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ABSTRACT Driven by the vision of 5G communication, the demand for mobile communication services has
increased explosively. Ultra-dense networks (UDN) is a key technology in 5G. The combination of mobile
edge computing (MEC) and UDN can not only cope with access frommass communication devices, but also
provide powerful computing capacity for users at the edge of wireless networks. The UDN based on MEC
can effectively process computation-intensive and data-intensive tasks. However, when a large number of
users offload tasks to the edge server, both the network load and transmission interference would increase.
In this paper, the problem of task offloading and channel resource allocation based on MEC in 5G UDN is
studied. Specifically, we formulate task offloading as an integer nonlinear programming problem. Due to
the coupling of decision variables, we propose an efficient task offloading and channel resource allocation
scheme based on differential evolution algorithm. Simulation results show that the proposed scheme can
obviously reduce energy consumption and has good convergence.

INDEX TERMS 5G, ultra-dense network (UDN), mobile edge computing (MEC), task offloading, resource
allocation.

I. INTRODUCTION
The rapid development of mobile Internet and Internet of
Things has driven the explosive growth in the demand for
mobile communication services. Global mobile data traffic in
the 5G era is expected to be more than 1,000 times that in the
4G era [1]. The growing demand for mobile communications
means that mobile devices connected to wireless networks
will also grow rapidly. Massive mobile device communica-
tion leads to increasingly dense access points [2]. Ultra-dense
network (UDN) came into being. Moreover, mobile devices
have become smarter. Smart mobile devices have given rise
to various emerging services such as autonomous driving,
interactive games, virtual reality and augmented reality. But
smarter businesses usually have higher computing require-
ments [3]. In order to achieve portability, mobile devices
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sacrifice some performance, so that they cannot fullymeet the
requirements of intelligent interactive applications for time
delay, energy consumption and so on [4]. Mobile edge com-
puting (MEC) is regarded as a promising technology to solve
these problems [5]. MEC allows for the computation tasks to
be executed at the nodes so that resource-constrained mobile
devices can execute compute-intensive and data-intensive
applications in real time.

UDN can meet the access of massive user equip-
ment (UE) and improve the network capacity. MEC can
process computation-intensive and data-intensive tasks in real
time [6]. The combination of UDN and MEC can provide
more UEs with immediate computation ability, which can not
only meet the task requirements in computing power, but also
reduce the energy consumption in UE processing tasks. In
addition, the disadvantage of offloading tasks to the remote
cloud with high latency is avoided [7]. However, in the UDN,
sharing limited channel resources among a large number

184172 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-5250-7909
https://orcid.org/0000-0001-6662-7322
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0003-1444-9469
https://orcid.org/0000-0003-2324-2523


X. Chen et al.: MEC-Based Task Offloading and Resource Allocation in 5G UDN

of UEs would cause severe interference, which results in a
decrease in the transmission rate [8]. The time delay and
energy consumption of task offloading to edge server depends
on transmission rate. Therefore, offloading decisions need to
be made to select which tasks to perform on the local device
to ensure the overall performance of the network system.
In addition, how to allocate effective channel resources for
devices is also worth discussing.

Offloading decision in MEC and channel resource alloca-
tion in UDN affect quality of service (QoS) of network and
quality of experience (QoE) of users [9]–[11]. In MEC, task
offloading has become a hot topic. Some work studies how
mobile devices in MEC network make offloading decisions
to improve task execution delay, energy consumption and
offloading efficiency [12]–[14]. In addition, the resource allo-
cation problem in UDN also received high attention. Some
work has studied the resource allocation problem in UDN,
and improved the system performance by allocating resources
such as spectrum and power to reduce interference [15]–[18].
However, very few efforts combine UDN with MEC sys-
tem features to consider both task offloading and resource
allocation.

Modern intelligent optimization algorithm is widely used
in solving optimization problems [19]–[22]. As a global
optimization algorithm, differential evolution algorithm has
strong global convergence ability and robustness, which is
very suitable for solving optimization problems in some com-
plex environments. The basic idea of this algorithm is to sum
the vector difference between any two individuals and the
third individual in the randomly generated initial population
to generate a new individual. The new individual is compared
with the corresponding individual in the contemporary pop-
ulation. Through continuous evolution, excellent individuals
are retained and inferior individuals are eliminated, thus lead-
ing the search to the optimal solution [23]. Many researchers
have proposed DE-based algorithms to solve resource alloca-
tion and task scheduling problems [24]–[26]. Not only has the
complexity of the problem been reduced, but the optimized
system performance has also been significantly improved.

In this paper, the problem of task offloading and channel
resource allocation based on MEC in UDN is studied. The
purpose is to minimize the system energy consumption under
the constraint of the maximum computing delay. Considering
the complexity of the problem and the coupling of decision
variables, we propose a scheme based on differential evolu-
tion algorithm to solve this optimization problem. Finally,
the simulation results verify the performance improvement
and convergence of our scheme. The main contributions of
this paper are as follows:
• We propose a MEC task offloading and resource allo-
cation model based on heterogeneous UDN. The task
offloading and channel resource allocation are opti-
mized when MUE and SUE exist simultaneously.

• Then, we present an efficient task offloading and
resource allocation scheme. By means of variable sub-
stitution, the problem is transformed without changing

the essence of the problem, and the complexity of solv-
ing the problem is reduced. On this basis, the channel
resource allocation algorithm (CRADE) based on dif-
ferential evolution algorithm is used to give the most
effective task offloading and resource allocation scheme.

• A large number of experiments have been conducted
to evaluate the performance of CRADE scheme. The
experimental results show that CRADE not only has
an obvious effect in optimizing the system energy con-
sumption in various scenarios, but also proves that this
algorithm has a great convergence.

The remainder of this paper is as follows. In Section II,
we review the related works. The system model and opti-
mization problem are described in Section III.We propose the
optimal offloading decision and channel resource allocation
scheme in section IV. In Section V, we discuss the simulation
results. Finally, Section VI concludes this paper and discusses
the future work.

II. RELATED WORK
Task offloading and resource allocation are of great signifi-
cance inMEC andUDN networks, which have attracted more
and more attention in recent years.

A. TASK OFFLOADING IN MEC
Hao et al. [27] proposed an efficient and energy-saving
scheme based on alternating iteration algorithm for tasks
caching and offloading of mobile devices in MEC.
You et al. [28] studied the resource allocation of multi-user
MEC offloading system based on time division multiple
access and orthogonal frequency division multiple access
and proposed a sub-optimal resource allocation algorithm
to optimize system energy consumption. Yang et al. [29]
modeled the offloading energy consumption from the aspects
of task computation and communication, and proposed a
scheme based on artificial fish swarm algorithm to solve the
energy consumption optimization problem. Sun et al. [30]
designed a new index called computational efficiency to
evaluate the performance of MEC systems, and used iterative
and gradient descent methods to optimize system energy
consumption. These works considered the problem of task
offloading in MEC, but did not consider the problem of
network density, resulting in that they were difficult to apply
to the more complex environment in the UDN.

B. RESOURCE ALLOCATION IN UDN
Zhou et al. [15] made localized prediction of traffic load
of UDN base station by using deep LSTM learning tech-
nology, which can avoid or alleviate congestion in an intel-
ligent way. Xu et al. [31] proposed an improved version
of the intelligent method based on the non-dominant sort-
ing genetic algorithm II, which combined the allocation of
transmitted power and resource blocks to improve energy
efficiency and spectral efficiency. Liu et al. [32] developed a
two-step joint clustering and scheduling scheme to optimize
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FIGURE 1. 5G Ultra-Dense Network Scenario.

inter-cell resource scheduling. Zhang et al. [33] designed an
enhancement learn-based downlink power control algorithm
to manage the interference of ultra-dense small cellular net-
works. These studies deeply considered the resource alloca-
tion in the UDN. However, if a large number of devices have
computation-intensive or data-intensive tasks, these tasks are
difficult to ensure that the requirements of the device can be
processed efficiently in real time.

C. RESOURCE ALLOCATION AND MEC TASK OFFLOADING
IN UDN
Chen and Hao [12] proposed an effective software-defined
task offloading scheme to study the task offloading prob-
lem in the UDN and minimized the task delay under the
constraint of energy consumption. Mao et al. [34] designed
a dynamic computational offloading algorithm based on
Lyapunov optimization to optimize the task execution cost.
Guo et al. [35] developed a heuristic greedy offloading
scheme and studied the MEC offloading problem in UDN to
minimize the overall energy consumption of mobile devices.
Zhang et al. [36] proposed an iterative search algorithm
that combined internal penalty functions with DC (difference
between two convex functions/sets) programming to obtain
optimal offloading decisions and resource allocation for
single-cell and multi-cell networks. In these works, the task
offloading within MEC and resource allocation problem in
the UDN were well studied. However, they did not consider
the cross-tier interference caused by the heterogeneity in the
UDN.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In Fig. 1, we present the system model of 5G ultra-dense net-
work architecture, in which a two-tier heterogeneous cellular
network is shown, including the macro cell tier and the small
cells tier. Table 1 lists major the notations and definitions used
in this paper.

A. COMMUNICATION ARCHITECTURE
In the network scenario, N small cells are distributed in a
macro cell. Amacro base station (MBS) is placed in the center
of themacro cell and a small base station (SBS) is deployed in

TABLE 1. Table of notations.

the center of each small cell. A MEC server on the MBS can
perform multiple computing-intensive tasks. The set of SBS
is expressed as N = {1, 2, . . . , n, . . . ,N }. The set of small
user equipments (SUEs) for each SBS service is represented
by Un = {1, 2, . . . , un, . . . ,Un} (n ∈ N ), and the set of
macro UE (MUE) as UM = {1, 2, . . . , uM , . . . ,UM }. It is
assumed that the total bandwidthB is divided intoK channels.
Channels set can be represented by K = {1, 2, . . . k, . . . ,K }.
In our work, we assume that channels are allocated orthog-

onally within each cell but can be reused bymultiple cells. UE
is assigned to a channel during uplink transmission. There-
fore, SUE who reuses the same channel resources will cause
interference to the MBS when an MUE uM reuses uplink
channel resources. In the macro cell, when the channel k is
allocated to theMUE uM , its signal to interference-plus-noise
ratio (SINR) is given by

γ kuM =
puM g

k
uM

N∑
n=1

UM∑
uM=1

xkunpung
k
un + σ

2

, (1)

where puM is the transmission power between the MUE uM
andMBS, gkuM is the channel gain fromMUE uM to theMBS,
σ 2 is the variance of additive white gaussian noise (AWGN).
xkuM is a binary variable that represents the channel allocation
indicator. That is

xkun =

{
1, the channel k is allocated to the SUE un,
0, otherwise.

(2)

Similarly, in the small cell n, when SUE un reuses uplink
channel resources, MUE who reuses the same channel
resources will cause interference to SBS n, and SUE ui who
reuses the same channel resources in other small cells will
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also cause interference to SBS n. Therefore, the SINR of the
SUE un in the uplink transmission process can be expressed
as

γ kun =
pung

k
un

UM∑
uM=1

xkuM puM g
k
uM +

N∑
i=1,
i 6=n

Ui∑
ui=1

xkuipuig
k
ui + σ

2

. (3)

According to the SINR expression of MUE uM and SUE
un, the uplink rate of MUE uM in the channel k can be
calculated by Shannon formula as

RkuM =
B
K
log2(1+ γ

k
uM ), (4)

and the uplink rate of SUE un in the channel k can be
expressed as

Rkun =
B
K
log2(1+ γ

k
un ). (5)

The rate of MUE uM is given by

RuM =
K∑
k=1

xkuMR
k
uM . (6)

Similarly, the rate of SUE un can be expressed as

Run =
K∑
k=1

xkunR
k
un . (7)

B. COMPUTATION MODEL
We denote the set of all BS as C = {1, 2, . . . ,N ,M}. MUE
and SUE are collectively referred to as local UE uc ∈ Uc(c ∈
C). Each UE carries a computation task to be executed locally
or offloading to the edge server.We adopt the commonly used
taskmodel to represent taskQuc , i.e.,Quc =

{
ωuc , suc ,T

max
uc

}
,

where ωuc is computation amount of this task Quc , i.e., the
total number of CPU cycles needed in accomplish the com-
putation task, suc denotes size of input computation task Quc ,
and Tmax

uc stands for the maximum tolerance delay. When a
task is computed, it can choose whether to compute the task
locally or offload it to the edge server.

1) LOCAL COMPUTING
If the task is computed locally, we define f luc as the CPU
computing capability of the local UE. Therefore, the local
execution time of the task Quc can be calculated as

T Luc =
ωuc

f luc
. (8)

The local execution energy consumption of taskQuc can be
expressed as

εLuc = ρ(f
l
uc )

2ωuc , (9)

where ρ = 10−26, and it is a coefficient whose value depends
on the chip architecture [36].

2) MOBILE EDGE COMPUTING
For mobile edge computing, UE in uplink transmission task
will generate transmission delay and energy consumption.
The communication between the MBS and the SBS is con-
ducted by wired optical fiber. When the task Quc is trans-
mitted to the MEC server through the SBS, the transmission
delay and energy consumption between the MEC server and
the SBS are ignored. According to the uplink rate of MUE,
the uplink transmission delay for UE offloading the task Quc
to edge server can be expressed as

T tuc =
suc
Ruc

=
suc

K∑
k=1

xucRkuc

, (10)

where Rkuc ∈ R
k
uM

⋃
Rkun . Then we can obtain that transmis-

sion energy consumption for UE offloading the task Quc to
edge server is

εtuc = pucT
t
uc . (11)

After the computation task is offloaded to MEC server,
MEC server allocates some computation resources to the
task. We set up MEC to assign a fixed number of comput-
ing resources to each task [36]. f C stands for the computa-
tion resources that MEC allocates to each computation task.
Therefore, the edge server execution time for UE offloading
the task Quc to edge server can be expressed as

T Euc =
ωuc

f C
. (12)

In this work, we mainly consider the energy consumption
and time delay of the UE, so the calculation energy con-
sumption of the MEC server is ignored [12]. Similar to [37],
we ignore the transmission energy consumption and delay
when the result of the task was returned. This is because the
processed data size is very small.

Therefore, the total execution time of the task Quc can be
calculated as

Tuc =
[
(1− αuc )T

L
uc + αuc (T

t
uc + T

E
uc )
]
, (13)

where αuc is a binary variable that indicates whether the task
Quc is processed locally or in the edge server. That is

αuc =

{
1, the task Quc is processed on the edge server,
0, otherwise.

(14)

The total execution energy consumption of taskQuc can be
expressed as

εuc =
[
(1− αuc )ε

L
uc + αucε

t
uc

]
. (15)
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C. PROBLEM FORMULATION
Our goal is to minimize the total energy consumption of
the system with a limited tolerance delay. The total energy
consumption of the system can be expressed as

ε =

UM∑
uM=1

εuM +

N∑
n=1

Un∑
un=1

εun , (16)

where εuM and εun are the energy consumption generated by
task of MUE and SUE when they are executed, respectively.
There are two problems to consider:

1) Task decision problem: decide whether the task will be
processed locally or on the edge server.

2) Channel resource allocation problem: the task chooses
which channel to reuse when offloading to the edge
server.

Finally, the task decision problem and channel resource
allocation problem can be expressed as

P1 : min
α,x

ε (17)

s.t. Tuc ≤ T
max
uc , ∀uc ∈ Uc, ∀c ∈ C, (17a)

εuc ≤ κucE
max
uc , ∀uc ∈ Uc, ∀c ∈ C, (17b)

αuc ∈ {0, 1}, ∀uc ∈ Uc, ∀c ∈ C, (17c)

xkuc ∈ {0, 1}, ∀uc ∈ Uc, ∀c ∈ C, ∀k ∈ K,
(17d)

Uc∑
uc=1

xkuc ≤ 1, ∀uc ∈ Uc, ∀c ∈ C, ∀k ∈ K,

(17e)
K∑
k=1

xkuc ≤ 1, ∀uc ∈ Uc, ∀c ∈ C, ∀k ∈ K.

(17f)

The objective function (17) is to minimize the total energy
consumption of the system. The first constraint (17a) guar-
antees that the execution time of the task is less than the
maximum tolerable delay of the task. The second constraint
(17b) means that the total execution energy consumption of
task is less than the remainder battery capacity of UE, where
κuc is the ratio of the remaining energy of the UE to the total
battery capacity. The third constraint (17c) indicates that tasks
can only be executed locally or offloaded to MEC server.
The fourth constraint (17d) means that the allocation state
of channel resources. The fifth constraint (17e) indicates that
each channel is only allocated to one UE in each small cell or
macro cell. The last constraint (17f) states that each UE can
be assigned to one channel at most.

IV. OPTIMAL OFFLOADING DECISION AND CHANNEL
RESOURCE ALLOCATION SCHEME
In this section, we propose an efficient task offloading deci-
sion and channel resource allocation scheme based on the
optimization problem in (17). According to the communica-
tion model and calculation model in section III, we can see

that the offloading decision of UE is coupled with channel
allocation. If there are toomanyUE that simultaneously reuse
the same wireless channel to offload computation tasks to the
MEC server, each UE in this channel will receive very serious
interference, resulting in a lower uplink communication rate.
When the uplink rate of UE is low, the delay of task transfer
to the MEC server will increase, and the energy consumption
will also increase. In this case, it is more advantageous for the
task to be performed locally.

However, performing tasks locally takes up a lot of sys-
tem resources for UE, and performing other tasks can be
especially difficult. The computing resources of the MEC
server are also wasted. Therefore, an efficient offloading
decision and channel resource allocation scheme are needed
to ensure the execution of tasks with low delay and energy
consumption.

In the UDN, the number of small cells and UEs is huge,
so it is very difficult to find the best task offloading decision
and channel resource allocation scheme.
Theorem 1: The problem P1 that computes the minimize

the total energy consumption of the system is NP-hard.
Proof: We first introduce the bin packing problem [38].

There are N bins of the same size with a capacity of C andM
items of the same size of vi(i ∈ 1, 2, . . . ,M ). Our goal is to
allocate the maximum number of items to a fixed number of
boxes without violating the capacity constraint. This problem
can be expressed as

max
M∑
i=1

N∑
j=1

viα
j
i (18)

s.t.
M∑
i=1

viα
j
i ≤ C, ∀i = 1, 2, . . . ,M ,

∀j = 1, 2, . . . ,N , (18a)

α
j
i ∈ {0, 1}, ∀i = 1, 2,. . .,M , ∀j = 1, 2,. . .,N ,

(18b)
N∑
j=1

α
j
i ≤ 1, ∀i = 1, 2, . . . ,M . (18c)

It is known from [38] that the bin packing problem above
is NP-hard.

Our problem of channel resource allocation can be seen
as a bin packing problem. The channel resources and UE in
this article can be regarded as bins and items in bin packing
problem, respectively. The product of transmitted power and
channel gain can be thought of as the size of the item in bin
packing problem.

Therefore, if we have an algorithm that can find the optimal
solution of the channel allocation problem, then we can also
get the optimal solution of the packing problem. Since the
packing problem is NP-hard, the channel assignment problem
is also NP-hard. The offloading decision problem is similar.
This proves that the problem of minimizing the total energy
consumption of the system is also NP-hard. �
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A. PROBLEM TRANSFORMATION
In this paper, the offloading decision of UEs is coupled with
channel allocation. If P1 problem is decoupled, the problem
is decomposed into two sub-problems to find the optimal
solution of offloading decision and channel resource alloca-
tion respectively. Finally, the optimal solution obtained by
decoupling may only be the sub-optimal solution of the target
problem, and the energy consumption of the system cannot be
minimized. Therefore, we decide to convert the optimization
problem of two decision variables into a univariate optimiza-
tion problem by variable substitution.
Theorem 2: The offloading decision of UE can be deter-

mined by its allocation status among all channel resources.
That is

αuc =

K∑
k=1

xkuc . (19)

Proof: If UE uc offloads the computation task to the
edge server, αuc = 1. In this case, the UE uc must reuse
a channel in the cell during uplink communication with the

BS, i.e.,
K∑
k=1

xuc = 1. If UE uc chooses to execute the

computation task locally, αuc = 0. At this point, UE uc does
not communicate with the base station and therefore it does

not reuse any channel resources. i.e.
K∑
k=1

xuc = 0. Therefore,

αuc =
K∑
k=1

xkuc . �

By making αuc =
K∑
k=1

xkuc , the total execution energy

consumption of all MUEs can be converted into

εuM =

UM∑
uM=1

[
(1−

K∑
k=1

xkuM )ε
L
uM + (

K∑
k=1

xkuM )ε
t
uM

]
, (20)

and the total execution energy consumption of SUE in small
cell can be converted into

εun =

Un∑
un=1

[
(1−

K∑
k=1

xkun )ε
L
un + (

K∑
k=1

xkun )ε
t
un

]
. (21)

The original optimization problem P1 can be transformed
into the following optimization problem:

P2 : min
x
εuM +

N∑
n=1

εun (22)

s.t. Tuc ≤ T
max
uc , ∀uc ∈ Uc, ∀c ∈ C, (22a)

εuc ≤ κucE
max
uc , ∀uc ∈ Uc, ∀c ∈ C, (22b)

xkuc ∈ {0, 1}, ∀uc ∈ Uc, ∀c ∈ C, ∀k ∈ K,
(22c)

Uc∑
uc=1

xkuc ≤ 1, ∀uc ∈ Uc, ∀c ∈ C,∀k ∈ K,

(22d)

K∑
k=1

xkuc ≤ 1, ∀uc ∈ Uc, ∀c ∈ C,∀k ∈ K.

(22e)

Now, the target problem is transformed into a problem
of allocating only channel resources. If the UE chooses to
reuse channel resources, this means that the UE offloads the
computation task to the MEC server. If UE does not choose
to reuse channel resources, the UE executes the computation
task locally.

B. CHANNEL RESOURCE ALLOCATION
For the transformed optimization problem, the decision vari-
able xkuc has not changed, so problem P2 is still NP-hard.
Exhaustive method can get exact solution when solving
NP-hard problem, but it is not applicable when the result of
large-scale problem is too complicated. Therefore, we pro-
pose a offline channel resource allocation algorithm based on
differential evolution algorithm (CRADE).

Differential evolution (DE) algorithm is an important
branch of evolutionary algorithm (EA). EA is a kind of
group-oriented random search method by simulating the pro-
cess and mechanism of biological gene inheritance and pop-
ulation evolution in nature. EA can automatically acquire
the knowledge of search space in the process of search, and
accumulate the effective knowledge of search space to reduce
the search scope. Therefore, the EA can control the search
process adaptively, reduce the complexity of the problem
dynamically and obtain the optimal solution of the original
problem.

Like other EAs such as genetic algorithm, DE is an opti-
mization algorithm based on modern intelligence theory. The
DE guides the direction of search optimization through the
cooperation and competition among individuals in the group.
In particular, in differential evolutionary algorithms, changes
in each gene position depend only on differences between
other individuals, taking full advantage of information about
other individuals in the population. This can not only expand
the diversity of the population, but also avoid the randomness
and blindness caused by the operation of variation in the
individual. In the process of searching optimization, the group
of differential evolution calculation has the characteristic of
collaborative search and strong searching ability. Therefore,
differential evolution algorithm has strong global conver-
gence ability and robustness, which is very suitable for solv-
ing optimization problems in some complex environments.
Through continuous evolution, the excellent individuals are
retained and the inferior ones are eliminated, and the search
is guided to the optimal solution.

In the following, the realization process of CRADE algo-
rithm is introduced in detail.

1) POPULATION INITIALIZATION
Randomly generating Np individuals in the solution space,
which can be expressed as{

Xi(0)|xLi,j ≤ xi,j(0) ≤ x
U
i,j

}
, (23)
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Algorithm 1 Population Initialization Algorithm
Input: Population size: Np; Individual dimensions: D;

Upper and lower bounds of decision variables:
xUi,j, x

L
i,j

Output: Initial population
1 some description;
2 for i = 1 to Np do
3 for j = 1 to D do
4 xi,j(0) = xLi,j + rand{0, 1}(x

U
i,j − x

L
i,j)

5 end
6 end

where xLi,j = 0 and xUi,j = 1 denotes lower and upper bounds
of decision variables, respectively. i = 1, 2, . . . ,Np, which is
size of population, j = 1, 2, . . . ,D(D = (N × Un + UM ) ×
K ), which is the dimension of the objective decision variable.
Here, we carry out dimensionality reduction expansion for
decision variables xkuc to facilitate calculation. The population
initialization method is shown in Algorithm 1.

In this paper, the objective decision variable is binary dis-
crete variable. Therefore, rand{0, 1} denotes that the random
value is ‘‘0’’ or ‘‘1’’.

2) MUTATION OPERATOR
The CRADE algorithm realizes individual variation through
differential strategy. The difference strategy used by CRADE
is to randomly select two different individuals in the popu-
lation, and then scale their vector difference to make vector
synthesis with the individual to be mutated. The difference
strategy can be expressed as

Vi(g+ 1) = xr1(g)+ F × (xr2(g)− xr3(g)), (24)

where r1, r2, r3 are three unequal random numbers, with the
value interval of [1,Np], F is the zoom factor, and g denotes
the g-generation population.

The mutation operator can control the convergence speed
of the population by increasing the diversity of the population
and reduce the risk of falling into the local optimal solu-
tion in the optimization process. In the process of evolution,
the validity of the solution must be guaranteed. When per-
forming the mutation operation, it is necessary to determine
whether the genes of each individual in the population meet
the boundary conditions. If the boundary condition is not
met, the gene is regenerated in the same way as the initial
population.

3) CROSSOVER OPERATOR
In order to maintain the diversity of the population, the parent
individualXi(g) and the offspring individualVi(g+1) after the
difference variation carried out the crossover operation.The
cross mode gram is expressed as

ui,j(g+1) =

{
xi,j(g), randi,j ≤ Pc or j = Jrand ,
vi,j(g+1), randi,j ≥ Pc or j 6= Jrand ,

(25)

Algorithm 2 Channel Resource Allocation Algorithm
Based on Differential Evolution Algorithm (CRADE)

Input: Model parameters; Algorithm parameters: Np,
D, G

Output: Optimal channel allocation matrix: x;
System minimum energy consumption: f (x)

1 Initialize population based on Algorithm 1,
generation g = 0;

2 while g ≤ G do
3 for i = 1 to Np do
4 Mutation Process;
5 Based on (24) produce mutation individuals;
6 for j = 1 to D do
7 if xUi,j ≤ vi,j(g) ≤ x

U
i,j then

8 The mutation individuals gene is
vi,j(g);

9 else
10 Individual genes are regenerated

based on the Algorithm 1;
11 end
12 end
13 Crossover Process;
14 Two individual genes were randomly selected

for crossover based on (25);
15 Selection Process;
16 if individual satisfies the constraint in P2 then
17 According to (27), select the parent of the

next generation;
18 end
19 end
20 g← g+ 1
21 end

where Pc is crossover probability. The purpose of introducing
J is to force at least one gene of progeny individuals to be
provided by the new mutated individual, so as to improve
the diversity of the population. The diversity of population
ensures the evolution of individuals, thus avoiding prema-
ture convergence in the optimization process of resource
allocation.

4) SELECTION OPERATOR
According to question P2, the fitness function is as follows

f (x) = εuM +
N∑
n=1

εun . (26)

After the mutation and crossover operation, the offspring
and the parent were substituted into fitness function for com-
parison, and the individuals with high fitness were selected
as the parents of the next generation through greedy strategy.
Greedy strategy selection method can be expressed as

Xi(g+ 1) =

{
Ui(g+ 1), f (Ui(g+ 1)) ≤ f (Xi(g)),
Xi(g), Otherwise.

(27)
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FIGURE 2. Impact of environment parameters.

To summarize all the above discussions, we propose
CRADE algorithm to solve our optimization problem,
as shown in Algorithm 2.

The complexity of CRADE algorithm is related to dimen-
sion. In this model, the complexity of the four operations (i.e.,
initialization, mutation, crossover, selection) is proportional
to Np at each evolution, and Np is related to the size of dimen-
sion D. Therefore, the complexity of CRADE algorithm can
be calculated as 2(G ∗ 4 ∗ Np ∗ D) = 2(D2).

V. PERFORMANCE EVALUATION
In this section, we evaluate the CRADE algorithm for solving
the task offloading and channel resource allocation prob-
lem. The CRADE algorithm, proposed in this paper, is com-
pared with three different offloading strategies: (i) random
offloading and allocation scheme (ROA); (ii) all local scheme
(AL); (iii) all MEC and random allocation scheme (AERA).
The experimental results are mainly divided into three parts.
Firstly, we compare and evaluate the influence of network
environment indicators (i.e., number of SBS, number ofMUE
and number of SUE) on task offloading and channel allo-
cation performance. Secondly, we compare and evaluate the
impact of task indicators (i.e., task size and task computation)
on performance. Finally, we evaluate the convergence of the
algorithm.

A. SIMULATION ENVIRONMENT
We consider a UDN with a macro cell and N small cells. The
diameter of the macro cell is 500 m. The small cell diameter
is 100 m, randomly distributed in the macro cell. Similar
to [39], thewireless channel considered is the Rayleigh fading
channel, where the channel gain gkuc follows an exponential
distribution with a mean value of 1. The MEC server is
deployed in the MBS, and it has 4 GHz of computation
resources allocated for each task. Local UE have a CPU
frequency from 0.2 to 1 GHZ. The number of channels in
the macro cell is 20. The settings of the main simulation
parameters in this paper are shown in Table 2 [12], [31].

B. IMPACT OF ENVIRONMENT PARAMETERS ON ENERGY
CONSUMPTION
We first consider the impact of environment parameters on
energy consumption. We compared the energy consumption

TABLE 2. Parameter settings.

of three kinds of task offloading and channel resource allo-
cation schemes with different number of small cells and
different amount of UE respectively. The data size and the
computation amount of task follows a normal distribution
with mean value of 5 MB and 1 GHZ respectively.

As shown in Fig. 2, we can conclude that if each small
cell has the same number of people, the energy consumed
is positively correlated with the number of small cell. And
if the number of small cells remains the same, the energy
consumed is positively correlated with the number of peo-
ple in the small cell. In addition, compared with ROA,
AL and AERA, the proposed CRADE has lower energy
consumption. This is because that in task offloading and
channel allocation, the computational amount of task con-
tent, data size and the interference of the same channel
are considered comprehensively, so as to minimize the
task energy cost and thus obtain an efficient offloading
scheme.

In Fig. 2(a), when the number of people in the small cell
is 2, the proposed CRADE can reduce energy consumption
by 72% to 81% compared with the other three schemes.
As shown in Fig. 2(b), when the number of people in the
small cell is 6, the proposed CRADE can reduce energy
consumption by 33% to 57%. As shown in Fig. 2(b), when
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FIGURE 3. Impact of computation amount on energy consumption.

the number of people in the small cell is 6, the proposed
CRADE can reduce energy consumption by 32% to 56%.
When the number of SUEs in a small cell is 2, CRADE
is most effective in reducing energy consumption, which is
because there are enough idle channels in the case of a small
number of users. All UEs can offload tasks to theMEC server
without interference from other UEs on the same channel.
Thus, UE has a very high uplink rate, which makes the
transmission delay and energy consumption lower. When the
number of users in a small area is 10, the effect of CRADE
to reduce energy consumption is also relatively obvious.
Because when the number of users increases, CRADE algo-
rithm can take into account the interference caused by channel
reuse. UE can choose whether to offload the task to the MEC
server or execute it locally. The uplink transmission channel
with the highest uplink rate is selected to reduce the energy
consumption.

C. IMPACT OF TASK INDICATORS ON ENERGY
CONSUMPTION
In terms of task indicators, we analyze the impact of task
computation and data size on energy consumption.

1) IMPACT OF COMPUTATION AMOUNT ON ENERGY
CONSUMPTION
For task indicators, we first consider the impact of computa-
tion amount on energy consumption of system. The number
of small cells follows a normal distributionwith average value
of 8. The number of SUE follows a poisson distribution with
average value of 6. The data size of computation task is a
normal distribution with average value of 5 MB. The com-
putation amount of computation task is a normal distribution
with average value of 0.5 to 2.5 GHZ.

As shown in Fig. 3, we can conclude that the larger the
computation of a task, the more energy it will consume,
except for the AERA scheme. Because the amount of com-
putation of task has no impact of the transmission rate.
Furthermore, our proposed CRADE exhibits lower energy
consumption than ROA, AL and AERA scheme.

FIGURE 4. Impact of data size energy consumption.

In Fig. 3, when the mean of task computation is from
0.5 to 2.5 GHZ and the mean of data size is 5 M, compared
with the other three schemes, it is shown that our proposed
CRADE can reduce 37% to 70% of the energy consumption.
Especially when the mean of task computation is 2.5 GHZ,
the energy consumption reduction of CRADE scheme is the
most obvious compared with AL.

2) IMPACT OF DATA SIZE ON ENERGY CONSUMPTION
We second consider the impact of data size on energy con-
sumption of system. The number of small cells follows a
normal distribution with average value of 8. The number of
SUE follows a poisson distribution with average value of 6.
The computation amount of computation task is a normal
distribution with average value of 1 GHZ. The data size of
computation task is a normal distribution with average value
of 2 to 10 MB.

As shown in Fig. 4, we can conclude that the larger the data
size of the task, the more energy consumption, except for the
ROA and AL scheme. Because the energy consumption of
local execution is not related to the size of the data, but to the
amount of computation. The reason why the system energy
consumption calculated by ROA scheme does not increase
with the increase of data size is that the task offloading in
ROA scheme is random. Random offloading causes uncer-
tainty in the number of tasks to be executed at the edge.
Even if the data size of each task increases, the total data size
of the task during the uplink does not necessarily increase.
Therefore, the uplink transmission delay time and energy
consumption do not increase with the increase of the data
size of the task. What’s more, our proposed CRADE exhibits
lower energy consumption thanROA,AL andAERA scheme.

In Fig. 4, when themean of data size is from 2 to 10MB and
the mean of task computation is 1 GHZ, compared with the
other three schemes, it is shown that our proposed CRADE
can reduce 49% to 61% of the energy consumption. Accord-
ing to Fig. 4, we can infer that when the data size of the task
is large enough, the transmission delay is too high and the
transmission power is too high, CRADE will make the task
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FIGURE 5. Convergence of different data indicators.

execute locally. The energy consumption of AL will be the
upper limit of the power generated by the CRADE scheme.

D. CONVERGENCE ANALYSIS OF CRADE
Finally, we evaluate and analyze the convergence of CRADE
algorithm. We set the data indicators as two cases, one is the
compromise data indicators and the other is the maximize
data indicators. The corresponding are the general case and
the worst case respectively.

• Compromise data indicators: The number of small cells
follows a normal distribution with average value of 8.
The number of SUE follows a poisson distribution with
average value of 6. The computation amount of compu-
tation task is a normal distribution with average value
of 1 GHZ. The data size of computation task is a normal
distribution with average value of 5 MB.

• Maximize data indicators: The number of small cells is
12. The number of SUE is 10. The computation amount
of computation task is a normal distributionwith average
value of 2.5 GHZ. The data size of computation task is
a normal distribution with average value of 10 MB.

As shown in Fig. 5, we simulate the convergence of
CRADE algorithm in the compromise data indicators and
the maximized data indicators. We can get two observations
from Fig. 5. First, when the data indicators is a compromise
value, CRADE algorithm converges to the optimum when
the number of iterations is about 300. Secondly, when the
data indicators is the maximum, the number of convergence
iterations is 450. Therefore, we can conclude that CRADE
algorithm has a great effect in minimizing system energy
consumption, and can still converge to the optimal value even
in the worst case considered.

VI. CONCLUSION
In this paper, we study the problem of task offloading and
channel resource allocation based on MEC in UDN. Specif-
ically, we express task offloading as a NP-hard integer non-
linear programming problem. To solve this problem, firstly,
we eliminate one of the decision variables through variable
substitution without changing the nature of the problem, and

then propose an efficient task offloading and channel resource
allocation scheme based on differential evolution algorithm.
Simulation results show that compared with ROA, AL and
AERA schemes, this scheme can significantly reduce the
system energy consumption and has good convergence. In
the future work, we will consider the more complex resource
allocation problem under the multi-edge server in the
5G UDN.
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