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ABSTRACT Generative adversarial networks (GANs) have shown significant progress in generating high-
quality visual samples, however they are still well known both for being unstable to train and for the problem
of mode collapse, particularly when trained on data collections containing a diverse set of visual objects.
In this paper, we propose an Adaptive k-step Generative Adversarial Network (Ak-GAN), which is designed
to mitigate the impact of instability and saturation in the original by dynamically adjusting the ratio of the
training steps of both the generator and discriminator. To accomplish this, we track and analyze stable training
curves of relatively narrow datasets and use them as the target fitting lines when training more diverse data
collections. Furthermore, we conduct experiments on the proposed procedure using several optimization
techniques (e.g., supervised guiding from previous stable learning curves with and without momentum) and
compare their performance with that of state-of-the-art models on the task of image synthesis from datasets
consisting of diverse images. Empirical results demonstrate that Ak-GANworks well in practice and exhibits
more stable behavior than regular GANs during training. A quantitative evaluation has been conducted on the
Inception Score (IS) and the relative inverse Inception Score (RIS); compared with regular GANs, the former
has been improved by 61% and 83%, and the latter by 21% and 60%, on the CelebA and the Anime datasets,
respectively.

INDEX TERMS Generative adversarial networks, image generation, adaptive algorithm, mode collapse.

I. INTRODUCTION
Generative adversarial networks (GANs) [2], [4], [5], [9],
[12] are well known for being effective at synthesizing sam-
ples for various applications such as image generation [5],
[12], [26], [28], [29], industrial design [20], speech gen-
eration [11], and natural language processing [2], [9]. The
objective of GANs is to train a generator model G and a
discriminator model D in parallel. GANs are typically multi-
layer perceptrons (MLPs) or convolutional neural networks
(CNNs). The generator synthesizes the data distribution from
a noise prior, whereas the discriminator is trained to extract
discriminative features of real data. Specifically, the dis-
criminator distinguishes between real and synthesized data
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produced by the generator and outputs the posterior proba-
bilities that data are from the real data distribution, which are
used as a guiding signal to update the parameters of discrim-
inator and generator networks. Ideally, the process continues
until real and synthesized data are indistinguishable.

In practice, however, GANs are well known both for
being unstable to train and for the problem of mode colla-
pse [1], [19]. Mode collapse is a situation where G generates
most of the samples sharing some common properties, espe-
cially when trained on data collections containing a discrete
sets of visual objects. Two major issues that compound the
problems are: 1) the constantly unbalanced model capac-
ities of the generator and discriminator during the train-
ing process, which prevents the generator from learning
effectively; and 2) the lack of a computable convergence
criterion.
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Recently, several studies have focused on improving
the stability of GANs, mostly by adopting a heuristic
approach [11], [12], which is extremely sensitive to the train-
ing data and hard to apply to new domains [19]. Unlike
previous work, this study tries to approach the unstable
training problem of GANs by investigating an adaptive
hyper-parameter learning method. Specifically, we propose
to dynamically adjust the number of training steps of the
G and D for each set of training iterations based on the
learning curves from relatively simple and narrow datasets
such as MNIST [7], from which GANs have been shown
to produce very imperative results. Extensive experimental
results show that the proposed procedure can significantly
improve the stability of GAN trainings and generate much
more recognizable objects in Anime and CelebA datasets [8].

This study is an extension of our previous work [25], which
makes further the following improvements.

• In this extended work, the proposed Ak-GAN model
dynamically adjusts the ratio (denoted as k) of the train-
ing steps of D and G every c iterations intead of every
one iteration as in our previous work. c is a newly
added hyperparameter to improve the generalizaiton of
the adaptive model.

• We introduced some variants in which the adjustment
of k either depends on more sophisticated criterias, such
as loss values, or in progressive or immediate manners
to control the degree of stabilizing the GAN training.
We also investigated blur strategies which are a set of
filters applied to the input of D to examine whether the
blurring affects the training balance of D and G.

• We conducted extensive experiments to compare
Ak-GAN models with some state-of-the-art models,
using Inception Score (IS) [13] [16] and relative inverse
Inception Score (RIS) [24]. Evaluation results demon-
strate the effectiveness of the proposed training proce-
dure in terms of convergence rate and image quality.

II. BACKGROUND
A. PRELIMINARY
In order to avoid the confusion, the parameters used through-
out in this paper are defined as follows.
Definition 1: k: the training ratio of D to G. When k <

1, G is trained ( 1k ) steps with D one step, else if k > 1, D is
optimized k steps with G one step.

The conventional GAN [4] is set to alternate between k
steps of optimizing D and one step of G, generally with k
being one. In our algorithm, the value of k is adaptively con-
trolled using deviation in probabilities or loss values between
running dataset and criterion dataset.

Table 1 shows the notations and their descriptions.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs estimate generative models by means of an adversarial
process in which a generator G is pitted against a discrimi-
nator D. The inputs of D come from two data distributions:

TABLE 1. Notations used in this paper.

real and synthesized, where the latter is generated by G. D is
trained to maximize its ability to categorize a sample exactly
as real or fake, whereasG is trained to minimize the ability of
D to categorize a fake sample from synthesized data. In the
original framework, the training procedure is defined as a
two-player minimax game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))] (1)

where G is a function that maps input noise variables pz(z)
to a generated data distribution pg. Whereas D is a function
that maps a data space to scalar values, where each value
represents the probability that specifies a sample came from
real data distribution pdata(x) rather than pg. In GANs,G and
D are treated as neural networks and trained concurrently on
their objective function.
In practice, we use the same loss function of D as in the

conventional GAN [4], and to optimize G we adapt more
effective objective function [19]. They are represented in
formula as:

LD = −
1
m

m∑
i=1

[logP(x(i); θD)

+ log(1− P(G(z(i); θG); θD))] (2)

LG = − 1
m

m∑
i=1

log(P(G(z(i); θG); θD)) (3)

where LD and LG are the loss functions, and θD and θG are
the parameters of D and G, respectively. x(i) represents real
data, whereas G(z(i)) is the data generated by G with the
arbitary noise z(i). Then P(x(i); θD) is the probability that D
classifies real data x(i) as real label. P(G(z(i); θG); θD) is the
probability that D classifies generated data G(z(i)) as real
label. Hereinafter referred to as Pr and Pg.

C. CHALLENGES AND LIMITATIONS OF GANS
Recently, GANs have gained tremendous attention because
of their strength at producing compelling image synthesis,
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FIGURE 1. Effects of the original GAN from data collections with different
levels of diversity.

FIGURE 2. Learning curves for the conventional GAN model with
multi-layer perceptrons (MLPs). The learning curves are measured by the
probabilities of real and synthesized data (p_real and p_generated,
respectively).

particularly when trained on image collections comprising
relatively narrow domains, such as MNIST handwritten dig-
its, as shown in Fig. 1(a). However, for diverse image col-
lections, GANs generally yield less impressive results. For
example, samples from models trained on the Anime dataset
produce few recognizable objects, as shown in Fig. 1(b).

It is a considerable challenge to balance the convergence
of the D and G. Training one of them too well results in
instability. In practice,D tends to be overly trained during the
training process, because D wins too easily in the beginning.
We estimated and tracked the training curves of MNIST

and the diverse dataset, which are shown in Fig. Fig. 2.
Specifically, Fig. 2 plots the curves of probabilities of real
and synthesized data (Pr and Pg, respectively) estimated by

D during the training process. Fig. 2(a) shows GANs achieve
good stability when training on the narrow dataset MNIST.
Note that in the beginning, a large gap exists between Pr
and Pg. This gap gradually narrows during the training and
finally converges at approximately 0.5. The good stability
on MNIST is also reflected in the considerable quality of
synthesized images, as shown in Fig. 1(a). Likewise, the poor
visual results on the diverse dataset can best be explained
by the constantly unstable training curves (their instability),
as shown in Fig. 2(b). In other words, practical implementa-
tions dictate that the original GAN achieves a stable balance
between G and D iterations and synthesizes images with
higher quality on relatively simple datasets such as MNIST
than on the diverse dataset.

D. RELATED WORK
To overcome the problem of mode collapse, several
researchers have proposed to penalize the appearance of near-
duplicate images during each training batch using heuristic-
based approaches [13], [21]. Salimans et al. [13] sought
to address this problem by training the discriminator in a
semi-supervised fashion, granting the discriminator’s inter-
nal representations knowledge of the class structure of the
training data. Although this method increases synthesizing
quality, it is less appealing as a tool for unsupervised learning.
Energy-based GAN [21] has proposed modeling the D as
an energy function, which enables the use of a wide variety
of architectures and loss functions in addition to the binary
classifier, making the model easy to train and more stable.

E-GAN [26] combines the GAN training with an evolu-
tionary algorithm, which evolves a set of generators to adapt
the discriminator and preserves the best generator for further
training. PG-GAN [27] achieves high-resolution images by
training GANmodel in a progressive growingway to increase
the resolution. SAGAN [28] imports the self-attention block
into deeper GAN architecture to capture the global struc-
ture of images. Based on SAGAN, BigGAN [29] also uses
different residual block for G and D, but trains the models
with larger batches, larger parameters, and the truncation
trick , achieving a new level of performance on ImageNet.
These studies have shown the effects of increase in the depth
of networks on some diverse datasets. However, our work
focuses on adaptive control of the training process, which is
orthogonal to the work of the increase of depth. For future
work, it would be interesting to explore how to combine the
adaptive control, very deep nets, and other techniques on
complex datasets.

Consistent with our work, some authors have tried to
use an adaptive approach [15], [18] to improve GANs. The
AdaGAN [18] addresses the problem of mode collapse by
incrementally adding new generators, which are trained using
reweighted data at every step. Thus, the data generated by
the mixture model can progressively cover all the modes
of datasets. However, the generator of the mixture model
is a mixture of single generator networks, and thus the
latent representation becomes more complex with training.
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Of particular interest to us is the work of ABC-GAN [15].
Its adaptive idea is also achieved by adjusting G and D steps
based on a function of losses of D. A major downside of
ABC-GAN is that it uses a manually fixed probability value,
from which the ratio is sampled each time.

III. AN ADAPTIVE TRAINING PROCEDURE FOR GANS
To address the problem that G and D do not balance well on
diverse datasets, we explore an adaptive training procedure
to encourage convergence of GANs. Our method is similar
in spirit to ABC-GAN [15] in the sense that it balances the
generation capacities of GAN models by adjusting the ratio
of D to G. Different from the adaptive controller used in
ABC-GAN, which is based on a manually fixed probability
value, our method automatically adjusts k by matching a
set of well-trained learning curves (with different metrics)
derived from relatively narrow datasets (e.g. MNIST). This
section first explains the core idea and then describes the
adaptive method in detail.

A. BASIC IDEA
Our main goal is to achieve a convincing performance on
distinct datasets bymatching thewell-trained learning curves.
We first describe the manner in which to obtain well-trained
learning curves, and then present an algorithm that constrains
the difference between the current value of control variables
(e.g., posterior probabilities Pr and Pg, or loss values LG and
LD) and the criterion (probabilities or loss values of the well-
trained learning curve).

Because the original GAN object function is defined as a
two-player game, determining the convergence of G and D is
difficult, as the loss of G increases when that of D decreases.
The learning curves are typically the efficient means to alert
us as to how training is progressing. Therefore, we use the
aforementioned learning curves as prototypes [22], which
are considered to be more typical and central than others in
the set of led-to-convergence curves. As shown in Fig. 3,
the criterion learning curves consist of four measures: the
posterior probabilities Pr and Pg when trained on MNIST
dataset (expressed by Pmr and Pmg, respectively) and the loss
costs LG and LD when trained onMNIST (represented by LmG
and LmD, respectively). We use the ratio (k) of the training
steps of D to G as the control variable. Instead of setting k
to 1 as in the conventional GAN, we dynamically adjust the
value of k to satisfy the constraints during the training on
diverse datasets. k is controlled using the following inequality
constraint. ∣∣∣∣Vc − VmVm

∣∣∣∣ < α (or β) (4)

where Vc is Pr , Pg, LG, or LD obtained from the current
training data, correspondingly, Vm is Pmr , Pmg, LG or LmD
obtained from MNIST. Different from our previous work,
we propose other algorithms which are controlled by
Pr or LD. α and β are thresholds that prescribe a limit to the
range in which current values deviate from the criterion value.

FIGURE 3. Learning curves for stable training.

FIGURE 4. The adaptive control procedure of Ak-GAN.

Since the criterion learning curves forPg or LD show the same
trend during the training process (as shown in Fig. 3), we use
the same threshold α to limit the deviation. Similarly, we use
another threshold β for updating Pr or LG. We experimented
with different α and β values and found that α to 0.2 and β
to 0.05 achieve the best results.

We next provide an intuitive explanation of our adaptive
methods before proceeding to the implementation details,
as illustrated in Fig. 4. First, The Ak-GAN model is trained
with the initial state of k being 1. Then, we pick the criterion
values (for instance, Pmg) from the well-trained learning
models and compare with the current values (in this case,
Pg) every c iteration (c is set to 1 by default; we explore
different c values in experiments), and then examine whether
the deviation exceeds the constraint condition (in this case,∣∣∣Pg−PmgPmg

∣∣∣ < α). If it does, we update k in such a manner
as to bias the next training toward the ‘‘weaker’’ of either
G or D. Our experimental results indicate that the proposed
procedure yields more stable training and improves sample
generation. We designed two kinds of adaptive methods to
adjust the k value: either with or without momentum. The
adaptive method with momentum progressively adjusts the
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FIGURE 5. Regression curves (power exponential functions) of stable
training.

TABLE 2. Coefficients of the exponential functions for fitting criterion
curves of Pmr , Pmg, LmD, and LmG.

k value, and that without momentum changes the k value
immediately, thus reducing the fluctuation of learning curves.
In Appendix, we provide a more detailed description of the
two methods, specifically on how to update the k value for
the next iteration and the conditions of the update.

B. ADAPTIVE CONTROL USING FITTED CURVES
Note that the criterion learning curves shown in Fig. 5 fluc-
tuate wildly during training. Instead of directly matching
the curves, we used an approach to draw regression lines
as guiding. In this approach, we employed two exponential
functions, Eq. (5) is used to fit the curves of Pmr and LmG,
whereas Eq. (6) is used to fit curves of Pmg and LmD. The
coefficients of these functions are shown in Table 2.

y = a ∗ e−bx + d (5)

y = a ∗ −(e−bx)+ d (6)

IV. EXPERIMENTS
A. DATASETS
We performed our experiments on two datasets: CelebA [8],
and the Anime face dataset. Details of each dataset are given
as follows. The samples of two datasets are shown in Fig. 6.

FIGURE 6. Samples of two datasets.

TABLE 3. Architecture of a MLP-based generator.

1) CELEBA
The large-scale celeb faces attributes (CelebA) dataset con-
tains 202,599 facial images of 10,177 celebrities. The images
in this dataset are RGB color images containing diverse pose
variations and cluttered backgrounds. In our experiments,
each image was resized to 64 × 64.

2) ANIME FACES
We derived anime faces from an image board site for anime
wallpapers and cropped the images to contain only faces.
These images were sized to 96 × 96. This dataset consists
of 51,223 color images.

B. IMPLEMENTATION
Our model was coded in Python and all experiments were
conducted in the Tensorflow framework. We tested the model
with two architectures: GANs with G and D comprising
fully connected layers (MLP), and GANs with convolutional
architectures (DCGAN [12]), both of which are described in
the following subsections.

1) MLP-BASED GAN
The first GAN architecture we experimented with consisted
of two MLP nets. The parameters of the networks were
updated to minimize the loss function, with Adam [6] used
as the optimizer function. A 100-dimension vector sampled
from a Gaussian distribution is transformed into an image
size using a series of fully connected layers with non-linearity
activation functions (ReLU and tanh). The architecture of
G is given in Table 3. D consisted of three fully connected
layers, the first two of which with dropout. The penultimate
layer was connected to a single sigmoid layer, as shown in
Table 4.
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TABLE 4. Architecture of a MLP-based discriminator.

TABLE 5. Architecture of a DCGAN-based generator.

2) DCGAN-BASED GAN
We also performed our adaptive methods using the archi-
tecture of DCGAN [12]. The generator networks (Table 5)
have five layers and include one linear connection layer and
four fractional-strided convolutional layers with a filter size
of 5 × 5 and a stride of 2. All the layers except the final
layer are followed by batch normalization and the ReLU
activation function. The final layers consist of a fractional-
strided convolutional layer and the tanh function. The input
is also a 100-dimension vector sampled from a Gaussian
distribution. The discriminator (Table 6) has five layers: four
convolutional layers, the first of which is a convolutional
layer with Leaky ReLU, the other three being convolutional
layers followed by batch normalization and Leaky ReLU;
and a final hidden layer that uses a full connection layer and
sigmoid to transform the feature into a scalar, which is the
probability that an input image belongs to a set of real data.

V. RESULTS
A. ADAPTIVE CONTROL ON DIVERSE DATASETS USING
MLP AND DCGAN
In Fig. 7, we show the results of the proposed Ak-GAN
using MLP on diverse datasets. Compared with the samples
generated by the conventional GAN models, the adaptive
control techniques enabled GANs to capture the recognizable
features of faces, such as facial contours and eyes. However,
these samples also had frequent noise. In addition, the image
acuity still showed room for improvement. We applied the
proposed adaptive control procedure to the DCGAN archi-
tecture to further improve visual quality. We also compared
the results with the dataset using the DCGAN architecture.
In Fig. 8 (D01-D03 on CelebA dataset, D07-D09 on Anime

TABLE 6. Architecture of a DCGAN-based discriminator.

dataset), we show that Ak-GANmodel generates images with
higher quality and alleviates the mode collapse as compared
with the conventional DCGAN.

B. PERFORMANCE MEASURE
The Inception Score [13] [16] is an approach to evaluate the
performance of GANs quantitatively. This approach corre-
lates well with human judgment. The Inception Score uses an
Inception v3 network [17], which is designed for classifica-
tion tasks pre-trained on ImageNet [3], to calculate statistics
of the network’s output when generated samples are feed into.

IS(G) = exp(
1
N

N∑
i=1

DKL(p(y | x) ‖ p(y))) (7)

where x is an image sampled from generation distribution Pg,
p(y|x) is the conditional class distribution predicted by Incep-
tion v3 network given the sample x, p(y) is the marginal dis-
tribution of class y. DKL(p(y|x) ‖ p(y)) is the KL-divergence
between the distribution p(y|x) and p(y). For exponential
operation, we use base e in our experiments to make the
value easier to compare. The Inception Score satisfies two
desirable qualities of the generative models: the generated
images should contain clear objects (visually recognizable),
that means p(y|x) should have low entropy. On the other
hand, the models should generate diverse samples, that is
p(y) should have high entropy. Therefore, we want a large
Inception Score, whichmeans theKL-divergence between the
distribution p(y|x) and p(y) is large.

Table 7 shows the Inception Scores obtained from 50k
generated samples of Ak-GAN models and the conventional
GAN model [4] on Anime and CelebA datasets, and both
models use the MLP architecture, the corresponding samples
are shown in Fig. 7. The highest scores are achieved by
Ak-GAN models on both two datasets. The best-performed
models are based on adaptive controls over Pr without
momentum. We also tested with different c values, while
other parameters being fixed. Results indicate that a proper
value of c will increase the Inception Score. Moreover,
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TABLE 7. Inception Scores for samples generated by the conventional GAN models and Ak-GAN models with the MLP architecture.

FIGURE 7. The corresponding samples for the Inception Scores presented in Table 7.

the choice of c values depends on the dataset used, e.g.,
the best score is achieved for theAnime dataset with c being 1,
whereas for CelebA, c being 3.

Table 8 presents the Inception Scores for samples gen-
erated by Ak-GAN models with the DCGAN architecture,
the conventional DCGAN model [12], and some state-of-
the-art GAN models: WGAN [23], ABC-GAN [15], and
SAGAN [28]. WGAN [23] used a more effective loss func-
tion, ABC-GAN [15] used an adaptive control method to

stable the training of D and G, and SAGAN [28] investi-
gated a much deeper network and applied the self-attention
mechanism to capture long-range, multi-level dependencies
features. In general, DCGAN-based models produce more
vivid and recognizable samples compared to MLP-based
models, as shown in Fig. 8. However, on the CelebA dataset,
the MLP-based models achieved higher scores. This inter-
esting result may suggest that the Inception Score not only
depends on the dataset used, and also depends on the
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TABLE 8. Inception Scores for samples generated by Ak-GAN models with the DCGAN architecture and some state-of-the-art GAN models.

FIGURE 8. The corresponding samples for the Inception Scores presented in Table 8.

underlying models, that is, the absolute value of the Inception
Score is unimportant between MLP- and DCGAN-based
GANs on the same dataset. It would be better to derive a
more general scoring mechanism, therefore, we leave the
further investigation of this matter for future work. As shown
in Table 8, WGAN slightly outperforms Ak-GAN on the
CelebA dataset. Whereas, the best IS is achieved by Ak-GAN
on the Anime dataset compared to other state-of-the-art GAN

models. Relatively higher scores onmost of test cases suggest
that the proposed Ak-GAN models effectively improve the
generation quality of GAN models.

Tomore accurately evaluate the performance ofGANmod-
els, we use the relative inverse Inception Score (RIS) [24]:

RIS = 1−
ISgavg
ISravg

(8)
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FIGURE 9. Range of the relative inverse Inception Scores (RISs) of
models with each architecture, on each dataset. The cross mark in each
range is the average of 10 RISs. The whiskers indicate the minimum and
maximum of all of the RISs. The boxes display the variation of RISs.

ISgavg =
1
n

10∑
i=1

ISgi (9)

ISravg =
1
n

10∑
i=1

ISri (10)

where ISgi and ISri are the Inception Scores for generated
and real images, respectively. Whereas, ISgavg and ISravg are
the average Inception Scores for ISgi and ISri , respectively.
In practice, out of 500k samples, 5k real or generated ones
are randomly chosen to obtain ISgi and ISri , respectively. Then
we repeated this process 10 times in total in order to compute
average ISgavg and ISravg based on equations (9) and (10).
RIS can be obtained using equation (8). Obviously, RIS is
inversely proportional to IS: the lower RIS value, the better
the model.

As shown in Fig. 9, we compare the RISs of Ak-GAN with
other models using the boxplot. The Ak-GAN based on MLP
architecture obtains smaller scores on both two datasets com-
pared to the original GAN. We also compare Ak-GAN with
four state-of-the-art models: DCGAN [12], WGAN [23],
ABC-GAN [15], and SAGAN [28]. The Ak-GAN shows the
best performance on Anime dataset. However, for CelebA
dataset, the RISs of all the models are basically same except
ABC-GAN and SAGAN. Despite its deeper network archi-
tecture, SAGAN fails to show the superiority on the task at
hand. For future work, we will explore the performance of

Algorithm 1 Adaptive Control Over k Values Based on
Pg or LD (With Momentum)
Input: k , Pg or LD
Output: k ′

1: if k > 1 then
2: if Pg−PmgPmg

> α (or LD−LmDLmD
> α) then

3: k ′ = k + 1
4: else if Pmg−PgPmg

> α (or LmD−LDLmD
> α) then

5: k ′ = k − 1
6: else
7: k ′ = k
8: end if
9: else if k = 1 then
10: if Pg−PmgPmg

> α (or LD−LmDLmD
> α) then

11: k ′ = k + 1
12: else if Pmg−PgPmg

> α (or LmD−LDLmD
> α) then

13: k ′ = 1
k+1

14: else
15: k ′ = k
16: end if
17: else
18: if Pg−PmgPmg

> α (or LD−LmDLmD
> α) then

19: k ′ = 1
1
k−1

20: else if Pmg−PgPmg
> α (or LmD−LDLmD

> α) then

21: k ′ = 1
1
k+1

22: else
23: k ′ = k
24: end if
25: end if
26: return k ′

the models that combine the adaptive control and attention
mechanisms on diverse datasets.

VI. CONCLUSION AND FUTURE WORK
In this paper, a family of adaptive control-based GANmodels
called Ak-GANs are proposed to stabilize the GAN model
when training on the diverse datasets, and thus improve
the quality of synthesized images to a certain degree. The
proposed method is achieved by directing the training pro-
cess using the well-trained learning curves (prototypes)
under relatively narrow datasets. Compared with the pre-
vious work [25], the proposed models cover some various
Ak-GANs in which k depends on more sophisticated crite-
ria, and with or without momentum. We also investigated
the Ak-GAN models with both MLP and DCGAN archi-
tectures. Compared to MLP-based regular GAN models,
the Ak-GAN model has improved the Inception Score by
61% and 83% on Anime and CelebA, respectively. Whereas,
the DCGAN-based Ak-GAN model has improved 32% on
Anime and showed a slight decrease (9%) on CelebA com-
pared to WGAN [23]. In addition, the Ak-GAN model sig-
nificantly outperformed the previous state-of-the-art models
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Algorithm 2 Adaptive Control Over k Values Based on
Pr or LG (With Momentum)
Input: k , Pr or LG
Output: k ′

1: if k > 1 then
2: if Pr−PmrPmr

> β (or LG−LmGLmG
> β) then

3: k ′ = k − 1
4: else if Pmr−PrPmr

> β (or LmG−LGLmG
> β) then

5: k ′ = k + 1
6: else
7: k ′ = k
8: end if
9: else if k = 1 then
10: if Pr−PmrPmr

> β (or LG−LmGLmG
> β) then

11: k ′ = 1
k+1

12: else if Pmr−PrPmr
> β (or LmG−LGLmG

> β) then
13: k ′ = k + 1
14: else
15: k ′ = k
16: end if
17: else
18: if Pr−PmrPmr

> β (or LG−LmGLmG
> β) then

19: k ′ = 1
1
k+1

20: else if Pmr−PrPmr
> β (or LmG−LGLmG

> β) then
21: k ′ = 1

1
k−1

22: else
23: k ′ = k
24: end if
25: end if
26: return k ′

on the relative inverse Inception Score (RIS), reducing RIS
by around 21% and 60% on Anime and CelebA, respectively.
Quantitative and qualitative results showed that the proposed
procedure could indeed improve the stability of GAN training
and generate compelling images under various models and
diverse datasets, compared to some state-of-the-art models
such as WGAN [23], ABC-GAN [15], and SAGAN [28].

For future work, we plan to investigate a more effective cri-
teria to direct the training, which may encourage the conver-
gence of GANs. We are also going to experiment with more
objective functions, such as f-divergence [10], to measure the
difference in the divergence between the distributions of real
and generated data.
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APPENDIX
A. ADAPTIVE METHOD WITH MOMENTUM
We next introduce the adaptive methods with momentum
based on Pg or LD and on Pr or LG.

Algorithm 3 Adaptive Control Over k Values Based on
Pg or LD (Without Momentum)
Input: k , Pg or LD
Output: k ′

1: if k ≥ 1 then
2: if Pg−PmgPmg

> α (or LD−LmDLmD
> α) then

3: k ′ = k + 1
4: else if Pmg−PgPmg

> α (or LmD−LDLmD
> α) then

5: k ′ = 1
2

6: else
7: k ′ = k
8: end if
9: else
10: if Pg−PmgPmg

> α (or LD−LmDLmD
> α) then

11: k ′ = 2
12: else if Pmg−PgPmg

> α (or LmD−LDLmD
> α) then

13: k ′ = 1
1
k+1

14: else
15: k ′ = k
16: end if
17: end if
18: return k ′

1) ADAPTIVE CONTROL BASED ON Pg OR LD
Because the criterion learning curves for Pg or LD show
the same trend during the training process, we use the same
method to control them. In Algorithm 1, when k is greater
than one, which means D is trained k steps with G one
step. If the current Pg or LD exceeds the allowable devia-
tion defined by threshold α, we increase or decrease the D
steps (represented by k) by 1 based on one of the following
resulting cases: positive deviation (Pg−PmgPmg

> α or LD−LmDLmD
>

α) or negative deviation (Pmg−PgPmg
> α or LmD−LDLmD

> α). When
k is one, which denotes that G and D is alternately trained
with one step, respectively. If positive deviation, we increase
D steps by making k more than one (k = k + 1); if negative
deviation, we increase G steps by making k less than one
(k = 1

k+1 ). When k is less than one, which indicates that
G is trained 1

k steps with D one step. If the positive deviation,
we decrease the G steps by 1; else, we increase the G steps
by 1.

2) ADAPTIVE CONTROL BASED ON PR OR LG
Different from the aforementioned method, Algorithm 2 is
based on Pr or LG. Since the curves of Pr and LG grow
in opposite direction with learning curves for Pg and LD,
the adjustment of k is the extreme opposite of the previous
one. That is, if there is a positive deviation (Pr−PmrPmr

>

β or LG−LmG
LmG

> β), G steps increase or D steps decrease;
otherwise, G steps decrease or D steps increase.
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Algorithm 4 Adaptive Control Over k Values Based on
Pr or LG (Without Momentum)
Input: k , Pr or LG
Output: k ′

if k > 1 then
if Pr−PmrPmr

> β (or LG−LmGLmG
> β) then

k ′ = 1
2

else if Pmr−PrPmr
> β (or LmG−LGLmG

> β) then
k ′ = k + 1

else
k ′ = k

end if
else

if Pr−PmrPmr
> β (or LG−LmGLmG

> β) then
k ′ = 1

1
k+1

else if Pmr−PrPmr
> β (or LmG−LGLmG

> β) then
k ′ = 2

else
k ′ = k

end if
end if
return k ′

B. ADAPTIVE METHOD WITHOUT MOMENTUM
In practical implementations, the progressive adjustment
methods improve the stability of models. However, the train-
ing is slow. Therefore, we explore an variant which removes
the momentum. This means that the k value is immediately
changed to an opposite number (k = 1

2 when k ≥ 1, k = 2
when k < 1) when control variables are out of the constraint
range.

When k is greater than or equal to one, which means
D is trained k steps with G one step. In cases of positive
deviation (Pg−PmgPmg

> α or LD−LmD
LmD

> α), where Pg or LD
is greater than the criterion value, indicating that G is overly
trained, we must increase k by 1. If the negative deviation
(Pg−PmgPmg

> α or LD−LmD
LmD

> α), in which D is overly trained,

we immediately makes k to be 1
2 , which means G is trained

2 steps withD one step, to bias towardG. When k is less than
one, whereG is trained 1

k steps withD one step, if the positive
deviation, we immediately make k to be 2 to bias to training
D. If the negative deviation, we increase the G steps by 1
(k ′ = 1

1
k+1

). We modify k for the cases of algorithm based

on Pr or LG in an opposite manner with the algorithm based
on Pg or LD. These two algorithms are shown in Algorithm 3
and Algorithm 4, respectively.
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