESIGN
Solving decentralized data analytics problem in IoT networks
requires that each node performs local computation based on
its own data and communicates its estimate with neighbors.
We can categorize the possible solutionmethodologies for the
problem in (1) as follows.
Updating Fashion: Synchronous vs Asynchronous. In syn-

chronous models, each node needs to wait for all its neigh-
bors’ information to perform the next update on its estimate.
Thus, node i has to wait for its slowest neighbor’s esti-
mate in order to proceed. In contrast, asynchronous models
allow each node to perform its action independent of others.
We adopt asynchronous updating rule in this work since it is
more practical for decentralized computing in IoT networks.
Communication Scheme:Unicast vs Broadcast. For decen-

tralized computing applications in IoT wireless networks,
broadcast communication is preferable than unicast since
estimates from the nodes can be propagated through the

whole network more quickly, which can leads to obtaining
faster convergence and solution.
Local Computation Complexity: It is natural that a simple

and light-weight local computation rule is demanded since
IoT nodes are nonstandard computing devices and have lim-
ited memory and computing power.

Considering the design choices above, we are motivated to
propose an asynchronous, broadcast-based algorithm involv-
ing only gradient calculation in local computation.

A. LOCAL + NEIGHBOR’S (SUB)GRADIENT
The asynchronous algorithm developed by Nedic in [33] can
be expressed as follows.

yik = θx
ik
k−1 + (1− θ) x

i
k−1,

x ik = PX
[
yik − αi,k ∇̃Fi(y

i
k )
]

(2)

We propose a new method by adding neighbor’s
(sub)gradient information into (2) in its local update rule
(second equation). The main computation step is:

yik = θx
ik
k−1 + (1− θ) x

i
k−1,

x ik = PX

yik − αi,k ∇̃Fi(yik )−ρi,k
∑
u∈Ni

∇̃Fu(xuτu,k )

 (3)

where k is the virtual global iteration number. Ni is the set
of neighbors of node i. x ik represents node i’s solution at k-
th iteration. ∇̃Fu(xuτu,k ) means some ‘‘delayed’’ (sub)gradient
of node u at point xulu . PX represents projection to the set X .
θ, αi,k and ρi,k are three parameters for node i at k-th iteration.
The choices of these parameters will be discussed in the next
section.
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The proposed algorithm can be summarized as follows.

Algorithm 1 Fast Decentralized Data Analytics (FDDA)

Input: Starting point x10 , x
2
0 , · · · , x

m
0 .

Setting: Each node is equipped with a local clock.
Main Algorithm:

1: while each node i, i ∈ {1, 2, · · · ,m} asynchronously do
2: if (node ik ’s local clock ticks now) then
3: Node ik broadcasts its estimate x ikk−1 and

(sub)gradient ∇̃Fi(x
ik
k−1) to its neighbors;

4: Node i who receives node ik ’s broadcast updates its
solution x ik based on (3).

5: end if
6: end while

V. INTERPRETATION OF THE PROPOSED ALGORITHM
A. ALGORITHM INTERPRETATION
In this section, we will interpret and show the rationale of
proposing Algorithm 1. Now assume every node i in the
network can access all the local objective functions Fi, i ∈
{1, 2, · · · ,m}. The optimal strategy for every node i to obtain
the solution then becomes as follows.

x i = argmin
x

m∑
j=1

fj (x) , ∀i ∈ {1, 2, · · · ,m} . (4)

That is, each node can directly try to minimize the sum-
mation of all the local objective functions as a ‘‘centralized’’
machine does (assuming all the data is available in this
centralized node). To solve (4), we can evaluate a proximal
operator as follows [35].

x i = proxαF (v) = argmin
x

{
1
2α
‖x − v‖2 + F (x)

}
, (5)

for ∀i ∈ {1, 2, · · · ,m}, with certain constant v (independent
of decision variable x) and parameter α > 0. Note that each
node i can obtain the optimal solution by evaluating (5), and
more importantly there is no communication needed between
nodes since F (x) contains all the information in the network.
However, this is under an ideal scenario (every node i has the
knowledge of all the local functions fj) which will not be valid
in our setting of decentralized sensor networks.

Considering that Fi is only available to node i locally
(according to our assumption in this paper), if we replace
the term F (x) in (5) with Fi and let v = yik and α = αik ,
the update rule for node i in [34] is then derived as follows.

yik = θx
ik
k−1 + (1− θ) x

i
k−1,

x ik = proxαi,kFi
(
yik
)

= argmin
x

{
1

2αi,k
‖x − yik‖

2
+ Fi(x)

}
. (6)

Further linearizing Fi (x) in (6) yields Nedic’s algorithm as
follows [33].

yik = θx
ik
k−1 + (1− θ) x

i
k−1,

x ik = argmin
x

{
1

2αi,k
‖x − yik‖

2
+

〈
∇̃Fi

(
yik
)
, x
〉}

= yik − αi,k ∇̃Fi
(
yik
)
. (7)

The deduction of the last step in (7) is based on the opti-
mality condition below.

1
αi,k

(
x ik − y

i
k

)
+ ∇̃Fi

(
yik
)
= 0.

The first step in (6) and (7) takes the weighted average of
node i’s solution and neighbor ik ’s solution which is the most
recent broadcast received. This averaging step aims tomix the
neighbor’s information and enforce consensus of solutions
among all the nodes in the network. Next, the proximal step
in (6) forces the new solution x to be close to yik (the weighted
average) and optimizes the local objective function Fi simul-
taneously. Parameter αi,k controls the trade-off between the
aforementioned two objectives.

To speed up the process of decentralized consensus opti-
mization, we are motivated to propose a new algorithm by
adding the following item into the proximal steps in (7).∑

u∈Ni

∇̃Fu(xuτu,k )
T
(
x − yik

)
(8)

The main rational behind is that when designing dis-
tributed/decentralized algorithms, a common strategy is to
mimic the operations in its centralized counterpart in the dis-
tributed environment setting. Decentralized algorithms that
have better approximate operations would achieve better con-
vergence performance. In this scenario, equation (8) contains
node i’s neighbors’ (sub)gradient information and it can be
seen that (8) is a linear approximation to

∑
u∈Ni

Fu. Compar-
ing (3) with (6) we can see that in (3) node i is (approximately)
optimizingFi (x)+

∑
u∈Ni

Fu (x)while Nedic’s method in (6)
is optimizing local objective function Fi (x) only. In (5),
the second item is F(x) :=

∑m
i=1 Fi(x) (according to (1)).

Hence, (3) (contains Fi (x) +
∑

u∈Ni
Fu (x) as the second

item) is a better approximation than Nedic’s method (contains
Fi(x) only) to F(x) in the ideal centralized case in (5). In order
to execute the computations in (3), node ik needs to broadcast
its estimate x ikk−1 and (sub)gradient ∇̃Fi(x

ik
k−1) to its neighbors

(described in Algorithm 1).

B. PARAMETER SETTINGS
In the main computation step (3), there are three parameters
each node needs to configure. In this section, we describe the
settings for them and also the assumptions required for the
algorithm.

1) SETTING FOR θ
The first equation in (3) shows that node imixes its neighbor’s
estimate at x ikk−1 with its own estimate x ik−1 in a weighted
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FIGURE 2. Network model and asynchronous computing. Left: An example of decentralized IoT wireless networks. Right: Asynchronous
computing model. An iteration begins when any node’s local clock ticks.

averagemanner. Thus, the parameter θ determines the relative
weights between the aformentioned two estimates. In theory,
the proposed algorithm can converge with any positive con-
stant satisifing 0 < θ < 1. For simplicity, we set θ = 0.5 for
all the tests in this paper.

2) SETTING FOR αI,K
In the second equation of (3), we can see the term yik −
αi,k ∇̃Fi(yik ). This can be considered as the gradient descent
step at point yik , and αi,k is the step size for node i at iteration
k [36]. This sequence needs to be decreasing in order to
ensure convergence of Algorithm 1. In the meanwhile, small
step sizes will cause poor convergence performance. Thus,
a sequence that ‘‘gradually’’ decreases is needed. In this
work, we choose αi,k to be the reciprocal of the number of
updates node i has performed till k-th iteration. Also, this
setting allows node i to choose the parameter independently
and asynchronously at each iteration [33].

3) SETTING FOR ρI,K
As discussed in previous, one key component of the proposed
algorithm is integrating neighbors gradient information in
order to speed up the process of finding the optimal solution.
Similar to the role of αi,k , ρi,k can be considered as the
step size for neighbors gradient. It is used to control how
much neighbors information (including error) is combined at
each iteration for convergence. In our convergence analysis,
we realized that parameter ρi,k needs to satisfy Assumption 3
(described in the next section). Users have some flexibility
to choose combination of αi,k and ρi,k but a simple and
reasonable choice is setting ρi,k = αi,k . Note that different
parameter setting may affect the convergence performance
and to have a fair comparison with the benchmark, we adopt
the same setting for all the methods in the experiment section.

4) ASSUMPTIONS
Assumption 1: The (sub)gradient of function Fi,∀i ∈
{1, 2, · · · ,m} is bounded. That is, ‖∇̃Fi‖ ≤ G where G is
some positive constant.
Assumption 2: The constraint set X is bounded.

Assumption 3:
∑
∞

k=1
ρi,k
kαi,k

<∞ almost surely.
Remark 1: Assumptions 1-3 are mainly for the conver-

gence analysis purpose. They are conditions for our analysis
to prove the convergence of the proposed algorithm. Assump-
tion 1 is about bounded gradient, assumption 2 is about
bounded constraint set (basically means the optimization
problem has finite instead of infinite number of solutions).
Both of them are common assumptions in analyzing dis-
tributed algorithms in literature [18]–[21], [29]. Assumption
3 is specific to our proposed algorithm. There are two user-
defined parameters alpha and rho involved and assumption
3 indeed gives condition on selecting the two parameters.
Once parameters are chosen appropriately, assumption 3 can
be satisfied.

C. A TOY EXAMPLE
We assume Algorithm 1 is performed in a decentralized IoT
network illustrated in Figure 2. There are four nodes in this
cyclic network and it contains thatN1 = {2, 3},N2 = {1, 4},
N3 = {1, 4}, N4 = {2, 3}. The algorithm runs as follows.
Iteration 1: Node 2’s clock ticks and it broadcasts x20 and
∇̃f2

(
x20
)
. Node 1 and 4 receive the broadcast and use x20 and

∇̃f2
(
x20
)
to update x11 and x41 based on (3). Set x21 ← x20 ,

x31 ← x30 .
Iteration 2: Node 1’s clock ticks and it broadcasts x11 and
∇̃f1

(
x11
)
. Node 2 and 3 receive the broadcast and use x11 and

∇̃f1
(
x11
)
to update x22 and x32 based on (3). Set x12 ← x11 ,

x42 ← x41 .
Iteration 3: Node 4’s clock ticks and it broadcasts x42 and
∇̃f4

(
x42
)
. Node 2 and 3 receive the broadcast and use x42 and

∇̃f1
(
x11
)
+ ∇̃f4

(
x42
)
to update x23 and x33 based on (3). Set

x13 ← x12 , x
4
2 ← x42 .

Iteration 4: Node 3’s clock ticks and it broadcasts x33 and
∇̃f3

(
x33
)
. Node 1 and 4 receive the broadcast and use x33 and

∇̃f2
(
x20
)
+ ∇̃f3

(
x33
)
to update x14 and x44 based on (3). Set

x24 ← x23 , x
3
4 ← x33 .

It can be seen that after four iterations, each node has
gathered all its neighbors’ (sub)gradient information. As the
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algorithm goes on, the neighbors’ (sub)gradient information
will be updated for each node.

VI. CONVERGENCE ANALYSIS
In this section, we conduct convergence analysis on the
proposed Algorithm 1. The main results are summarized in
Theorem 7 and Theorem 8. Required lemmas for deriving the
main results are shown as follows.
Lemma 1 (The supermartingale convergence theorem [

[37], Proposition 8.2.10]): Assume σk , ϕk , ωk , and εk are
nonnegative random variables and assume the following hold

E (σk+1|�k) ≤ σk − ϕk + εk almost surely,
∞∑
k=1

εk <∞ almost surely

where E (σk+1|�k) represents the conditional expectation
given all the past history of σk , ϕk , and εk up to iteration
k. Then it concludes that

σk → σ almost surely,
∞∑
k=1

ϕk <∞ almost surely

where σ ≥ 0 is some random variable.
Lemma 2 ( [33] lemma 2): The random matrix Wk −

1
m11

TWk is independent and has identical distribution with
each other that µ < 1.

µ := µ

(
E

[(
Wk−

1
m
11TWk

)T (
Wk−

1
m
11TWk

)])
(9)

where µ(A) denotes the largest eigenvalue of a symmetric
matrix A.
Lemma 3 [33]: The upperbounds of step size αi,k are

obtained as follows when k is large enough (k > k̃(m, q))

αi,k ≤
2
kδi
, α2i,k ≤

4m2

k2 p2∗
,

∣∣∣∣αi,k − 1
kδi

∣∣∣∣ ≤ 2

k
3
2−qp2∗

,

where δi is the total probability that node i updates. p∗ denotes
the minimum among all pij’s. q ∈

(
0, 12

)
is some constant.

k̃(m, q) is an integer determined by the number of nodes m
and q.
Lemma 4 ( [38] Proposition 1.1.9): The projection opera-

tion PX in (3) is nonexpansive.
Lemma 5: The following inequality holds for arbitrary

a, b, c ∈ X, ∀i ∈ V .

∇̃Fi (a)T (a− b) ≥ Fi (c)− Fi (b)− G ‖a− c‖ .
Proof: By the property of (sub)gradient and the assump-

tion of bounded (sub)gradient, we can have:

∇̃Fi (a)T (a− b) ≥ Fi (a)− Fi (b)

≥ Fi (c)− ∇̃Fi (c)T (c− a)− Fi (b)

≥ Fi (c)−
∥∥∥∇̃Fi (c)∥∥∥ ‖a− c‖ − Fi (b)

≥ Fi (c)− G ‖a− c‖ − Fi (b) .

�

Lemma 6: The following two relations hold

m∑
i=1

E
[∥∥∥yik − x∥∥∥ |�k−1

]
≤

m∑
i=1

∥∥∥x ik−1 − x∥∥∥ ,
m∑
i=1

E
[∥∥∥yik − x∥∥∥2 |�k−1

]
≤

m∑
i=1

∥∥∥x ik−1 − x∥∥∥2 .
Proof: By the convexity of norm function, the definition

of yik and the property that Wk is a stochastic matrix, E [Wk ]
is doubly stochastic, it follows

m∑
i=1

E
[∥∥∥yik − x∥∥∥ |�k−1

]

=

m∑
i=1

E

∥∥∥∥∥∥
m∑
j=1

[Wk ]i,j
(
x jk−1 − x

)∥∥∥∥∥∥ |�k−1


≤

m∑
i=1

E

 m∑
j=1

[Wk ]i,j
∥∥∥x jk−1 − x∥∥∥ |�k−1


=

m∑
i=1

m∑
j=1

E
[
[Wk ]i,j |�k−1

] ∥∥∥x jk−1 − x∥∥∥
=

m∑
j=1

m∑
i=1

E
[
[Wk ]i,j |�k−1

] ∥∥∥x jk−1 − x∥∥∥
≤

m∑
j=1

∥∥∥x jk−1 − x∥∥∥ .
It completes the proof for the first relation and the second
relation can be proved in a similar manner with the convexity
of square norm function. �
Remark 2: For our convergence analysis, the key lemma

is the first one ‘‘The supermartingale convergence theorem’’.
It provides a framework for proving convergence of iterative
algorithms. The challenge is that how to bound the sequences
in our algorithm and fit them into this framework in order to
obtain the convergence proof.

A. ALMOST SURE CONVERGENCE
Theorem 7: Let

{
x ik
}
,∀i ∈ V, k ≥ 0 be the sequence

generated by Algorithm 1 and given that all the assumptions
are satisfied. Then we can have the following almost surely:

∞∑
k=1

1
k
‖x ik−1 − x̄k−1‖ <∞, and lim

k→∞
‖x ik − x̄k‖ = 0,

where x̄k−1 = 1
m

∑m
i=1 x

i
k−1.

Proof: See APPENDIX A. �
Theorem 8: Let

{
x ik
}
,∀i ∈ V, k ≥ 0 be the sequences

generated by Algorithm 1 and given that all the assumptions
are satisfied. Then the sequences converges to a same optimal
point almost surely for any node i.

Proof: See APPENDIX B. �
Remark 3: Theorem 7 indicates that every node in the

network will reach to a consensus on the estimate of the
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global model eventually. Theorem 8 implies that each node
would reach to the same optimal solution.

Both results in Theorem 7 and 8 are interesting in the-
ory since we would be able to randomly select one node’s
estimate as our final solution. Also, this solution through
decentralized collaborative computing would be the same as
the centralized solution leveraging all the data in the nodes.
In some time-sensitive real-world applications, we would
like to have a solution that can be quickly generated and
also it optimizes the global function (summation of all the
local objective functions). But if we just pick up one node’s
estimate at early stage (the algorithmmight not converge yet),
it might not be desirable to use it as the final solution since the
estimates among the nodes might have vast difference at that
point andwewill not know if the solution is good or bad. Thus
a common strategy is to average the estimates from some
nodes available. In this situation, the speed of the algorithm in
decreasing the error (optimize the objective value) would be
a more important metric than how fast the nodes can reach
consensus on their estimates. Note that if we are allowed
to choose only a few nodes and access their estimates for
calculating the final solution, a list of ‘‘critical’’ nodes needs
to be determined. Fortunately, the weight of each node is
easy to determine. The objective function in the decentralized
consensus problem is the summation of all the local objective
functions thus the node with more data is considered to be
more important. The node with more data will dominate the
overall objective function naturally.

VII. CASE STUDY
In this section, we perform experiments on two applications:
decentralized seismic tomography and decentralizedmachine
learning in this section. The proposed algorithm 1 and the
benchmark method (Nedic’s method in [33]) are tested on
both applications for comparison. The experiments are con-
ducted in a distributed network emulator named Common
Open Research Emulator (CORE) and EMANE network
emulator [40], [41]. Tests are performed on a MacBook Pro
with an Intel dual core i5-2.3G HZ CPU and 8 GB memory.

A. DECENTRALIZED SEISMIC TOMOGRAPHY
In this section, we illustrate a motivating application - Decen-
tralized Seismic Tomography and demonstrate how the pro-
posed Algorithm 1 fits into it.

The investigated problem is called travel-time tomography
inversion, which can be formulated as solving a linear system
of equations as follows [42]:

Ax = b, (10)

where matrix A stores the ray information from the sources
to the receivers. Vector b is constructed using travel-time
information. x is the decision variable we want to solve,
which contains the slowness value (reciprocal of velocity) in
each block. The inversion problem in (10) is equivalent to

FIGURE 3. 2-D Seismic Imaging Model. The green dots are the seismic
event sources. The blue squares are the sensors. The red lines are the
rays traveling from the sources to the sensors (receivers). The goal is
reconstruction of the seismic velocity model (structure) of the square area
in which the computed travel times agree with the observed travel times.

FIGURE 4. Ground Truth for the structure of the square region in Figure 3.
The color in each small block represents its velocity. Blocks with high
velocity will take less time for waves to go through them.

finding the least-squares solution x as follows.

x = argmin
x
‖ Ax − b ‖2 (11)

The linear system in (10) is usually inconsistent due to
noise-corrupted vector b. Regularization technique is thus uti-
lized to reconstruct a better tomography. We adopt Tikhonov
regularization as follows since it is the most popular one used
for the seismic inversion problem in literature.

min
x

1
2
‖Ax − b‖22 + λ

2
‖x‖22 (12)

In the next, we introduce the formulation for the decen-
tralized seismic imaging problem. The ray information and
travel-time information in A and b are originally gener-
ated in a distributed manner. Thus we can equivalently
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FIGURE 5. 2-D Model-Centralized Solution. This is the solution for the
original centralized problem in (12) assuming that all the raw data are
collected in a central place for processing. This centralized solution is
computed using LSQR method [39], and is seen as the best benchmark for
all the decentralized algorithms in terms of the tomography results.

FIGURE 6. 2-D Model-Decentralized Solution using Algorithm 1. We let
each node in the network run Algorithm 1 and randomly pick a node’s
solution after 80 global iterations and generate its tomography.

decompose (12) such that, the local objective function Fi for
node i is expressed as follows.

Fi =
1
2
‖Aix − bi‖22 + λ

2
i ‖x‖

2
2, (13)

where the data in Ai and bi is privately owned by i-th IoT node
only. Foe the seismic tomography problem, two different data
sets have been used to test the performance of the proposed
algorithm: a 2-D synthetic data set, and a 3-D synthetic
seismic tomography data set. The data sets are constructed
and used to simulate performing seismic tomography in IoT
wireless networks. The regularization parameter λ is set to 1
in all scenarios and λi can be set accordingly (all the nodes
have the same regularization parameter). The resolution in the
seismic model represents the number of blocks along the x, y
and z-axis over the interested region.

FIGURE 7. 2-D Model-Decentralized Solution using the benchmark in
[33]. We pick the same node as in Figure 6 for Algorithm 1 and generate
the image.

FIGURE 8. Ground Truth of the 3-D Seismic Imaging Model. The model
contains a magma chamber (low velocity area) in a 10 km3 cube.

1) TESTS ON SYNTHETIC 2-D SEISMIC DATA SET
We first test the performance of Algorithm 1 on a synthetic
2-D seismic data set. The data set is generated by using
the code in [43]. A seismic tomography test problem is cre-
ated with a 2-D square region. The receivers (seismographs)
(blue dots) are scattered along the left and top boundary.
The seismic event sources are located on the right boundary
(green dots). The seismic rays travel from each source to each
receiver (red lines) (See Fig. 3 for details).

The test region is partitioned into 32×32 small blocks (the
resolution is 32×32) and our goal is to calculate the velocity
information in these blocks (i.e. value of x). The number of
nodes in the networks is 64 and the number of seismic events
is 128. Thus, the size of matrix A is 8192 × 1024 and x is
1024 × 1, b is 8192 × 1, accordingly. In addition, the size
of each sub-matrix Ai,∀i is 128 × 1024. Vector b has been
corrupted with a 5% Gaussian noise. The communication
network is constructed such that each node has an average
degree of 3 (3 immediate neighbors).
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FIGURE 9. Evaluation of convergence speed using the 3-D seismic imaging data set. (a) is the plot for the disagreement term ‖x i
k − x̄k‖ described in

Theorem 7. It tracks how close every node in the network reaches the consensus along the iterations. (b) is the illustration of average objective value
defined in (13) considering all the nodes in the network. In this setting, each node i performs one broadcast to send its estimate x i

k−1 and (sub)gradient
∇̃Fi (x i

k−1) within one iteration.

FIGURE 10. Evaluation of convergence speed using the 3-D seismic imaging data set. (a) is the plot for the disagreement term ‖x i
k − x̄k‖ described in

Theorem 7. It measures how close each node in the network reaches the agreement along the iterations. (b) illustrates how fast the average objective
value defined in (13) decreases along the iterations. In this setting, each node i performs two broadcasts to send its estimate x i

k−1 and (sub)gradient
∇̃Fi (x i

k−1) within one iteration.

The goal of seismic tomography is to generate the
‘‘tomography’’ of the physical structure around some region.
In Figure 4, it shows the Ground Truth for the structure of
the square region in the 2-D seismic imaging model. We aim
to recover the same tomography as shown in Figure 4 but in
realty we are not able to do that due to noise in the measure-
ment data. Figure 5 depicts the tomography result calculated
using a centralized solver assuming all the measurement data
is collected in a central place. Since the data set generated
has added noise, Figure 5 is not exactly the same as the
ground truth. Nevertheless, this is the best we can do. Our
proposed algorithm tries to obtain the same ‘‘ideal’’ solution
but in a decentralized manner. The centralized solution can

be used to determine if any decentralized solution is close
to the optimal. The tomography results in Figure 6 and 7 are
obtained using the proposed Algorithm 1 and Nedic’s method
(the benchmark), respectively. Note that Figure 6 is closer
to the centralized solution shown in Figure 5 than Figure 7
visually. This demonstrates the superiority of our algorithm
over the benchmark.

2) TESTS ON SYNTHETIC 3-D SEISMIC DATA SET
In this section, we evaluate the proposed algorithm using a
simulated seismic data set from a 3-D synthetic model of
resolution 32× 32× 32. The ground truth of the 3-D seismic
model is shown in Figure 8. There are 100 nodes that are
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FIGURE 11. Evaluation of convergence speed using the logistic regression data set. (a) and (b) demonstrate the performance of algorithm in optimizing
the average objective value along the iterations. Setting in (a) uses one broadcast in each iteration to send both model estimate and the gradient
information while two communication rounds are taken in (b) to send the aforementioned two quantities separately.

FIGURE 12. Evaluation of convergence speed for least-square problem. (a) and (b) demonstrate the performance of algorithm in terms of the

residual value along the iterations. The residual at iteration k is defined as
‖xk−x∗‖
‖x0−x∗‖ , where xk = [x1

k , x2
k , · · · , xm

k ] contains each node’s estimate
at iteration k , and x∗ denotes the matrix assuming all the nodes obtain the optimal solution x∗ (ideal case). Intuitively, the residual measures
how close the nodes’ estimates to the optimal solution. Setting in (a) uses a wheel network and (b) uses a circle network.

randomly distributed on top of the region. We simulate 400
seismic events and then compute the travel times from each
source to each receiver based on the ground truth. Similar
as the 2-D data set, the dimension of matrix A is 40, 000 ×
32, 768. For the communication network, the average degree
for each node is set to 10.

The convergence behavior of the proposed algorithm is
depicted in Figure 9 and 10. Note that we test our algorithm
using the same data set. The difference is that we used the
normal setting in Figure 9 that one communication round is
required in each iteration while in Figure 10 we assumed that
each node in our proposed algorithm needs to perform two
communication rounds to send the info to its neighbors (the

benchmark still uses the same setting in Figure 9 that only
one communication round is needed). We would like to show
how much improvement our proposed algorithm has over the
benchmark. For example, the accuracy level the red curve
reaches at 1000-th communication round in Figure 9(a) would
be achieved at 2000-th communication round in Figure 10(a).
Two metrics are used to test the convergence speed: how fast
the algorithm optimizes the objective value and how fast all
the nodes reach consensus. In short, our proposed algorithm
converges faster than the benchmark in this 3-D seismic
imaging data set illustrated in Figure 9(a) and the similar
performance (even the red curve is above the green curve at
the large communication rounds) shown in Figure 10(a) is due

181540 VOLUME 7, 2019



L. Zhao: Fast Decentralized Data Analytics in IoT Wireless Networks

to ‘‘unfair’’ setting for our proposed algorithm, which we did
in purpose.

B. DECENTRALIZED MACHINE LEARNING
In this section, we evaluate the performance of our proposed
methods in a machine learning task: logistic regression. The
task can be formulated as an optimization problem below:

min
x

N∑
i=1

log (1+ exp (−bi〈ai, x〉))+ λ‖x‖22. (14)

We use the pre-processed data set in [44], which has around
20, 000 newsgroup documents. To apply the decentralized
algorithms into this problem, a random communication net-
work is constructed with 10 nodes and each node has 2
immediate neighbors on average. The local objective function
for node i is expressed as:

Fi(x(i))=
∑
j∈Ni

log
(
1+exp

(
−bj〈aj, x(i)〉

))
+λi‖x(i)‖22. (15)

Notice that our goal is to test the speed of the proposed
decentralized algorithm in obtaining the ‘‘ideal’’ solution for
the problem in (14). We are not focus on testing whether the
logistic regression model used is good for the data set or not.

Figure 11 demonstrates the fast convergence of the pro-
posed algorithm in decreasing the objective value (training
the data) and its effectiveness in decentralized machine learn-
ing application.

C. DECENTRALIZED LEAST-SQUARE PROBLEM
In this section, we evaluate our algorithm for the least-
square [45], which has wide applications in statistics and
data analytics such as linear regression, data fitting [46]. The
formulation for the conventional centralized least-square can
be cast as a optimization problem as follows.

min
x

1
2
‖Ax − b‖22. (16)

To apply the decentralized algorithms, we first convert the
above into its decentralized formulation as follows.

min
x

m∑
i=1

1
2
‖Aix − bi‖22. (17)

The local objective function for node i is thus Fi(x) =
1
2‖Aix − bi‖22. Matrix A is randomly generated with size
50 × 10. Each element in the matrix A and vector b is
sampled from a uniform distribution over [0, 1). We conduct
the experiments with 10 (i.e. m = 10) nodes in the net-
work. A and b are evenly decomposed for all the nodes. The
dimension of Ai and bi are 5 × 10 and 5 × 1, respectively.
Regarding the network topology, a circle network and a wheel
network are both tested. The experiment results are illustrated
in Figure 12. Note that in both cases, our proposed FDDA
algorithm significantly outperforms the benchmark.

VIII. CONCLUSION
We proposed a fast decentralized data analytics framework
in IoT wireless networks. The framework is based on a new
light-weight, asynchronous, and broadcast-based algorithm,
which exhibits the following merits: 1) No data collection to
central place required; 2) Fast convergence in terms of opti-
mizing the objective; 3) No coordinator required and each IoT
node can run the algorithm asynchronously; 4) Data Privacy
of the nodes in the network is preserved. Furthermore, our
developed decentralized mechanism is scalable in the sense
that the mechanism leverages the computational resource of
all the nodes and let them process their data locally and
in parallel. Finally, various case studies demonstrate that
the proposed framework is transferable once the applica-
tion problem can be formulated in the convex optimization
context, and capable of solving a large class of Big Data
computing problems.

APPENDIXES
APPENDIX A
PROOF OF THEOREM VI.7

Proof: We follow the framework adopted in [33] to
prove this theorem. Let stk be the vector with components[
x ik
]
t ,∀i ∈ V , where

[
x ik
]
t is the t-th element of node i’s

estimate at iteration k . Then it follows that:

stk = Wkstk−1 + d
t
k , (18)

where d tk is a vector defined as follows.[
d tk
]
i =

[
−αi,k

(
∇̃Fi(yik )+ e

i
k

)]
t
, i ∈ Jk (19)

And
[
d tk
]
i = 0 otherwise. Using the definition for stk , it fol-

lows that:

[x̄k ]t =
1
m
1T stk (20)

where 1 = [1, 1, · · · , 1]T denotes a vector containing all 1’s.
Also, plugging (20) into (18) yields:

[x̄k ]t =
1
m

(
1TWkstk−1 + 1T d tk

)
. (21)

Using (18) and (21) leads to the following.

stk − [x̄k ]t 1 =
(
Wk −

1
m
11TWk

)
stk−1

+

(
I−

1
m
11T

)
d tk (22)

where I represents the identity matrix. Using the definition
and the stochasticity property of matrix Wk , it follows that
Wk1 = 1. Further, it derives the following:(

Wk −
1
m
11TWk

)
[x̄k−1]t 1 = 0. (23)

Adding the right part of (23) into both sides of (21) yields:

stk − [x̄k ]t 1 =
(
Wk −

1
m
11TWk

) (
stk−1 − [x̄k−1]t 1

)
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+

(
I−

1
m
11T

)
d tk (24)

To simplify the notation, we define

Qk = Wk −
1
m
11TWk , U = I−

1
m
11T

Taking the norm and conditional expectation on both sides of
equation (24) yields:

E
[∥∥stk − [x̄k ]t 1

∥∥ |�k−1
]

≤ E
[∥∥Qk (stk−1 − [x̄k−1]t 1

)∥∥ |�k−1
]

+E
[∥∥Ud tk∥∥ |�k−1

]
(25)

where �k is the σ -algebra containing the past history up to
iteration k , i.e.

�k =

{
x i0, it , jt ,∀i ∈ V, t = 0, 1, · · · k

}
. (26)

Lemma 2 implies that the matrix is independent of the past
history and µ < 1 (µ is the largest eigenvalue mentioned
there). Based on that, the first term on the right-hand side
of (25) can be bounded as follows.

E
[∥∥Qk (stk−1 − [x̄k−1]t 1

)∥∥2 |�k−1

]
≤ µ

∥∥stk−1 − [x̄k−1]t 1
∥∥2 . (27)

Applying the property E [‖z‖] ≤
√
E
[
‖z‖2

]
into (27) yields:

E
[∥∥Qk (stk−1 − [x̄k−1]t 1

)∥∥ |�k−1
]

≤
√
µ
∥∥stk−1 − [x̄k−1]t 1

∥∥ . (28)

Now the second item in the right hand side of (25) needs
to be bounded. It can be shown that U is a projection matrix:

U1 =
(
I−

1
m
11T

)
1 = 0. (29)

The norm of matrix U is thus 1. Furthermore, the following
can be obtained (also from the definition of d tk in (19)):∥∥Ud tk∥∥2 ≤ ∥∥d tk∥∥2 ≤∑

i∈Jk

∥∥∥αi,k (∇̃Fi(yik )+ eik)∥∥∥2 . (30)

Lemma 3 indicates the bound for αi,k . Based on that, the right
hand side of (30) can be further bounded as follows.∥∥Ud tk∥∥2 ≤∑

i∈Jk

α2i,k

∥∥∥∇̃Fi(yik )+ eik∥∥∥2
≤

4m2

k2p2∗

∑
i∈Jk

∥∥∥∇̃Fi(yik )+ eik∥∥∥2 . (31)

Taking conditional expectation on both sides of (31)
together with the property that |Jk | ≤ m yields:

E
[∥∥Ud tk∥∥2 |�k−1

]
≤

4m3

k2p2∗

∥∥∥∇̃Fi(yik )+ eik∥∥∥2 . (32)

We can obtain the following by using the inequalityE [‖z‖] ≤√
E
[
‖z‖2

]
again.

E
[∥∥Ud tk∥∥ |�k−1

]
≤

2m
√
m

kp∗

∥∥∥∇̃Fi(yik )+ eik∥∥∥ . (33)

Now the upper bounds for all the terms on the right hand
side of (25) have been obtained. Plugging (28) and (33) into
(25) yields

E
[∥∥stk − [x̄k ]t 1

∥∥ |�k−1
]

≤
√
µ
∥∥stk−1−[x̄k−1]t 1∥∥+ 2m

√
m

kp∗

∥∥∥∇̃Fi(yik )+eik∥∥∥ . (34)

Then the following can be obtained (since 1
k−1 >

1
k ):

1
k
E
[∥∥stk − [x̄k ]t 1

∥∥ |�k−1
]
≤

1
k − 1

∥∥stk−1 − [x̄k−1]t 1
∥∥

−
1−
√
µ

k

∥∥stk−1 − [x̄k−1]t 1
∥∥

+
2m
√
m

k2p∗

∥∥∥∇̃Fi(yik )+ eik∥∥∥ . (35)

Leveraging the second statement in Lemma 1, it can be shown
that the following holds almost surely for any t .

∞∑
k=1

1
k

∥∥stk−1 − [x̄k−1]t 1
∥∥ <∞. (36)

Using the definition of stk again can show that the following
holds almost surely.

∞∑
k=1

1
k

∥∥∥x ik−1 − x̄k−11∥∥∥ <∞. (37)

At this point, we have verified the first claim in Theorem 7.
For the remaining part, it needs to show the following holds
almost surely first.

lim
k→∞

∥∥stk − [x̄k ]t 1
∥∥ = 0. (38)

From equation (36), we can derive that:

lim
k→∞

inf
∥∥stk − [x̄k ]t 1

∥∥ = 0. (39)

To prove (38), we need to show that
∥∥stk − [x̄k ]t 1

∥∥ converges
when k →∞. To achieve that, first take the square norm and
conditional expectation on both sides of (24). The derivations
are shown as follows.

E
[∥∥stk − [x̄k ]t 1

∥∥2 |�k−1

]
≤ E

[∥∥Qk (stk−1 − [x̄k−1]t 1
)∥∥2 |�k−1

]
+2

√
E
[∥∥Qk (stk−1 − [x̄k−1]t 1

)∥∥2 |�k−1

]
×

√
E
[∥∥Ud tk∥∥2 |�k−1

]
+ E

[∥∥Ud tk∥∥2 |�k−1

]
. (40)

Plugging (27) - (28) and (32) - (33) into (40) yields

E
[∥∥stk − [x̄k ]t 1

∥∥2 |�k−1

]
≤ µ

∥∥stk−1 − [x̄k−1]t 1
∥∥2 + 4m3

k2 p2∗

∥∥∥∇̃Fi(yik )+ eik∥∥∥2
+
√
µ
∥∥stk−1 − [x̄k−1]t 1

∥∥ 2m
√
m

kp∗

∥∥∥∇̃Fi(yik )+ eik∥∥∥
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≤ µ
∥∥stk−1 − [x̄k−1]t 1

∥∥2 + 8m3

k2 p2∗

(
4m4

k2 p2∗
+ 1

)
G2

+
√
µ
∥∥stk−1 − [x̄k−1]t 1

∥∥ 2m
√
m

kp∗

(
2m2

kp∗
+ 1

)
G (41)

Using (36) and the first statement in Lemma 1, it can be
seen that

∥∥stk − [x̄k ]t 1
∥∥ converges almost surely for any t .

Now (38) is proved. The almost sure convergence of the dis-
agreement can be immediately obtained (second conclusion)
according to the definition of stk . This completes the entire
proof of Theorem 7. �

APPENDIX B
PROOF OF THEOREM VI.8

Proof: The proof plan is to use the supermartingale con-
vergence theorem in Lemma 1, which is commonly adopted
to prove the almost sure convergence. We follow the frame-
work adopted in [33], [34] to prove this theorem. The chal-
lenge lies in bounding and fitting the terms in Lemma 1. Now
consider node i with i ∈ Jk . First, subtract x (some point
in the feasible set) and then take square norm on both sides
of the second equation in (3). We can obtain the following
using the nonexpansive property of the projection operation
described in Lemma 4.∥∥∥x ik − x∥∥∥2 ≤ ∥∥∥yik − x∥∥∥2 + α2i,k ∥∥∥∇̃Fi(yik )+ eik∥∥∥2

−2αi,k
(
∇̃Fi(yik )+ e

i
k

)T (
yik − x

)
, (42)

where eik =
ρi,k
αi,k

(∑
u∈Ni
∇̃Fu(xuτu,k )

)
. Combing αi,k =(

αi,k −
1
kδi

)
+

1
kδi

and the third inequality in Lemma 3,
the following inequality holds.∥∥∥x ik − x∥∥∥2 ≤ ∥∥∥yik − x∥∥∥2 + α2i,k ∥∥∥∇̃Fi(yik )+ eik∥∥∥2

−
2
kδi

(
∇̃Fi(x ik )+ e

i
k

)T (
yik − x

)
+

∣∣∣∣αi,k − 1
kδi

∣∣∣∣ (∇̃Fi(yik )+ eik)T (yik − x)
≤

∥∥∥yik − x∥∥∥2 + α2i,k ∥∥∥∇̃Fi(yik )+ eik∥∥∥2
−

2
kδi

(
∇̃Fi(yik )+ e

i
k

)T (
yik − x

)
+

4
k3/2−qp2∗

(
∇̃Fi(yik )+ e

i
k

)T (
yik − x

)
(43)

Using the fact that 2 aT b ≤ ‖a‖2+‖b‖2, the inner product
on the right hand side of (43) can be further bounded and the
the following inequality holds.∥∥∥x ik − x∥∥∥2
≤

∥∥∥yik − x∥∥∥2 + α2i,k ∥∥∥∇̃Fi(yik )+ eik∥∥∥2
−

2
kδi

(
∇̃Fi(yik )+ e

i
k

)T (
yik − x

)
+

2
k3/2−qp2∗

(∥∥∥∇̃Fi(yik )+ eik∥∥∥2 + ∥∥∥yik − x∥∥∥2)

≤ (1+ bk )
∥∥∥yik − x∥∥∥2 − 2

kδi

(
∇̃Fi(yik )+ e

i
k

)T (
yik − x

)
+

(
α2i,k + bk

) ∥∥∥∇̃Fi(yik )+ eik∥∥∥2 , (44)

where bk = 2
k3/2−qp2∗

. Since function Fi is convex and the
(sub)gradient is bounded, the following inequality holds for
arbitrary a, b, and c (Lemma 5).

∇̃Fi(a)T (a− b) ≥ Fi(c)− Fi(b)− G ‖a− c‖ . (45)

Plugging (45) into (44) with a = yik , b = x, c = x̄k−1 yields∥∥∥x ik − x∥∥∥2 ≤ (1+ bk )
∥∥∥yik − x∥∥∥2

−
2
kδi

(Fi(x̄k−1)− Fi(x))

+
2G
kδi

∥∥∥yik − x̄k−1∥∥∥− 2
kδi

(
eik
)T (

yik − x
)

+

(
α2i,k + bk

) ∥∥∥∇̃Fi(yik )+ eik∥∥∥2 . (46)

Take conditional expectation on both sides of (46) and then
apply Lemma 6, it follows that

E
[∥∥∥x ik − x∥∥∥2 |�k−1, ik , Jk

]
≤ (1+ bk )

∥∥∥yik − x∥∥∥2
−

2
kδi

(Fi(x̄k−1)− Fi(x))+
2G
kδi

∥∥∥yik − x̄k−1∥∥∥
+

2
kδi

E
[
−

(
eik
)T (

yik − x
)
|�k−1, ik , Jk

]
+

(
α2i,k + bk

)
E
[∥∥∥∇̃Fi(yik )+eik∥∥∥2 |�k−1, ik , Jk

]
. (47)

Leveraging the facts that
∣∣aT b∣∣ ≤ ‖a‖ ‖b‖, ‖a+ b‖2 ≤

2 ‖a‖2 + 2 ‖b‖2 and the bounded (sub)gradient assumption
again, the two terms associatedwith eik in (47) can be bounded
as follows.

−

(
eik
)T (

yik − x
)
≤

∥∥∥eik∥∥∥ ∥∥∥yik − x∥∥∥
≤
ρi,k

αi,k

∥∥∥∥∥∥
∑
u∈Ni

∇̃Fu(xuτu,k )

∥∥∥∥∥∥
∥∥∥yik − x∥∥∥

≤
ρi,k

αi,k

∑
u∈Ni

∥∥∥∇̃Fu(xuτu,k )∥∥∥
∥∥∥yik − x∥∥∥

≤
ρi,k |Ni|G
αi,k

∥∥∥yik − x∥∥∥ , (48)∥∥∥∇̃Fi(yik )+ eik∥∥∥2 ≤ 2
∥∥∥∇̃Fi(yik )∥∥∥2 + 2

∥∥∥eik∥∥∥2
≤ 2

(
ρi,k |Ni|G
αi,k

)2

+ 2G2, (49)

where |Ni| is the cardinality of set Ni. Recall that δi is
the probability of node i updates (the event that it receives
broadcast from any of its neighbors and each node i will
be selected uniformly at certain iteration). Hence, inequality
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δi ≥
p∗
m holds. Combining this fact with (48)-(49), (47) can

be further deducted as follows.

E
[∥∥∥x ik − x∥∥∥2 |�k−1, ik , Jk

]
≤ (1+ bk )

∥∥∥yik − x∥∥∥2 − 2
kδi

(Fi(x̄k−1)− Fi(x))

+
2mG
kp∗

∥∥∥yik − x̄k−1∥∥∥+ 2m |Ni|Gρi,k
kp∗αi,k

∥∥∥yik − x∥∥∥
+

(
α2i,k + bk

)[
2
(
ρi,k |Ni|G
αi,k

)2

+ 2G2

]
. (50)

Now let x = x∗ where x∗ is an optimal point of the
objective function. Substituting this into (50) yields

E
[∥∥∥x ik − x∗∥∥∥2 |�k−1, ik , Jk

]
≤ (1+ bk )

∥∥∥yik − x∗∥∥∥2 − 2
kδi

(
Fi(x̄k−1)− Fi(x∗)

)
+
2mG
kp∗

∥∥∥yik − x̄k−1∥∥∥+ 2m |Ni|Gρi,k
kp∗αi,k

∥∥∥yik − x∗∥∥∥
+

(
α2i,k + bk

)[
2
(
ρi,k |Ni|G
αi,k

)2

+ 2G2

]
. (51)

It can be shown that yik ∈ X using the definition of yik
and the assumption that constraint set X is bounded. Thus,∥∥yik − x∗∥∥ can be upper-bounded as follows.∥∥∥yik − x∗∥∥∥ ≤ dX , where dX = max

a,b∈X
‖a− b‖ . (52)

Incorporating the case when i 6∈ Jk (x ik = yik ) with the
current formula (which assumes i ∈ Jk ), and also with the
definition that δi denotes the total probability that node i
updates, we can obtain (also with fact in (52))

E
[∥∥∥x ik − x∗∥∥∥2 |�k−1

]
≤ (1+ bk )E

[∥∥∥yik − x∗∥∥∥2 |�k−1

]
+
2mG
kp∗

E
[∥∥∥yik − x̄k−1∥∥∥ |�k−1

]
+

2m |Ni|GdXρi,k
kp∗αi,k

+δi

(
α2i,k + bk

)[
2
(
ρi,k |Ni|G
αi,k

)2

+ 2G2

]
−
2
k

(
Fi(x̄k−1)− Fi(x∗)

)
. (53)

In the next, sum up for all the nodes i ∈ V in the network
on both sides of (53). We can then obtain the following by
using Lemma 6 and (1).

m∑
i=1

E
[∥∥∥x ik − x∗∥∥∥2 |�k−1

]

≤ (1+ bk )
m∑
i=1

∥∥∥x ik−1 − x∗∥∥∥2 − 2
k

(
F(x̄k−1)− F(x∗)

)

+
2mG
kp∗

m∑
i=1

∥∥∥x ik−1 − x̄k−1∥∥∥+ 2m2NGdXρi,k
kp∗αi,k

+

m∑
i=1

δi

(
α2i,k + bk

)[
2
(
ρi,kNG
αi,k

)2

+ 2G2

]
, (54)

where N = maxs |Ns|. Pick parameter ρi,k such that∑
∞

k=1
ρi,k
kαi,k

< ∞ (Assumption 3). Then it can be seen that
(considering the definitions of αi,k and bk ).

∞∑
k=1

bk <∞,
∞∑
k=1

(
α2i,k + bk

)
<∞. (55)

In addition, based on the first conclusion of Theorem 7, it is
known that the following holds almost surely.

∞∑
k=1

2mG
kp∗

m∑
i=1

∥∥∥x ik−1 − x̄k−1∥∥∥ <∞. (56)

Considering the last three terms in (54) as one item along
with the fact that F(x̄k−1) − F(x∗) ≥ 0, we can see that
all the conditions of Lemma 1 have been satisfied. Hence,
it concludes that the sequence

{∑m
i=1

∥∥x ik − x∗∥∥2} converges
and

∞∑
k=k̃

1
k

(
F(x̄k−1)− F(x∗)

)
<∞. (57)

Similar to the proof for Theorem 7, it can be deducted from
(57) that

lim
k→∞

infF(x̄k−1) = F(x∗) (58)

Now the sequence
{∑m

i=1

∥∥x ik − x∗∥∥2} converges and
(58) holds for any point x∗ in the set of optimal solutions
X∗, it is known that there exists a subsequence

{
x̄kj
}
(of

sequence {x̄k}) such that x̄kj → x̂ for some x̂ in the fea-
sible set X and limj→∞ F(x̄kj ) = F(x∗). Since function F
is continuous and x̄kj converges to x̂, we can obtain that
limj→∞ F(x̄kj ) = F(x̂). Thus, it follows that F(x̂) = F(x∗),
which implies that x̂ belongs to the optimal solution set X∗.
At this point, we know that the sequence

{∑m
i=1

∥∥x ik − x̂∥∥2}
converges. Using the second claim in Theorem 7) such that{∑m

i=1

∥∥x ik − x̄k∥∥2} → 0 as k → ∞, it is known that∥∥x̄k − x̂∥∥2 converges. Since the subsequence
∥∥x̄kj − x̂∥∥2 →

0, there is
∥∥x̄k − x̂∥∥→ 0, which indicates that {x̄k} converges

to an optimal point (x̂) of the problem. Lastly, applying
the second statement in Theorem 7 one more time, it can be
obtained that the sequence

{
x ik
}
generated by any node i ∈ V

converges to the same optimal solution point almost surely.
The proof of the theorem for Algorithm 1 is thus complete.

�
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