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ABSTRACT The formula for analyzing the response characteristics of the induced current on a transmission
line (TL) excited by high-frequency electromagnetic (EM) waves is a mixed integral-differential equation.
The integral part is the Fredholm integral equation of the first kind with serious ill-posedness, which causes
difficulty in solving it stably. The regularization technique is a useful method for the analysis of the ill-posed
problems. Therefore, in this paper, a method based on the Tikhonov regularization technique is proposed to
analyze the high-frequency electromagnetic response of a finite length TL illuminated by external EMwaves.
The integral operator is discretized by the Simpson formula. The validity and correctness of the proposed
method have been verified by numerical examples and the applicability of the proposed method at different
errors has been analyzed via the TL with different height.

INDEX TERMS Tikhonov regularization technique, mixed integral-differential equation, transmission line,
high-frequency electromagnetic response, discretization.

I. INTRODUCTION
A transmission line (TL) is an important connecting com-
ponent that carries the function of transmitting signals and
energy in modern electronic and electrical equipment. Thin
lines can be seen as a type of TL. When the TL is irradiated
by an external electromagnetic (EM) waves, the induced
voltage/current on the TL may lead to an increase in the
error rate of the signal, or cause malfunction in the internal
sensitive components, such as semiconductor, and thereby
disable the system. Therefore, the response problem of the
TL excited by EM waves has always been an important topic
in the electromagnetic compatibility field [1], [2].

For the cases where an analysis condition named low-
frequency approximation is satisfied or only the induced
voltage/current at the terminal loads of the TL is to be stud-
ied, the classic TL models are fully capable of fulfilling the
requirement [3], [4]. However, with the recent development
of high-frequency (HF) electronic and electrical equipment,
the threat from high-frequency electromagnetic (HFEM)
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waves is gradually increasing. In many cases, it is necessary
to consider not only the EM response at the terminal loads,
but also the scattering effect of the TL itself [5]. The HF
field-line coupling problems were studied by introducing
HF correction components to the source terms of classic
TL equations in 1995 [6]. In the TRI model proposed by
Tkatchenko et al. in 2001 [7], the TL is divided into three seg-
ments to analyze its HFEM response problem, which is very
effective for a very long TL. However, a shortcoming of that
model is that the analysis of asymptotic segments requires
a full-wave simulation. In view of the deficiencies of the
TRI model, some more in-depth research was carried on the
basis of the TRI model. The generalized TLmodel and mixed
integral-differential equations have been derived and solved
by various methods, such as boundary element method [8],
product integral method [9], and regularization technique
[10], [11]. While the TRI model is gradually improved, the
transmission line super theory (TLST) based on Maxwell’s
equation was proposed [12], [13], and its combination with
the BLT equation was realized [14]. Afterwards, the TLST
was systematically explained in [15] and its numerical imple-
mentation process was also shown in detail in an analysis
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example of multi-conductor transmission line (MTL) [16].
The enhanced transmission line (ETL) model is also a useful
method for the analysis of the response characteristics of the
TL irradiated by HFEM waves, but there is a big difference
between it and the classic TL model [17].

Based on the literature, it is noted that the response char-
acteristics of the TL illuminated by HFEM waves can be
expressed by amixed integral-differential equation.When the
integral part is considered as a whole, the expression can be
equivalent to a second-order non-homogeneous differential
equation which is very easy to be solved. The integral part
belongs to the Fredholm integral equation of the first kind
with ill-posedness [18], which means that an unacceptable
error may occur in the final result when the observed data
at the right of the equation change slightly. For the analysis
of ill-posed problems, the regularization technique is a very
mature method. In this method, the exact solution is fitted by
a regularization solution obtained by adding a penalty term
to the original equation. The regularization technique has
been applied successfully in the analysis of various inverse
problems [19]–[24]. Therefore, the Tikhonov regularization
technique is adopted to solve the mixed integral-differential
equation and analyze the HFEM response characteristics of
the TL in this study.

The remainder of this paper is organized as follows.
Section II details the analytical process of solving the
integral-differential equation by the Tikhonov regularization
technique. The principles of selection of the regularization
parameter and discrete points are introduced in Section III.
The effectiveness of the proposed method is verified by
numerical examples in Section IV. Section V summarizes our
work.

II. ANALYTICAL PROCESS OF THE INTEGRAL-
DIFFERENTIAL EQUATION SOLVED BY TIKHONOV
REGULARIZATION TECHNIQUE
An overhead TL with finite length locates along the x-axis in
the homogeneous, isotropic, and loss-free half-space above
the ground made of perfectly electrically conductor (PEC),
as shown in Fig. 1. We shall analyze the HFEM response of
an overhead finite length TL with an open-circuit condition.
The length, height, and radius of the TL are l, h, and r ,
respectively. The EM properties of the medium in z > 0
are described by its permittivity ε0 and permeability µ0. The

FIGURE 1. The overhead single-conductor TL irradiated by an incident
plane EM waves.

propagation direction of the EM waves is K and is defined by
the pitch angle φ, azimuth angle γ , and polarization angle θ .

A. DERIVATION OF THE MIXED INTEGRAL-DIFFERENTIAL
EQUATION
The generalized TL model is briefly derived in this part.
PEC is considered as the material of the overhead TL with a
finite length and open-circuit terminal condition. It should be
pointed out that all the equations are written in the frequency
domain and with a time-harmonic dependence ejωt for all the
variables.

In the Lorenz gauge, the x-component of the vector poten-
tial A(x) of the scattered current can be described as follows,

Ax(x) =
µ0

4π

L∫
−L

g
(
x − x ′

)
I
(
x ′
)
d x ′ (1)

A scattering field Esca can be generated by a conductor
irradiated by EM waves. At the surface of the conductor,
the tangential components of the incident and scattered
electric fields must satisfy the following zero-boundary
condition,

E total
x (x) = E inc

x (x)+ Esca
x (x) = 0 (2)

The tangential component of the scattered field is
expressed by the tangential components of both the vector
and scalar potentials.

Esca
x (x) = −

d
d x
ϕ (x)− jωAx (x) (3)

Then we use the following connection

d
d x

Ax (x)+ j
ω

c20
ϕ (x) = 0 (4)

which relates the vector and scalar potentials in the Lorenz
gauge. Together with (2) and (3), the HFEM response model
for the induced voltage and current on the overhead TL can
be obtained as follows,(

d2

d x2
+ k2

)∫ L

−L
g(x − x ′)I (x ′)dx ′ = −

4πk2

jωµ0
E inc
x (x) (5)

where ω = 2π f defines the angular frequency. The Vs is
the scattering voltage generated by a TL illuminated by EM
waves. The c0 is the speed of light in vacuum. The k = ω

/
c0

represents the wavenumber. The E inc
x is equal to the superpo-

sition of the x-component of the incident and reflected EM
waves. The g(x − x ′) defines the Green function and can be
expressed as follows,

g(x − x ′) =
e−jk
√
r2+(x−x ′)2√

r2 + (x − x ′)2
−

e−jk
√

4h2+(x−x ′)2√
4h2 + (x − x ′)2

(6)

It is noted that (5) is a mixed integral-differential equa-
tion. If the integral part of (5) is regarded as a whole and
replaced by a coefficient, the equation becomes equivalent
to a second-order non-homogeneous differential equation
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whose solution general expression can be easily obtained.
Therefore, the analysis of the above integral part is the main
objective of this work.

The general expression of the solution of (5) is a linear
superposition of the results of three Fredholm integral equa-
tions of the first kind [10], [11].∫ L

−L
g(x − x ′)I (x ′) d x ′ = C1ejkx + C2e−jkx + T (x) (7)

where C1 and C2 are unknown coefficients and T (x) is the
particular solution of (5).

It is known that (7) can be rewritten as three equations,∫ L

−L
g(x − x ′)I1(x ′) d x ′ = ejkx (8-1)∫ L

−L
g(x − x ′)I2(x ′) d x ′ = e−jkx (8-2)∫ L

−L
g(x − x ′)I3(x ′) d x ′ = T (x) (8-3)

Therefore, the HF induced current studied in this work can
be represented by a superposition of three components of the
induced current in (8).

I (x) = C1I1(x)+ C2I2(x)+ I3(x) (9)

The last step involves the determination of the coefficients
C1 and C2. As shown in Fig. 1, the model is considered
with open-circuit condition at the two terminals in this paper.
Therefore, the induced currents at the two terminals are
I (−L) = I (L) = 0A.

B. PROCESS OF TIKHONOV REGULARIZATION
Then, the analysis of (8) is carried out. However, the three
equations in (8) belong to the Fredholm integral equation of
the first kind and are difficult to be solved stably, whichmeans
an unacceptable error may occur in the final result when the
observed data at the right of the equation change slightly.
Unfortunately, in practice, the small changes in the observed
data are quite common. For an overhead TL, some small
changes in the electric field around it may be caused by the
wind, gravity, changes of temperature or undesirable factors
in the surrounding environment. In [10], [11], the Landweber
iterative regularization technique (LIRT) is adopted to solve
the ill-posed equation, but a great number of iterative calcu-
lations have to be experienced and a large amount of time
spent is necessary before a stable result is obtained. In order
to avoid this problem, a Tikhonov regularization technique is
adopted in this study to achieve the purpose of solving (8)
stably and quickly.
In (8), the properties of (8-1) and (8-2) are the same and

their solutions are only related to the configuration of a TL
itself, and independent of the influence of incident EMwaves.
But the induced current is affected by the EM environment
in (8-3). ∫ L

−L
g(x − x ′)I (x ′) d x ′ = D (x) (10)

The Simpson rule is used to discretize the kernel
function of (10). Then, the integral expression

∫ L
−L g(x − x

′)
I (x ′) d x ′ is replaced by an accumulation formula
N∑
n=0

Bng(xi − xn)I (xn). According to the Simpson formula,

the coefficients B after discretization can be represented as
follow,

Bn =



1
3N

, n = 0 or N

4
3N

, n = 1, 3, · · · ,N -1

2
3N

, n = 2, 4, · · · ,N -2

(11)

where N defines the number of the discrete points in the
integral range [−l, l] and x = i

/
N , at i = 0, 1, 2, · · · ,N ,

the N is even. A matrix is obtained after the discretization.

A =


A11 A12 · · · A1N
A21 A22 · · · A2N
· · · · · · · · · · · ·

AN1 AN2 · · · ANN

 (12)

where Ain = g(xi − xn).
According to the principle of the Tikhonov regularization

in [10], [11], [25], (10) can be rewritten as an operator form,

AI =
∫ L

−L
g(x − x ′)I (x ′) d x ′ (13)

since,

AI = D (14)

Equation (10) is ill-posed, and this property causes it to hardly
be solved stably. At the same time, (14) also inherits the
ill-posedness of (10), which means that when the observed
data D has an error, (14) is difficult to be solved correctly
and stably. In order to solve this problem, according to the
Appendix, a penalty is introduced into (14) as follows:

αIα + A∗AIα = A∗Dδ (15)

where α is the regularization parameter, the A∗ represents
the complex conjugate of A, the δ defines the range of error
between the accurate data and observed data, the Dδ is the
observed data with error. A relationship is satisfied between
the accurate and observed data.

∥∥D− Dδ∥∥ =
√√√√ 1
N + 1

N∑
i=0

(
Di − Dδi

)2
≤ δ (16)

When the adverse inference disappears, that is δ = 0, then
the Dδ represents accurate data and D = Dδ .

III. DEFINITIONS OF REGULARIZATION PARAMETER AND
THE NUMBER OF DISCRETE POINTS
In this section, the main work is to determine the regulariza-
tion parameter and the number of discrete points.
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A. DEFINITION OF REGULARIZATION PARAMETER
It must be noted that the selection of the regularization
parameter α is a key step in the calculation process of the
Tikhonov regularization technique. If α is too small, a large
influence caused by perturbation error occurs in the results.
However, if α is too large, the target results are seriously
affected by excessive regularization. Therefore, the selection
of a reasonable regularization parameter is an important
condition for solving the target equation quickly and stably.
There are many commonmethods for selecting regularization
parameters, including L-curve method [26], Morozov devi-
ation principle [27], generalized cross-validation criterion
(GVC) [28] and Newton iterative method [29]. However,
the above-mentioned methods undergo complicated calcula-
tions or multiple iterations before obtaining an appropriate
regularization parameter, which is disadvantageous in terms
of time occupation. Fortunately, a satisfactory result can be
obtained when an initial value α0 of the iteration is adopted
as an regularization parameter in the process of using the
Newton iterative method to determine the regularization
parameter. Moreover, compared with the calculation time
saved by using α0, the small errors due to α0 are pleasing
and fully acceptable. In the Newton iterative method, the con-
straint that the initial value α0 of iteration needs to satisfy is
as follows,

α
(∥∥Dδ∥∥− δ) ≤ ‖A‖2 δ (17)

where ‖·‖ represents a norm. The regularization parameter
can be summarized as follows,

α ≤
‖A‖2 δ∥∥Dδ∥∥− δ (18)

B. DEFINITION OF THE NUMBER OF DISCRETE POINTS
In Section II, the Simpson formula is adopted to achieve the
discretization of the integral equation (7). In the process, the
selection of the number n of discrete points plays an important
role in the fast and accurate calculation. The expression of
discretization error generated by the Simpson formula is as
follows [30],

δs = −
(l − 0)h4

2880
f (4)(x ′) (19)

where h = l
/
N , and f (x ′) = g(x − x ′)I (x ′).

Unfortunately, the induced current I (x) which needs to
be obtained is still unknown. Therefore, the fourth-order
derivative f (4)(x ′) cannot be obtained. In order to overcome
this difficulty, a suitable N0 is defined as the initial number of
discrete points. Then, the number N of the optimal discrete
points is obtained by increasing N0 gradually according to
the exponential law of 2m, and m = 1, 2, 3, · · · . Before
the optimal N that satisfies (19) is obtained, the calculated
induced current I (x) is jagged and there are big differences
between adjacent values, as shown in Fig. 2. By choosing the
two induced current values with the largest difference for the
adjacent positions, we assume that the optimal n is obtained

FIGURE 2. The HF induced current along the TL is jagged.

if the ratio of that difference to the smaller current value
satisfies a certain condition. This condition can be expressed
as follows

|I (i+ 1)− I (i)|
min (|I (i)| , |I (i+ 1)|)

< ε (20)

where ε is a small amount and is related to the required
calculation accuracy. The flowchart of solving the optimal
number N of the discrete points is shown in Fig. 3.

FIGURE 3. Flowchart of solving the optimal number N of the discrete
points.

IV. NUMERICAL EXAMPLES
In this section, the TL with different configurations are
selected to verify the proposed method (Tikhonov regular-
ization technique), including the single-conductor transmis-
sion line (STL) and an MTL. All presented analyses are
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performed in the frequency domain. The time-domain results
are obtained by way of IFFT. At a single frequency point, for
any type of the incident HFEM wave signal, only the ampli-
tude of the induced current on the TL is affected and the law
of response of the TL to the corresponding frequency is fixed.
Therefore, in order to simplify the analysis process, we define
the electric field strength of the incident EMwave is 1V/m at
any frequency point. If the analysis of a specific signal needs
to be performed, it is only necessary to change the value of
the electric field strength at the corresponding frequency.

A. OVERHEAD STL
Two different situations are examined for overhead TLs. One
is a TL located inside or between the devices and the TL can
be characterized by shorter length and lower height. The other
is the outdoor long-distance overhead line, such as a high-
voltage power TL.

1) EXAMPLE 1
In Fig. 1, the dimensions of the STL with the open-circuit
terminal condition at both ends are: the length l = 1m, the
height h = 0.1m, the radius r = 0.0025m. The propagation
direction of the EM waves is defined with the pitch angle
φ = 60◦, azimuth angle γ = 0◦, and polarization angle
θ = 0◦.
In order to better compare the difference between the pro-

posed method and Landweber iteration regularization tech-
nique (LIRT), the same discrete rule for processing the kernel
function is adopted in the analysis process of the two
methods.

In Fig. 4, at different frequencies, the results obtained by
the proposed method and Method of Moment (MoM) are in

FIGURE 4. HFEM response of the TL excited by EM waves with different
frequencies. (a) f = 100 MHz, (b) f = 300 MHz, (c) f = 500 MHz,
(d) f = 1 GHz.

a good agreement. The results achieved by the LIRT also
agree well with MoM at 100 MHz and 500 MHz. However,
the accuracy of the proposed method is obviously higher than
the LIRT when the frequency rises up to 1 GHz. It is also
noted that the results obtained by the proposed method are
superior to the LIRT at the frequency f = 300 MHz. For
the TL in example 1, f = 300 MHz is exactly its resonating
frequency. Thus, the effectiveness of the regularization tech-
nique at the resonating frequency is indicated by the results
displayed in Fig. 4b.

The information of the computation time spent by the three
methods at different frequencies is listed in Table 1. It is
obvious that the regularization technique can greatly reduce
the computation time compared with the MoM. Relative to
the MoM, only 1/8 of the computation time is spent by the
LIRT, while only 1/90 of the computation time is occupied by
the proposed method. This fact shows that the regularization
technique has great advantages compared to the MoM at
the analysis of the single-frequency point. It may be also
mentioned that the computation time spent is not fixed and
unique. It depends as well on the quality of the program,
the configuration and operating state of the computer.

TABLE 1. Computation time comparison between the proposed method,
lirt, and MoM in Fig. 4.

The results of the HFEM response of the TL are shown
in Fig. 5when the pitch angleφ changes from 15 to 90 degrees
(the angles γ and θ are kept as zero). A good agreement is
achieved between the proposed method and MoM. For the

FIGURE 5. Results of the HFEM response of the TL at different incident
angles.
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comparison in Fig. 5, the change of the HFEM response of
the TL illuminated by the EM waves does not show a posi-
tive or negative correlation, but presents a relatively ‘‘willful’’
change trend, as the change of the incident angle.

The above results are obtained with the assumption that the
electric field intensity of the incident plane wave is 1 V/m.
In order to observe the advantages of the proposed method
more intuitively, a double exponential electromagnetic pulse
(EMP) is chosen to study the EM response of the TL in time-
domain. The time-domain and frequency-domain expressions
of this signal are as follow,

E(t) = E0
(
e−αt − e−βt

)
(21)

E(f ) = E0

(
1

α + j2π f
−

1
β + j2π f

)
(22)

where E0 = 1.3 V/m, α = 4e7, β = 6e8.
The spectrum of the HFEM response at the center of the

TL is shown in Fig. 6. The time-domain results in Fig. 7 are
obtained by the IFFT. It can be seen that the results obtained
by the proposed method agree well with that by the MoM.

FIGURE 6. Spectrum of the HFEM response at the center of the TL.

FIGURE 7. Time-domain HFEM response results at the center and
one-quarter of the TL. (a) The time-domain waveform at the center
of the TL, (b) The time-domain waveform at the one-quarter of the TL.

A more obvious error is made by the LIRT under the same
discrete rule. Meanwhile, compared with the LIRT andMoM,
the high-efficiency of the proposed method in terms of time
occupancy is demonstrated in Table 2.

TABLE 2. Computation time comparison between the proposed method,
lirt, and MoM in Fig. 7.

Fortunately, the fact that the computation time of the LIRT
is large can be predicted. In this method, the regularization
parameter (α) and the number of iterations (M ) are deter-
mined by the double integral of the kernel function [11]. The
details are as follow,

‖A‖2 =
∫∫

�L

|g (x − y)|2 d x d y (23)

where the integration interval is �L : ([−L,L]× [−L,L]).
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The regularization parameter is obtained by α ∈(
0, 2

/
‖A‖2

)
. The number of iterations is the reciprocal of α,

and M = 1
/
α.

When the range of the integration interval and the number
of discrete points are large, a certain amount of time is spent
to determine the regularization parameter and number of
iterations. In general, the penalty (explained in appendix) is
a minor change to the original equation, so the regularization
parameter is a small value. Small α produces a great number
of iterations, which causes a large amount of calculation time.
Compared with LIRT, the most time-consuming operation of
the proposed method during the calculation process is the
determination of regularization parameters α. However, this
process has been properly avoided in this paper, so as to
reduce the time.

2) EXAMPLE 2
In Example 2, the effectiveness of the proposed method is
analyzed by STL with different dimension combinations.
Since the proposed method and LIRT have been described
and compared in detail through Example 1, the reason why
the proposed method is more efficient is investigated. There-
fore, only the results obtained by the proposed method and
MoM are provided in the following figures. It should be noted
that the transmission line dimension in Example 2 is larger
and the incident frequency is lower compared to Example 1,
so that the results obtained by the classical TL theory can be
also possibly provided as a comparison.

For different dimension combinations in Fig. 8, it can be
clearly seen that the results obtained by the proposed method
agree very well with those by theMoM.Moreover, the results

FIGURE 8. Induced current of the STL with Different Configuration excited
by EM waves with different frequencies and angles. (a) l = 10 m, h = 5 m,
r = 0.005 m, f = 100 MHz, γ = 0◦, θ = 0◦, φ = 90◦. (b) l = 50 m,
h = 10 m, r = 0.005, f = 100 MHz, γ = 0◦, θ = 0◦, φ = 30◦. (c) l = 100 m,
h = 10 m, r = 0.005 m, f = 50 MHz, γ = 0◦, θ = 0◦, γ = 45◦.
(d) l = 200 m, h = 10 m, r = 0.005 m, f = 10 MHz, γ = 0◦, θ = 0◦, φ = 75◦.

also are in a good agreement when the length of the STL
reaches 100 m or even 200 m and the height is 10 m.
Therefore, the proposed method is a very effective way

for analyzing the HFEM response of the large-scale overhead
line (for example, power line) irradiated by strong EMP (for
example, nuclear electromagnetic pulse or lightning electro-
magnetic pulse).
For the classical TL theory, it can not obtain an accurate

result to reflect the response of the STL to the EM waves
when the frequency is greater than 10MHz, as shown in Figs.
8a, 8b, and 8c. In Fig. 8d, the result obtained by the classical
TL theory is very close to that by the MoM, which indicates
that the antenna mode component of the induced current is
very weak already for the STL dimensions in Fig.8d and the
result obtained by the classical TL theory (transmission line
mode component) can be adopted to analyze the response of
the field-to-line.
It is also seen from Table 3 that the proposed method can

greatly reduce the computation time compared with theMoM
for the STL in Example 2.

TABLE 3. Computation time comparison between the proposed method
and MoM in Fig. 8.

B. OVERHEAD MTLS
1) ANALYSIS OF THR HIGH-FREQUENCY MTL EQUATION
When the distance between adjacent transmission lines is so
small that mutual interference cannot be ignored, the multiple
TLs can be regarded as an MTL system, as shown in Fig. 9.
In this case, (5) can be written in the matrix form as follows,(

d2

d z2
+ k2

)∫ L

−L
G(x|x ′, y|y′, z|z′)I(x ′) d x ′

= −
4πk2

jωµ0
Einc (x, y, z) (24)

FIGURE 9. An overhead three-conductor TLs system irradiated by the
EM plane waves.
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In the matrix G(x|x ′, y|y′, z|z′), the diagonal elements
define the influence between each TL itself and the corre-
sponding mirror image, while the remaining elements repre-
sent the effects between the different lines

G(x|x ′, y|y′, z|z′) =


g11 g12 · · · g1N
g21 g22 · · · g2N
· · · · · · · · · · · ·

gN1 gN2 · · · gNN

 (25)

where gin = g(xi|xn, yi|yn, zi|zn). The elements on the diago-
nal can be solved according to (6) and the remaining elements
have the following relationship,

gi,n =
e
−jk

√
R2i,n√

R2i,n

−
e
−jk

√
R2i,n_im√

R2i,n_im

(26)

where R2i,n indicates the distance between the cable to be
analyzed and the other TLs.

R2i,n = (xi − xn)2 + (yi − yn)
2
+ (zi − zn)2 (27)

and R2i,n_im defines the distance between the studied cable and
the mirror image of other TLs.

R2i,n_im = (xi − xn)2 + (yi − yn)
2
+ (zi − zn_im)2 (28)

The induced current I(x ′) and incident electric field
Einc (x, y, z) matrices can be expressed as follow,

I(x ′) =


I (x ′1)
I (x ′2)
· · ·

I (x ′N )

 (29)

Einc (x, y, z) =


E inc (x1, y1, z1)
E inc (x2, y2, z2)

· · ·

E inc (xN , yN , zN )

 (30)

The analytic process for solving (24) is similar to the STL,
and each element in G(x|x ′, y|y′, z|z′) needs to be discretized
by the Simpson formula.

In particular, for the MTLs system, the matrix of the reg-
ularization parameter α is a diagonal matrix whose size is
determined by the numbers of the TL and discrete points in
the MTLs system. For a three-conductor TL system, if each
line is discretized into N segments, the regularization param-
eter matrix becomes as follows,

α=



α1 0 0

0
. . . 0

0 0 α1

0 0

0

α2 0 0

0
. . . 0

0 0 α2

0

0 0

α3 0 0

0
. . . 0

0 0 α3


(31)

where α is a matrix of 3N × 3N .

2) NUMERICAL EXAMPLE
In this verification, the application of the proposed method in
analyzing the HFEM response problem of the MTLs system
with open-circuit conditions illuminated by EM waves is
shown. The regularization parameters of various lines with
different configurations in theMTLs system are not identical,
which means the required number of iterations is different
when the LIRT is used to accurately calculate the induced
current on each line. This fact makes it difficult for the LIRT
to be conveniently applied in the analysis of HFEM response
problem of the MTLs system. Therefore, only the results
obtained by the proposed method and the MoM are provided
in the following result figures.

In order to simplify the analysis process, we assume that
the configurations (including the parameter configurations of
the TL and the spatial position of the TL) of lines 1 and 3
are the same in Fig. 9. Therefore, in the following compar-
ison figures, only the induced currents on lines 1 and 2 are
shown. In Fig. 9, dh defines the difference in horizontal height
between line 2 and lines 1 or 3, and dh = h2 − h1,3. d12, d13
and d23 are the distances between three lines, respectively

a: MTLS 1
In this verification, an overhead three-conductor TL system
is studied, as shown in Fig. 9. The lengths of all the three
lines are l = 10 m. The heights are h1 = h3 = 1 m,
and h2 = 1.1 m, respectively. The radii are r1 = r2 =
r3 = 0.0025m. The frequency f = 100MHz, the pitch angle
φ = 75◦, azimuth angle γ = 0◦, and polarization angle
θ = 0◦.
In order to more clearly show the mutual-influence

between the various lines in the MTLs system, the results
of the HFEM response of each line in the MTLs system
that is considered as an STL are analyzed separately in this
verification.

In Fig. 10, the difference between the results of STL and the
results obtained by the proposed method and MoM indicates
that the mutual interference between the various lines in the
MTLs system is not negligible. Therefore, it is necessary
to study all the STLs as a whole when analyzing the EM
response of each line in the MTLs system. If the mutual inter-
ference is ignored and a STL in the MTLs system is analyzed

FIGURE 10. Comparison of the results obtained by the proposed method,
MoM, and STL on lines 1 and 2. (a) the results on the line1, (b) the results
on the line2.
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independently, it is difficult to obtain the correct result. This
operation is reasonable when the distance between lines in
the MTL system is sufficiently far away so that the mutual
interference can be completely ignored. Moreover, a good
agreement is achieved between the proposed method and
MoM, which indicates that the proposed method is also effec-
tive for analyzing the HFEM response of the MTLs.

The comparison of the computation time between the pro-
posed method and MoM is shown in Table 4. The proposed
method has obvious advantages compared with MoM for
analyzing the HFEM response of the MTLs system. In this
verification, the proposed method can reduce the spent time
by about 80%. It should be noted that the computation time
of the STL is not given, because the STL case and the other
two methods can not be regarded as the analysis of the same
model.

TABLE 4. Computation time comparison between the proposed method
and MoM in Figs. 10 and 11.

b: MTLS 2
In this verification, the lengths of three lines all are l = 4m.
The heights are h1 = h3 = 0.5 m, and h2 = 0.55 m,
respectively. The radii are r1 = r2 = r3 = 0.0025m. The
azimuth angle γ = 0◦, and polarization angle θ = 0◦.

The HFEM response results of the MTLs system illumi-
nated by the incident EM waves with two different param-
eters (200 MHz and 30 degrees, 100 MHz and 75 degrees)
are shown in Fig. 11. The results for different lines of the
MTLs system obtained by the proposed method and MoM
are in a very good agreement. Moreover, the efficiency of the
proposed method is clearly reflected by the time information
in Table 4. The proposed method takes only about 1/10 of the
time consumed by the MoM under the same conditions.

3) ANALYSIS OF DIFFERENT LEVELS OF ERROR
The accuracy of an ill-posed problem analyzed via the reg-
ularization technique is affected by factors, including the
number of discrete points, the form of the kernel function,
the value of the regularization parameter, and the error lev-
els of the observed data. In the above analysis, the effects
of discrete points and regularization parameters are already
analyzed, and the form of the kernel function is fixed for
the research object. Therefore, only the error level of the
observed data is analyzed in this part with the pitch angle
φ = 90◦, azimuth angle γ = 0◦, and polarization angle
θ = 0◦.
An STL is selected as the research object, and its length

is l = 3m, height is h = 0.5m, radius is r = 0.005m.
According the phenomenon in the results figure, the accuracy

FIGURE 11. Comparison of the HFEM response on the MTLs system
excited by the EM waves with different frequencies and angles of
incident. (a) f = 200 MHz, φ = 30◦, the results on the line 1.
(b) f = 200 MHz, φ = 30◦, the results on the line 2. (c) f = 100 MHz,
φ = 75◦, the results on the line 1. (d) f = 100 MHz, φ = 75◦, the results
on the line 2.

of the proposed method decreases accordingly as the error
increases. Moreover, different functions respond differently
to changes in error. Fig. 12 illustrates that the studied equation
is sensitive to changes in error. When the error level of the
observed data reaches 5%, there is already an error that cannot
be ignored in the results.

FIGURE 12. Calculation results of the proposed method in different levels
of error.

According to (5), a predictable phenomenon that the accu-
racy of the proposed method is different for the TLs with
different configurations at the same error. In order to verify
this speculation, an STL with different heights has been
investigated. The length of the STL is l = 3m, the radius
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is r = 0.005m, the height is h = 0.1m, 0.5m and 1m,
respectively. The frequency of the incident EM waves is
f = 200MHz.

In Fig. 13, the absolute error and relative error between
the results obtained via the accurate data of electric field
and the observed data with a 5% error are shown, and our
expectation is proved by this result. It is noteworthy that
the values of absolute error near the terminals of the STL
are small, while the relative error is very large, which is a
normal phenomenon. The values of the induced current at
the terminals of the TL with open-circuit condition should
be equal to zero, so a large relative error could be caused by
a small absolute error.

FIGURE 13. Results of the absolute and relative errors. (a) Absolute error,
(b) Relative error.

V. CONCLUSION
The HFEM response of a TL irradiated by EM waves can be
expressed by solving the general TL model. In this model,
the most difficult part is the process of the Fredholm integral
equation of the first kind with ill-posedness. Fortunately,
the regularization technique is a mature method for dealing

with the ill-posed problem. Therefore, in this paper, the appli-
cation of the Tikhonov regularization technique for analyzing
the HFEM response of a TL irradiated by EM waves has
been studied. In order to save computation time and obtain
results with sufficient accuracy, the iterative initial value of
theNewton iterationmethod has been adopted as a regulariza-
tion parameter. Moreover, a suitable method for determining
the number of discrete points has been found by analysis.
The effectiveness of the proposed method has been verified
by different numerical examples including the STLs with
different configurations as well as the MTLs system. Finally,
for different levels of error, the applicability of the proposed
method has been also analyzed.

The proposed method is defective for the analysis of the
HFEM response of a MTLs system. We can reasonably spec-
ulate that the definition of the regularization parameter matrix
is an important factor leading to this shortcoming. There-
fore, finding a suitable method for defining the regularization
parameter matrix of the MTLs system is one of the focus of
our next work.

For the actual TL with loads, a perfect way to analyze its
HF response is hardly seen yet. Of course, the methods in
[5], [12]–[14] are useful for a transmission line with loads,
and certain limitations also present. However, it would be
interesting to find some possible combination between these
methods and regularization.

APPENDIX
Mathematical details of the Tikhonov regularization tech-
nique are provided in this section.

In the finite space, the least-squares solution represents an
approximate solution to a set of linear algebraic equations
Hx = y, that is to say, the continuous functional is minimized
in the finite space X . If H is tight and X is infinite, the min-
imization problem is ill-posed and the value of x cannot be
solved steadily.

We assume that X and Y are Hilbert spaces, H : X → Y is
bounded linear operator, and x̂ is the approximation of x. For
y ∈ Y , in the case that x̂ ∈ X , an expression can be written as
follows, ∥∥Hx̂ − y∥∥ ≤ ‖Hx − y‖ (32)

The condition that (27) holds for all x̂ is,

H∗Hx̂ = H∗y (33)

where H∗ : Y → X is the adjoint operator of H.
The analysis of X can be replaced by solving (33).

However, whether the equation has a unique and stable solu-
tion is uncertain, because the minimization problem is ill-
posed. In order to ensure the uniqueness of the minimal
element x̂, a limit must be adopted for x̂. Therefore, a penalty
αx̂ must be added to the objective function ‖Hx − y‖ to make
the equation a well-posed equation.

H∗Hx̂ + αx̂ = H∗y (34)

where α represents the regularization parameter.
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