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ABSTRACT With the increasing demands on quality healthcare and the raising cost of care, pervasive
healthcare is considered as a technological solutions to address the global health issues. In particular,
the recent advances in Internet of Things have led to the development of Internet of Medical Things (IoMT).
Although such low cost and pervasive sensing devices could potentially transform the current reactive care
to preventative care, the security and privacy issues of such sensing system are often overlooked. As the
medical devices capture and process very sensitive personal health data, the devices and their associated
communications have to be very secured to protect the user’s privacy. However, the miniaturized IoMT
devices have very limited computation power and fairly limited security schemes can be implemented in
such devices. In addition, with the widespread use of IoMT devices, managing and ensuring the security
of IoMT systems are very challenging and which are the major issues hindering the adoption of IoMT for
clinical applications. In this paper, the security and privacy challenges, requirements, threats, and future
research directions in the domain of IoMT are reviewed providing a general overview of the state-of-the-art
approaches.

INDEX TERMS Security, privacy, Internet of Medical Things, IoMT, mIoT, healthcare systems, survey.

I. INTRODUCTION
In the healthcare industry, significant improvements in effi-
ciency and quality of care are expected from the diverse range
of developments in Internet of Things (IoT), which is often
referred as Internet of Healthcare Things (IoHT) or Internet
of Medical Things (IoMT). In particular, smart wearable and
implantable medical devices have attracted much interest in
recent years due to the advances in microelectronics, materi-
als, and biosensor designs. The rapid development of IoMT,
however, has meant that the security and privacy of these
IoMT-based healthcare systems often has received insuf-
ficient attention. The consequences of inadequate security
in IoMT healthcare systems can be, for instance, compro-
mised patients’ privacy due to eavesdropping, and delayed
detection of life threatening episodes due to the disruption
of normal operations of IoMT devices caused by Denial
of Service (DoS) attacks. A study conducted by HP For-
tify in 2015 found that the 10 most popular smartwatches
(at the time) all had security vulnerabilities from insufficient
authentication or authorization, lack of data transmission
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encryption, insecure interfaces, insecure software/firmware,
and privacy concerns [1]. Authentication, for example, is the
process of confirming identity of the user. All IoMT health-
care systems should only be accessed by authorized and
authenticated users or devices. Insufficient authentication
protection could potentially allow attackers to enter the sys-
tem and gain access to private healthcare data of the users.

User and device authentication is important to a system
as it ensures that the data is correctly attributed and infor-
mation in the systems is only accessible to the authorized
entities. In the context of healthcare systems, the ability
to authenticate the users of medical devices could be used
to establish the integrity of the data, for instance, activ-
ity information form obese patients. Authentication would
also be used to safeguard patients’ privacy by ensuring
that information, such as the patients’ electronic medi-
cal records [2], is only accessible to the authorized and
authenticated users (i.e. patients’ general practitioners). Net-
work and system security is a well-established field, and
extensive security protection schemes and methods are
available to protect computer systems and networks. For
example, public-key cryptosystems, such as Rivest-Shamir-
Adleman (RSA) [3] and Digital Signature Algorithm (DSA)
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[4], are commonly used algorithms in securing computer
networks.

However, many of such cryptosystems cannot be applied
for IoT devices due to their low power and low computational
capability [5]. Compare to typical IoT devices, wearable
and implantable medical and healthcare devices are often
designed with even lower computational power and battery
capacities as they have to be miniaturized in size. IoMT
devices have to store and process personalized health data,
and some devices even have actuation functions to support
the users’ health (i.e. insulin pump). Therefore, the level
of security required for IoMT devices are expected to be
much higher than typical IoT and computing devices [6]. Yet,
security and threats are often overlooked in the design of
IoMT healthcare systems.

Most of the IoMT devices are designed to transmit and
store the data in the cloud, which can be further pro-
cessed and analyzed. This advancement in healthcare systems
enables the medical carer to provide faster and more accurate
responses to the patients that are being monitored by the
medical and healthcare devices. However, it also introduces
risks of users’ data stored in the cloud servers being abused
or stolen [7]. The privacy of the users’ data, especially users’
personal data must be well protected. Yet, many examples of
security breaches of cloud servers from large enterprises, such
as Facebook [8] and Yahoo [9], raise the question on whether
the patients’ sensitive health data can really be protected.
In fact, more andmoremalicious attackers are targetingmedi-
cal servers and eHealth systems, because personal health data
is very valuable in the illegalmarkets [10]. Therefore, medical
service providers require even stronger security measures,
which inevitably increases the costs of creating, running, and
maintaining these medical services.

In addition to developing countermeasures to attacks,
post-attack measures are also needed to be well considered.
Financial information, such as credit card security codes, can
be made invalid and useless quickly, but personal health data
can reveal a person’s current health conditions [11]. When
such data is stolen in a case of security breach, the retrieval
and elimination of the stolen data is both challenging and
critical. To protect patients’ data, strong regulations and
severe penalties must be in place from governments and
healthcare organizations. In the EuropeanUnion, Information
Commissioner’s Office (ICO) could only fine a company
who is responsible for a data breach up to 500,000 pounds
previously, however, with the newly introduced General Data
Protection Regulation (GDPR), ICO is now able to fine
a company based on the company’s profits. For example,
British Airways is suspected to be fined up to 183 mil-
lion pounds, due to a data breach of 500,000 users from
its website and mobile app [12]. In the United States,
the Health Insurance Portability and Accountability Act
of 1996 (HIPAA) provides rules and provisions for the pri-
vacy of medical and healthcare data. The law also forces
healthcare service providers to ensure the security and pri-
vacy of their systems against cyber-attacks and ransomware

attacks. In addition, according to the GDPR, any incidents
of data breaches in the healthcare systems must be reported
promptly within 72 hours [13], where as HIPAA requires
companies to report data breaches no later than 60 days if
the breach affected more than 500 people [14].

Medical devices in the U.S. are regulated by the Food
and Drug Administration (FDA). According to a study [15],
among 13.79% of all the medical devices approved or cleared
by FDA that include software, only 2.13% have incorporated
cybersecurity in their software designs from 2002 to 2016.
Recently, the FDA had issued a warning on cybersecurity
vulnerabilities referred as ‘‘URGENT/11’’ which exists in a
third-party software called IPnet. The URGENT/11 would
affect more than 200 million devices related to medical ser-
vices [16]. FDAhas also updated their cybersecurity guidance
on medical device software in 2018, to provide up to date
instructions on protecting patients’ data on medical devices
and services. Despite the recent efforts put in by the gov-
ernments and agencies, the number of cyberattack against
medical services has increased [17].

This paper provides an overview of the current the chal-
lenges, requirements, and identify potential threats for the
security and privacy of the IoMT healthcare systems. Despite
there are several reviews and surveys on this topic in the liter-
ature, they all have different research focuses. Sun et al. [18]
published a review that focuses on the security and privacy
requirements regarding to the data flow in different layers
of IoMT systems. Williams and McCauley [19] reviewed the
vulnerabilities of interconnected medical devices in the IoHT
environment. Sahi et al. [20] presented a review that discusses
the privacy preservation issues in the context of e-healthcare
environments. Alsubaei et al. [21] published a review that
provides a taxonomy of the security and privacy issues of
IoMT. Hatzivasilis et al. [22] reviewed security and privacy
challenges of IoMT in a business stand point. Algarni [23]
surveyed and analyzed security research for smart healthcare
systems by classifying and ranking top contributed research
works in their applicable domains.

This paper uses a bottom-up approach, reviewing the secu-
rity and privacy challenges and requirements from the data
level to the medical server level of the IoMT-based healthcare
systems. In addition, this paper presents the potential of
biometrics and its applications for securing IoMT healthcare
systems. This paper also discusses the security schemes for
implantable IoMT devices, as there are increasing number
of medical implantable devices and they shares unique chal-
lenges due to their hardware limitations. The rest of the paper
is organized as follows: Section II provides an overview of the
IoMT-based healthcare system and challenges for the IoMT
network and protocol designs. A survey of the security and
privacy requirements for each level of the IoMT healthcare
systems is presented in Section III. Then, the state-of-the-
art security research is discussed in Section IV, as well as
biometric authentication and implantable security schemes.
Discussions, future research directions, and conclusions are
presented in the last three sections.
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FIGURE 1. Architecture of IoMT-based healthcare systems [24].

II. INTERNET OF MEDICAL THINGS: SYSTEMS,
NETWORKS, AND DESIGN CHALLENGES
A. IoMT-BASED HEALTHCARE SYSTEMS
IoMT-based healthcare systems often consist of 3 tiers, sen-
sor level, personal server level, and medical server level,
as indicated in Fig. 1. This architecture of IoMT healthcare
systems have adopted in many recently proposed IoMT-based
healthcare systems, such as [25]. Medical devices and
sensors are located in the sensor level, which form a
local network and often referred as a Body Sensor Net-
work (BSN) [26]. Low-power wireless technology standards
including Bluetooth Low Energy (BLE), Near-Field Commu-
nication (NFC), and Radio-Frequency IDentification (RFID),
are often employed for wireless communications in the sen-
sor and personal server levels. BLE supports many network
topologies, such as star and mesh, whereas NFC and RFID
can only support ultra-low energy, device-to-device close
proximity direct communications, which are often required
by implantable devices.

Physiological data collected by the medical devices will
be sent to personal servers, which can be on-body devices,
such as smart phones, programmers, and tablets, or off-body
devices, such as routers and gateways. The purposes of per-
sonal servers are to process and store patients’ data locally
before sending to the centralized medical servers. A personal
server is required to be able to operate normally when the
network connection to the medical servers is lost. Medical
personnel, such as doctors, are able to access patients’ data
remotely, providing prompt advice to the patients. Algo-
rithms and computer programs for early diagnoses and reha-
bilitation progress assessments can also be run on the medical
servers with patients’ consents. Many IoMT-based healthcare
systems have been proposed for continuous patient moni-
toring in the last decades, but many of them do not adopt
any security and privacy measures in their designs or left
out as future work, such as MobiCare [27]. These research
have focused more on other design challenges such as power
consumption and usability, rather than the security of the
systems and the privacy of patients’ data. Recently proposed

IoMT-based healthcare systems, such as BSN-Care [28], have
adopted encryption and authentication schemes into their
designs.

B. NETWORK AND PROTOCOL DESIGN CHALLENGES
Protocol is a set of rules that govern the exchange or transmis-
sion of data between devices, and a routing protocol spec-
ifies how network routers exchange data with one another,
disseminating information that enables them to select routes
between any two nodes in the same network or in different
networks. Routing protocols in wireless networks are more
complex than those used in wired networks in many respects,
including network topology, power conservation, and channel
effectiveness. Thus, transferring data between nodes is not the
only functionality required from routing protocols in wireless
networks.

1) POSTURAL BODY MOVEMENTS
On-body medical devices and sensors are often in a group-
based, postural body movement as the patients under diag-
nosis or users under monitoring are often not stationary,
resulting in frequent changes in network topology and com-
ponents [29]. Routing protocols in BSNs should be adaptive
to both repetitive and unpredictable changes in the quality
of communication links between sensor nodes, which varies
as a function of time against body movements. It can be
utilized in routing protocols to conserve energy. For example,
a transmission power control scheme based on gait cycle for
BSNs has been proposed in [30], where transmission time is
optimized by matching link quality changes due to walking.
On the other hand, there are also unpredictable changes of
link quality due to signal blockage by clothes or bags that
intensifies channel attenuation.

2) TEMPERATURE RISE
Antenna radiation absorption and power consumption of node
circuitry are the two sources than cause temperature rise in
sensor nodes [31]. Radio energy can also be absorbed by the
tissues which could heat up the tissues, attenuate the signals,
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and cause skin or tissue burns [32]. Therefore, transmission
and computing power in sensor nodes should be considered
in routing protocols, and extra attention should be made for
implant sensor nodes, as heat can damage tissues and organs
of the human body.

3) ENERGY EFFICIENCY
Routing protocols in IoMT systems should be designed to
optimize the energy efficiency for both local energy con-
sumption on sensor nodes and overall network lifetime.
Energy efficiency is a crucial element of IoMT systems, as it
determines the size of the devices, the lifetime of the system,
and the usability of the devices. For instance, surgeries will
be required for implant sensor nodes to replace batteries,
and such surgeries are risky and very expensive. Typical
implantable devices, such as pacemakers, should have the
battery lifetime of at least 10 to 15 years to enable the user to
live a normal life [33]. For wearable sensor nodes, frequently
charging or replacing batteries hinder the usability of the
devices.

4) TRANSMISSION RANGE
Short transmission range along with the postural body move-
ments could lead to the problems of disconnection and
re-partitioning among sensor nodes in IoMT systems [34].
The number of sensor nodes on a patient or a user should
be minimized to reduce discomfort, which results in fewer
routes to neighbour sensor nodes. Therefore, if the connecting
sensor node is out of range, packets will have to be routed
by an alternative path resulting in higher energy consump-
tion in that path and longer time for packets to reach the
destination. In BSNs, if the alternative path includes one or
more implantable devices, the routing protocol must be able
to decide whether to take this alternative path based on the
importance of the contents in the packets.

5) HETEROGENEOUS ENVIRONMENT
In most of the IoMT applications, different types of sen-
sor nodes from a variety of medical equipment vendors are
required tomeasure different physiological signals of patients
or users. Therefore, routing protocols have to be designed
to tackle the challenges of heterogeneous environments in
many BSN applications. To solve this problem, many BSN
platforms and frameworks have been proposed for medical
devices from different vendors to work together, such as
DexterNet [35].

6) QUALITY OF SERVICE
Real time life-critical BSN applications, such as Electrocar-
diogram (ECG) sensing, are both data loss sensitive and time
critical, and the QoS requirements of such applications must
be met [36]. However, implantable sensor nodes has limited
memory and computation capability, which means routing
protocols have to adopt QoS measures such as retransmission
and error correction strategies without increasing computa-
tional complexity on the sensor nodes.

III. SECURITY AND PRIVACY REQUIREMENTS
FOR IoMT HEALTHCARE SYSTEMS
Security and privacy requirements for the IoMT healthcare
systems are more rigorous than that of the typical IoT-based
infrastructures. IoMT healthcare systems have many addi-
tional security requirements, such as device localization [37],
which can also contribute to ensure the security and privacy
of the systems. The functionalities of each level of the IoMT
healthcare systems are different, which means each level
has different security and privacy requirements. Therefore,
the requirements for each level are analyzed and discussed
individually. In addition, the security and privacy require-
ments in the data level is also discussed in the context of the
GDPR and HIPAA.

A. DATA LEVEL
1) CONFIDENTIALITY
Collection and storage of patient health data must comply
with legal and ethical privacy regulations, such as GDPR and
HIPAA, in which only authorized individuals can have access
to those data. To prevent breaches of data, adequate measures
must be adopted to ensure the confidentiality of the health
data associated with individual patients. The importance of
such measures cannot be overemphasized, as the data stolen
by cyber criminals could be sold in illegal markets, causing
the patients to suffer from not only privacy violation but
also possible financial and reputational damages. It has been
stated in Article 5(e) of the GDPR that personal data should
be erased once it has been processed and no longer required,
with exceptions, such as archiving, scientific, historical or
statistical purposes (Article 89). On the other hand, HIPAA
has no restrictions on how long the patients’ data can be
kept. Medical service providers under HIPAA compliance
may disclose protected health information (PHI) of patients
to another provider without patients’ consent, whereas care
providers who are compliant with the GDPR must obtain
explicit consent from EU patients for any PHI exchanges with
other providers [38].

2) INTEGRITY
For IoMT healthcare systems, the purpose of the data
integrity requirement is to ensure that the data arriving at
the intended destination have not been compromised in any
way during the wireless transmission [39]. Attackers could
gain access to and modify patient data by taking advantage
of the broadcast characteristic of the wireless network, and
which could lead to severe implications in life-threatening
cases. To guarantee that the data have not been compromised,
the capacity to detect potential unauthorized distortions or
manipulations of the data is critical. Therefore, appropriate
mechanisms of data integrity must be implemented to prevent
alteration of transferred data by malicious attacks. Moreover,
the integrity of the data stored in the medical servers also
needs to be ensured, which means the data cannot be tem-
pered with. Article 5(d) of the GDPR states that medical
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service providers have to make necessary measures to keep
patients’ data accurate and up to date. It also requires inaccu-
rate personal data to be erased or rectified as soon as possible.
The GDPR also emphasizes on the ‘accuracy’ of the data,
allowing data owners request service providers for the rectifi-
cation of any inaccurate data, and the service providers must
respond to the requests within a calendar month. Similarly,
HIPAA requires medical service providers to adopt necessary
measures to ensure any PHI stored in the systems cannot be
altered without authorization.

3) AVAILABILITY
Services and data must be accessible when they are required
to the relevant users. Such services and data, provided by the
medical servers and devices, will become inaccessible if DoS
attacks occur. Any inaccessible data or services could lead to
life threatening incidents, such as unable to provide prompt
alert in the case of a heart attack. Therefore, to accommodate
the possibility of availability loss, the healthcare applications
must be always-on to ensure data availability to the users and
emergency services. According to Article 32 of the GDPR,
medical service providers must have the ability to restore the
availability and access to personal data in a timely manner,
such as adopting preventive security measures and counter-
measures to DoS attacks [40]. Furthermore, according to
Article 17 of the GDPR, patients in the EU have the right to
request their data held by the medical service providers to be
erased, which is known as ‘Right to Be Forgotten’, however,
such right is not required by the HIPAA [38].

B. SENSOR LEVEL
The security and privacy in the sensor level faces the most
challenges of the 3-tier IoMT healthcare system, due to the
limited computational capability and power constraint of the
medical devices and sensors [41]. The current trend in sensor
level security research is to put most of the computations in
the personal server level instead, and the security measures
in the sensor level are required to be light-weight and less
communication overheads.

1) TAMPER-PROOF HARDWARE
IoMT devices, especially ambient sensors, can be stolen
physically, which leads to security information being exposed
to attackers. Furthermore, the stolen devices can be repro-
grammed by attackers and redeployed to the system, listening
to communications without being noticed [42]. Therefore,
physical theft of medical devices is a severe security threat
andmust be addressed in the IoMT healthcare systems.Medi-
cal devices in the systems should at least have tamper resistant
integrated circuits, preventing codes loaded on the devices
being read by third parties once being deployed. A example
solution is to use Physically Unclonable Functions (PUFs)
to secure data stored in the Integrated Circuits (ICs) of the
medical devices [43].

2) LOCALIZATION
Researchers are focusing on two types of sensor localization,
on-body sensor position and sensor’s/patient’s location in
an indoor environment. The former sensor localization is
typically designed to identify whether the sensors are located
in the desired body positions. Such on-body sensor position
identification is of vital importance for applications such as
activity recognition [44]. The later sensor localization, also
known as Location of Things (LoT), is designed to locate the
sensor in a room or to locate the patient wearing the sensor
in a building. In addition, due to the design of the IoMT
healthcare systems, medical devices could move in and out
of the network coverage very frequently. Therefore, a real-
time intrusion detection measure is required if the network
allows its sensors to leave and rejoin irregularly. An example
of such measures is SVELTE [45], an intrusion detection
method that reports malicious nodes joining the network to
administrators.

3) SELF-HEALING
Self-healing, introduced in Autonomic Computing [46], is of
great importance for the IoMT systems, as IoMT devices
shall resume operation after the network attacks. To achieve
self-healing, an IoMT system should be able to detect and
diagnose the attacks, and apply corresponding security mech-
anisms [47] with minimal human intervention. Self-healing
methods deployed should also be light-weight, in terms of
communication overheads to the network and computational
complexity to the medical and healthcare devices. An exam-
ple of self-healing architecture for IoT is proposed in [48],
where dendritic cells algorithm is applied in the network to
detect network attacks. However, as different types of net-
work attacks require different detection and recovery meth-
ods, it is important for network administrators to decide
which autonomic security schemes should be implemented
in the network.

4) OVER-THE-AIR PROGRAMMING
Over-the-air programming or updating (OTA) has become a
popular method to update an IoT system with a large number
of sensor nodes, which introduces security concerns such as
malicious sensor nodes listening updates and forging iden-
tities into the network. OTA can be part of the self-healing
mechanism, updating security rules for the network instantly.
To implement OTA properly, security measures must be
made to prevent OTA updates being exploited by attackers.
An example solution is SEDA [49], which is a secure OTA
programming protocol designed for distributed network like
IoMT systems.

5) FORWARD AND BACKWARD COMPATIBILITY
This is also a key requirement in real-time healthcare appli-
cations where faulty medical sensors are replaced promptly
with new ones. Forward compatibility is characterized by the
fact that future messages cannot be read by medical sensors
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if their transmission occurs after the sensors have left the
network. Conversely, in backward compatibility, messages
that have been transmitted earlier cannot be read by a sensor
which just entered the network [50]. Compatibility issues can
potentially be solved by implementing OTA programming for
the distribution of the newest software update promptly.

C. PERSONAL SERVER LEVEL
As patients’ data is often stored and aggregated in the per-
sonal server level before being forwarded to the medical
servers in the IoMT healthcare systems [51], it is essential
to ensure that the data is well protected while on the per-
sonal servers. Generally, two types of authentication schemes
must be deployed to ensure security and privacy in the per-
sonal server level, namely device authentication and user
authentication.

1) DEVICE AUTHENTICATION
Personal server (i.e. a smart phone) shall perform authenti-
cation before accepting data sent from the medical devices
and sensors. Device authentication scheme should be able
to establish secured/encrypted communications for data con-
fidentiality and integrity [52]. False information from mali-
cious devices about patients’ physical conditions could have
severe negative impacts on the clinical diagnosis and care
decisions, therefore, device authentication must be imple-
mented in any IoMT healthcare systems. Device authenti-
cation is mutual between personal servers and devices, but
the majority of the computation should be performed on
the personal servers, as they often have more computational
capability and power than the medical devices and sensors.

2) USER AUTHENTICATION
The data stored either temporarily or permanently on the
personal servers should only be accessed by the patients and
medical staff, such as caregivers, therefore, effective user
authentication schemes are required [53]. Personal servers in
the IoMT healthcare systems should also support emergency
access of the data if the patients are in critical conditions,
such as having a stroke or a seizure. A popular solution to
user authentication in the personal server level is the use
of biometrics, which is particularly applicable in the IoMT
healthcare systems, as most of the biometrics can be easily
collected from medical and healthcare devices worn by or
implanted in the human body.

D. MEDICAL SERVER LEVEL
Two of the most important requirements on the security
and privacy of patients’ data in the medical server level
are: only authorized devices and personnel have access to
the data; and the data itself must be encrypted at all time
when stored in the databases [54]. With more and more
paper-based medical records have been digitized into Elec-
tronic Medical Record (EMR), security and privacy concerns
with the medical servers storing EMRs are growing [55].

Therefore, proper security measures must be in place in the
medical server level for IoMT healthcare systems.

1) ACCESS CONTROL
To ensure only authorized devices and personnel have access
to the medical servers, effective access control schemes must
be deployed. It is difficult to ask permission or consent of a
patient every time a data access request is made, therefore,
the service providers of the medical servers should provide
selective access control for patients, i.e. to choose which data
can be shared without permissions andwhich third parties can
have access. A popular solution of selective access control is
Attribute-Based Encryption (ABE) [56], which is categorized
as public-key cryptography where the secret keys are gen-
erated from attributes (i.e. received signal strength, location,
and channel frequency). Access trees in the ABE solutions
can be selectively constructed with a set of attributes, so that
only a set of attributes that satisfies the tree will be granted
access to the encrypted data.

Medical servers should also be capable of updating access
control policy efficiently. Policy update can be redundant
for medical servers, for example, many cloud security mea-
sures require the change of encryption keys when updat-
ing access control policy [57], which leads to decrypt and
re-encrypt data in the medical servers and in the personal
servers. Therefore, a scalable and less redundant policy
update scheme should be deployed to reduce or eliminate
the computational overheads in cryptography. A popular
solution is the 2-layer over-encryption [58], where pol-
icy update can be made in surface encryption layer (SEL)
while a further encryption is imposed by the data owners in
base encryption layer (BEL). Furthermore, emergency access
control should also be supported in the medical servers,
either by disabling security measures over patient’s data or
by granting a third-party emergency access. For example,
Proxy Re-Encryption (PRE) [59] can be used to convert data
encrypted by a patient’s public key into encrypted data which
can be decrypted by a third party, without revealing patients’
data during the transmission.

2) KEY MANAGEMENT
The development of secure applications depends on key
management protocols, of which the goal is to implement
and distribute cryptographic keys to sensor nodes. Trusted
server are key pre-distribution are the two main types of key
management protocols used in the IoMT healthcare systems.
Trusted server protocols achieve key agreement within the
network in a trusted base station. These types of protocols
are appropriate for hierarchical networks, however, in spite
of this, the trusted server protocols are inadequate for critical
applications like those related to healthcare because a whole
network failure could paralyze a trusted server in a real-time
environment [60]. Key pre-distribution protocols are often
implemented in symmetric key cryptography, to share secret
keys within the network prior to the network being fully
functional. These types of protocols are more appropriate for
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TABLE 1. DoS attacks at each routing protocol layer.

resource-limited sensor networks because their implemen-
tation is straightforward and do not require very complex
computation.

3) TRUST MANAGEMENT
Trust means that there is a two-way association between
two reliable nodes, such as a sensor node and a network
coordinator, that share data with one another. Similarly, one
study [61] explained that trust as the extent to which a node is
secured and dependable when it interacts with another node.
Distributed collaboration between the nodes of network must
exist for wireless healthcare applications to be successful.
In this regard, the level of trust of a node can be determined
with trust management systems, which are important partic-
ularly as the trust assessment of a node’s behaviour, such
as the delivery and quality of data, is essential in healthcare
applications [62].

4) RESISTANCE TO DoS ATTACKS
Table 1 lists common DoS attacks against wireless health-
care applications [63]. Attackers can use high-energy signals
to stop the wireless network from operating properly, such
as jamming attacks in the physical layer [64]. There are
many approaches proposed in safeguarding and self-repairing
the network against such attacks, such as evasion defence
and competition strategies, but they are all at early stage
of research [65]. Therefore, much research is required to
develop strategies to protect the system against DoS attacks
for real-time IoMT healthcare systems, due to the mobile and
dynamic nature of the wireless networks.

IV. SECURITY SCHEMES FOR IoMT
HEALTHCARE SYSTEMS
In this section, state-of-the-art security schemes for IoMT
healthcare systems are discussed. A comparison of the state-
of-the-art IoMT security research is presented in Table 2.

A detailed discussion on the comparative study is presented,
in terms of their cryptographic designs, applications and secu-
rity analysis. In addition, random number generator (RNG),
which is an important part of the cryptosystems is also
discussed, and example RNG research applicable on IoMT
devices is highlighted. Furthermore, a review on the biometric
authentication and its application in the IoMT healthcare
systems is provided, and a survey of security schemes for
implantable IoMT devices is presented.

A. STATE-OF-THE-ART
There are generally two common types of cryptographic algo-
rithms: symmetrical and asymmetrical (public-key). Com-
pare to symmetric encryption, asymmetric cryptosystems
provide better security protection but require significantly
more computational capability. Due to the limited computa-
tional capacities of IoMT devices in the sensor level, any data
encryption and decryption solutions proposed for securing
IoMT devices should be light-weight and the overhead of
the communication channels should be minimized. Whereas
data transmission between personal server level and medical
server level should be protected with much stronger security
schemes, as the data is often transmitted via public channels
such as the internet.

As listed in Table 2, the majority of cloud-based authen-
tication, data storage, and access control research adopt
public-key cryptography over symmetrical cryptography.
Among these research ( [66], [67], [69]–[73], [78], [79]),
Elliptic curve cryptography (ECC) is the most popular
public-key cryptographic algorithm, as it requires smaller
key size over other traditional public-key cryptographic
algorithms, such as Rivest-Shamir-Adleman (RSA). On the
other hand, symmetric cryptographic algorithms are often
used in research ( [68], [75], [76]) on access control,
data transmission to and from IoMT sensors, as they
are light-weight on those resource constraint devices. For
hybrid security schemes ( [74], [77], [80], [81]), sym-
metric cryptographic algorithms are often used as session
keys. Furthermore, the most applied attacks in the adver-
sarial/security analysis are Chosen Plaintext Attack CPA),
replay, impersonation, insider, eavesdropping, and Man-
in-the-Middle (MitM) attacks. A number of research also
analyze their security schemes in terms of Mutual Authen-
tication (MA), Anonymity and Traceability (A&T), Forward
Security (FS), Contextual Privacy (CP), and and unlinkabil-
ity. Apart from ( [68], [81]) that performed their experiments
on actual hardware, the others performed their experiments
using computer simulations.

Although the state-of-the-art security schemes are mainly
using readily available RNGs in their simulations, on-node
random number generation is an emerging research topic
for IoMT applications. Random numbers are often generated
by a pseudo-random number generator (PRNG) with a ran-
dom seed in modern computers. PRNGs are deterministic
approaches implemented in software. The PRNGs with the
same seed will always generate the same sequence of random
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TABLE 2. Comparison of state-of-the-art security and privacy research on IoMT healthcare systems (EHR = Electronic Health Record, Sim = Simulation,
Proto = Prototype, MA = Mutual Authentication, FS = Forward Security, CP = Contextual Privacy, CPA = Chosen Plaintext Attack, A&T = Anonymity and
Traceability, MitM = Man-in-the-Middle, DoS = Denial of Service).
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TABLE 3. Characteristics of biometric traits and the requirements of biometric authentication schemes [82].

numbers. If the seed is not generated from a true random
source, the PRNGs can be deduced by potential attackers.
Due to the size and power constraint of IoMT devices, many
true random number generators based on randomness of
physical phenomena are not suitable for the miniaturized sen-
sors. An example solution to generate true random numbers is
the use of inertial sensors on IoMT devices. Voris et al. [83]
proposed the use of an accelerometer as the random source
for generating random numbers on a RFID tag. Human’s
walking acceleration and gyroscope measurements collected
by inertial sensors can also be used as random sources for
TRNGs [84]. Furthermore, Wallace et al. [85] proposed Sen-
soRNG, a TRNGdesign based onmultiple internal sensors on
mobile phones, including microphones, inertial sensors, and
radio. Inertial sensors based TRNGs have the potentials to
be used in IoMT devices for data encryption, but issues such
as low entropy when idling and high power consumption for
implantable devices need to be addressed first.

B. BIOMETRIC AUTHENTICATION
Different types of factors can be used to confirm identity.
Facts can be knowledge factors, such as user’s secrets, which
are verifiable objects possessed by the user, or inherent fac-
tors, which are characteristics of the user [89]. Most com-
mercial IoMT devices currently available for monitoring
health and well-being, such as smartwatches, use numeric
or alphanumeric passwords for authentication, instead of
biometric authentication. For IoMT healthcare systems,
researchers are exploring the use of biometric inherent factors
that are unique to the user, as it is assumed that these fac-
tors are more challenging for attackers to compromise, espe-
cially in comparison to the short passwords commonly used
in smartwatches. Such biometric-based security schemes
in IoMT healthcare systems should meet the requirements
in Table 3.

A biometric-based security systems often perform two
types of actions, namely identification and verification. Iden-
tification is the matching of a sample against all the sam-
ples in the database, whereas, verification is the matching
of an input sample against one person’s samples in the
database [90]. Fig. 2 is a block diagram illustrating a gen-
eral biometric authentication system (retrieved from [86]).
There are two phases, enrolment phase and matching phase,
in the biometric authentication systems. In the enrolment
phase, subjects register their raw biometric samples into

the database, then, the recorded biometric samples will be
processed into a template or a feature vector and stored
into the database. In the matching phase, similar process is
performed. The subject will be authenticated only if his/her
sample matches the templates or the feature vectors of the
claimed identity in the database. If not, the authentication
attempt will be rejected by the system.

To assess the performance of biometric authentication sys-
tems, some likelihood-based performance metrics, as listed
in Table 4, are commonly used [88]. A trade-off will be made
between False Acceptance Rate (FAR) and False Rejection
Rate (FRR) by choosing a decision threshold value t for the
biometric authentication systems, as shown in Fig. 3a. If the
matching score s is larger or equal than t , the authentica-
tion is considered to be successful. If s is smaller than t ,
the authentication is failed and the person is considered to be
an impostor. The higher the decision threshold t is, the more
secure the biometric authentication systems are, and t is often
chosen based on the security requirements of the applications
as shown in Fig. 3b.

Behavioural biometric traits, including signature, voice,
gait, ECG, and keystrokes, can be used in IoMT healthcare
systems. The strengths and weaknesses of those behavioural
biometric traits are summarized in Table 5 [91]. Behavioural
biometric traits can often be capturedwith low-cost hardware,
requiring only adequate algorithms for feature extraction,
which makes behavioural biometric-based security systems
simpler and less costly. Signature and keystroke dynamics are
not applicable to IoMT devices in the sensor level, due to the
size of the sampling hardware, such as keypad and electronic
signature pad. However, they can be used on mobile phones,
which are in the personal server level of the IoMT healthcare
systems.

On the other hand, a large number of physical biometric
traits of humans can also be used for authentication applica-
tions. In the recent years, the majority of physical biomet-
ric traits have been exploited in biometric security systems,
including fingerprint, palm print, face, retina/iris, hand geom-
etry, ear shape, body odour, vein pattern, and DNA, as sum-
marized in Table 6. Every physical biometric trait has its own
application scenarios regarding to the security requirement
and hardware availability of the systems, as no individual
biometric system can perform well in all possible scenarios.
In order to achieve a higher level of security, multi-biometric
fusion has drawn attentions from many researchers.
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FIGURE 2. Block diagram of general biometric authentication systems [86].

TABLE 4. Common performance metrics in biometric authentication systems [88].

Although physical biometrics has been widely adopted in
a variety of security applications, behavioural biometrics is
very promising and it can be easily adapted into the current
IoMT infrastructures due to its cost efficiency and less pro-
cessing complexity.

1) HEART RHYTHM OR ELECTROCARDIOGRAM (ECG)
Electrocardiogram can be measured by both wearable and
implantable devices, therefore it is often used as security
measures for IoMT healthcare systems. Bao et al. [92]
first proposed an ECG-based security scheme using grouped

Inter-pulse Intervals (IPIs) of heartbeats as the source for
key generation. The scheme has been further improved by
the group [93] using Error-Correcting Codes (ECC). IPIs
can also be accumulated to improve randomness, such as
MRE-IPI [94], a new randomness extraction method which
can extract Martingale Randomness from IPIs of ECG
signals.

2) MOTION AND GAIT
Compare to ECG, gait is a relatively new biometric mea-
surement. Due to the difference in bio-mechanical structure
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FIGURE 3. Trade-off between FRR and FAR [87].

TABLE 5. Common behavioural biometric traits [91].

and phenotypes, everyone walks differently and by capturing
the gait parameters, individual can be identified. Apart from
user authentication, device-to-device authentication can also
be achieved by using gait parameters, as inertial sensors,
embedded in the wearable or implantable devices on the same
user, can capture the similar gait parameters when the user
walks [95]. A study carried out byMuaaz and Mayrhofer [96]
demonstrates that a person’s gait inertial signals are very
difficult to be imitated, because impersonators often lose
their own regularity between steps when mimicking legit-
imate users. Despite open problems such as gait changes
due to ageing and low performance on false agreement rate,

gait biometric holds great potentials in cryptographic appli-
cations due to its uniqueness, freshness, and availability.

3) VOICE
Instead of using pin numbers, banks have started to use
voice recognition for user authentication in their telephone
banking services. Due to the structural difference in vocal
chords, trachea, nose, teeth and accentuates sounds, one’s
voice can be as distinctive as his/her fingerprint [97]. Unlike
other biometric, voice print does not require physical con-
tact with the scanner/reader and can be taken remotely.
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TABLE 6. Common physical biometric traits.

Voice authentication methods have been adapted in many
IoMT systems in the last decade.

4) ELECTROENCEPHALOGRAM (EEG)
Many wearable EEG sensors have been developed in
recent years, and many EEG biometrics-based authentica-
tion schemes has been proposed. EEG biometrics is very
rich in discriminative information and features in both time
and frequency domains. Moreover, EEG biometrics has both
unique/time-varying patterns, which may occur when the
subject is watching an unique picture (visual stimuli), as well
as permanent patterns, which occur regularly. Recently, deep
learning approaches have been exploited in EEG biometrics
for IoMT healthcare systems, such as [98]. As stated in [99],
a person’s EEG signals varies from that of another person
due to different brain structures, memory, mood, stress, and
mental state, mimicking an individual’s EEG signals is very
difficult to achieve with current technologies.

C. SECURITY SCHEMES FOR IMPLANTABLE IoMT DEVICES
Implantable IoMT devices typically requires surgeries to be
implanted into patients’ body. Therefore, security schemes

for implantable devices have restrict requirements on power
consumption, communication overhead, attack resilience,
and support for emergency situations [100]. In addition to the
aforementioned challenges, security schemes for implantable
devices must comply with restrict regulations [101].

1) PROXY BASED PROTECTION
The concept of proxy based implant security is based on
a secondary device acting as a ‘‘proxy’’ between commu-
nications of the implant and external devices. The advan-
tage of this scheme is that it aims to enhance security
of existing implanted devices. An example of this is the
‘‘IMD-Shield’’ [102]. ‘‘shielding’’ is carried out by introduc-
ing noise to intercept communication between the implant
and any device that attempts to communicate with it. The
decoding of implant signal at the proxy is made possi-
ble with the knowledge of the generated noise. A security
scheme is implemented such that only authenticated com-
munication is relayed to/from the implant. Another proxy
based Implantable Medical Device (IMD) protection is the
‘IMDGuard’’ [103], which is able to share keys between the
IMD and the guardian using the owner’s ECG signals.
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2) DISTANCE BOUNDING
Distance bounding, or proximity based access control, limits
attack possibilities by restricting the wireless communication
distance between an implant and an external device [104].
One example of this is inductive coupling, which often is
limited to a few centimetres. While inductive links inherently
operates at shorter distances and are suitable for use with
device charging and programming, for data communication
it lacks the bandwidth of modern devices. Implant manufac-
turers have adopted the higher bandwidth MICS (Medical
Implant Communication System) which runs in the spec-
tral range of 402-405MHz and signals from the implant are
limited to a maximum of 2m. Practically bed-side systems
streaming implant data operations at < 1m. Another example
of distance bounding authentication through physical layer
is [105], which distinguishes legitimate external device and
adversary based on the received signal power.

3) ECG BASED ENCRYPTION
Theoretically, ECG signals can be captured by IMDs, there-
fore, ECG based data encryption schemes have the poten-
tials to be applied for implantable devices. The advantage
of using ECG signals as entropy sources for data encryption
is that patients are not required to remember passwords,
which remove the risks of being stolen. For example, an One-
Time-Pad (OTP) encryption scheme proposed in [106], which
uses the Inter-pulse Intervals of the ECG signals to encrypt
messages between the IMD and the external device. The
disadvantages of using ECG signals as entropy sources are as
follows: firstly, ECG based security schemes typically require
signal collection time, which is not feasible in emergency
situations; secondly, distortion and attenuation can be easily
introduced to ECG signals due to patients’ movement or
poor contact between skin and the electrodes of ECG sen-
sors; thirdly, although error collection coding is often used
to reduce bit errors, it is not sufficient to eliminate false
rejection rate. Although ECG signals can be measured very
accurately by an external device, the ECG signals captured
by the external device are still different from that of the ECG
signals captured by the IMD at a different location.

4) ANALOGUE SHIELDING
Researchers have shown that implants without adequately
robust sensor architectures are susceptible to ‘‘analogue
attacks’’ [107]. Typically, sensors play a pivotal role in a
closed loop system such as implanted insulin pumps. The
sensor signal is inherently analogue in nature and can be inter-
fered, resulting in incorrect sensor readings and erroneous
implant operation [108]. The disturbance of analogue signals,
often of small amplitude, from intentional noise injection can
be mitigated by following good design practices, such as use
shielded cables for data transmission.

5) ZERO POWER COMMUNICATION
This security measure is devised to counter ‘‘power drawing’’
attacks where deliberate continuous requests to communicate

with the implant are used with the intention to deplete the
implant battery. Zero power communication requires all com-
munication from the implant to be initialized by non-battery
sources such as piezoelectric RF harvesters [109], also
improving patient security awareness by signalling during
communication initialization. Zero power communication
can also be achieved by radio frequency energy harvesting.
For example, a powerless mutual authentication protocol pro-
posed in [110] utilizes Ultra High Frequency (UHF) energy
harvester and dynamic encryption keys extracted from ECG
signals for securing IMDs. zero power communication can
only work when the two devices are in very close proximity,
which inevitably limits its applications.

6) ANOMALY DETECTION
Resource depletion attacks, which could sufficiently reduce
the battery power of an IMD, can be detected by anomaly
detection, by investigating the patterns of communications
between a IMD and legitimate external devices. An exam-
ple of anomaly detection is MedMon [111], in which a
smart phone examining physical layer characteristics, such
as Received Signal Strength Indication (RSSI) and Time of
Arrival (TOA), as well as behavioural characteristics, such as
value range and frequency, of the signals to and from IMDs
to identify potential malicious communications. A limitation
of MedMon is that it only provides IMD integrity protec-
tion, therefore, additional security schemes should be used to
protect the confidentiality and availability of the implantable
devices.

V. DISCUSSIONS
With the internet andwireless connectivity of IoMT technolo-
gies, the new generation of medical devices are facing secu-
rity and privacy challenges aforementioned in this survey.
Instead of medical equipment securely installed in hospital
wards or laboratories, the new generation of IoMT devices
will be worn by or implanted in patients such that they can be
monitored continuously. As the majority of the IoMT devices
have to handle personal and physiological data of the users,
the impact of security attacks on the users could be more
direct and severe compare to other IoT systems. For example,
wireless connected implantable devices are designed to man-
age cardiac functions, insulin functions, nerve stimulation,
etc. and equipped with electrodes, pumps and other actuators.
Malicious attacks on such devices could have life threatening
effects on the patients. If only minimal security protection is
applied to these medical devices, they can easily be hacked.
For example, Radcliffe demonstrated that he can hack into an
insulin pump 150 feet away and disable the device or instruct
the device to inject excessive amount of insulin [112].

There are always new approaches and methods to attack
a network, and administrators have to be constantly updated
with patches and anti-virus libraries to protect the systems
against malicious attacks. However, unlike computer net-
works where patches or virus update can easily be injected
into the systems, wearable and implantable medical devices
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often do not have sufficient network bandwidth and resources
to update their firmware regularly [113]. Majority of these
health devices cannot be shut down and wait until security
experts to find the anti-virus or patches to recover the devices
after the attacks. The state-of-the-art security research in
IoMT systems are often analyzed in computer simulations,
how the security schemes handle the over-the-air updates in
real-world scenarios have not been researched thoroughly.

Biometric authentication is another emerging research
topic in the field of IoMT security and privacy. However,
it has yet to be widely adopted due to the limitations, such
as costs of the sensors and low authentication performance.
Given the fact that most medical devices capture physio-
logical measurements of the users, there are advantages of
applying biometric authentication schemes over other meth-
ods. For example, a real-time biometric key authentication
can be carried out by comparing physiological measurements
of the patient captured by wearable devices with the signals
obtained by implanted sensors. Such scenarios occur in many
IoMT applications, giving advantages to biometric authenti-
cation over other security schemes.

VI. FUTURE RESEARCH DIRECTIONS
With other emerging technologies, such as cloud computing,
become popular, there are some interesting future research
directions that have not been fully exploited by the IoMT
security and privacy research community. The followings
are a few example research directions that could potentially
be applied for the security and privacy of IoMT healthcare
systems.

A. BLOCKCHAIN
Blockchain was developed for securely keeping financial
ledger records in a decentralized fashion, so that the ‘‘blocks’’
in the blockchain depend on one another. It would also be
applied to medical data stored distributively in the medi-
cal servers, providing extensively strong security and pri-
vacy protection to the IoMT healthcare systems. However,
blockchain requires a significant amount of computational
resources on the devices to generate blocks, which is infea-
sible on the resource constraint IoMT devices. On the
other hand, blockchain can be used for securing electronic
health records stored in the medical servers. An example is
MedRec [114], a pioneer research on using blockchain for
medical data access and permission management.

B. ARTIFICIAL INTELLIGENCE
Machine learning and deep learning has become the most
popular research topics in nearly every industry, including
network security. Many machine learning based network
intrusion detection methods, such as [115], have been pro-
posed in recent years, and they can also be applied to IoMT
healthcare systems. As there is a trend of using deep learn-
ing approaches for disease diagnosis in the medical servers,
the use of such approaches for security and privacy of the
systems should also be taken into consideration. An example

research is [116], where PHI in different levels of the IoMT
systems are examined by deep learning networks for interme-
diate attack detection.

C. SECURITY ASSESSMENT
Security research is often carried out by different research
groups individually, and there is not a standard on how to
measure the security strength of the proposed IoMT secu-
rity strength. Adversarial analysis is one of the tools for
researchers to measure the security level of their research,
and yet, these adversarial analysis is not based on the
same assumptions and principles, thus cannot be compared
together. Therefore, developing a framework for assessing the
security and privacy level of security research is of necessity
for the IoMT security and privacy community. An example
research is IoMT-SAF [117], a web-based IoMT security
assessment framework where recommendations can be made
based on the input of the users. However this work does not
assess the security strength of the existing research and does
not provide crypto-analysis for the cryptographic algorithms.
Further research is required regarding to assessing security
strength of the IoMT healthcare systems.

VII. CONCLUSION
In the last few years, the number of IoMT devices deployed
in healthcare systems have grown and expanded rapidly,
as a myriad of new wearable and implantable medical
devices have been introduced in recent years for healthcare
applications, ranging from glucose sensors, insulin pumps,
to ingestible core body temperature sensors and drug-eluting
stents. These smart devices have facilitated the transforma-
tion of healthcare services, enabling personalized and pre-
ventative patient care. Although the network connectivity of
these IoMT devices greatly eases the control and monitoring
functions of the devices, it inevitably causes vulnerabilities
of the devices and the network. Similar to other IoT devices
and systems, IoMT devices could suffer from same security
threats and attacks. Given the fact that the IoMT devices han-
dle highly personal health data and some of the devices have
life supporting actuation functions, security attacks on con-
nected health devices could have direct and life-threatening
impacts on the users.

Many security schemes developed for IoMT devices could
potentially be applied for protecting medical devices, how-
ever, due to the size and power constraints, wearable and
implantable devices are tended to be built with very lim-
ited resources and they may not have sufficient resources to
implement those schemes. Ensuring the safety and security
of such devices requires new solutions that span across the
design space of human, cyber and physical elements. Apart
from increasing research efforts in the security and privacy
of IoMT devices, close collaboration is needed between the
academic, industries and standard agencies to develop new
methods, regulations, and standards to ensure the security of
this new generation of medical technologies.
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