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ABSTRACT Deep learning methods, and especially convolutional neural networks (CNNs), have made a
considerable breakthrough in various fields of machine vision, basically by employing large-scale labeled
databases. However, deep learning methods applied in finger-vein area are basically implemented on
small-scale datasets, which are probably faced with challenges such as overfitting, susceptible to finger
position, unstable performance on various datasets and son on. In this study, we present a lightweight and
fully convolutional Generative Adversarial Network (GAN) architecture, which is named FCGAN, using
preliminary batch normalization, and tightly-constrained loss function for implementing finger-vein image
augmentation. In addition, we present a novel scheme FCGAN-CNN for finger-vein classification, which
reveals that synthetic finger-vein images using FCGAN are capable of improving the property of CNN for
finger-vein image classification. The experiment of sample augmentation shows that the training accuracy
using FCGAN-augmented samples could go beyond 99%, which is higher than 96.34% obtained using only
classic sample augmentation. Furthermore, the well-trained CNN is further evaluated on a totally different
dataset, which indicates that the proposed scheme FCGAN-CNN is capable of improving the ability of CNN
to extract deep features. We consider that the proposed method for sample augmentation could be extended
to other biometric systems.

INDEX TERMS Sample augmentation, convolutional neural networks, generative adversarial networks,
finger-vein classification.

I. INTRODUCTION
With increasing growth in the demand for security,
biometric systems have attracted considerable attention.
However, most biological patterns are susceptible to
spoofing attacks [1], [2], more user-friendly, low-cost and
highly secure biological patterns such as palm-vein [3],
finger-vein [4] have received much attention, since they
belong to the intrinsic modalities inside humans’ body and
are difficult to forge. Compared to palm-vein, finger-vein
imaging device is more exquisite and easy to assemble, and
it makes finger-vein recognition technology conducive to
popularize. As shown in Fig. 1, near-infrared light is absorbed
by the hemoglobin in blood vessels when it passes through the
finger, and vein patterns ultimately appear as dark networks
in the acquired image.

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

FIGURE 1. The structure of finger-vein image acquisition system.

A. RELATED WORK
Finger-vein recognition technology is a burgeoning research
field, and meanwhile it faces enormous challenges. Since
the acquisition process is inherently affected by various
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factors such as uneven illumination [5], [6], light scattering
inside finger tissues [7], [8] and ambient temperature [4], [9],
a majority of finger-vein images inevitably contain blurred
areas where venous and non-venous regions cannot be distin-
guished easily. Furthermore, since the acquisition system is
mainly designed for non-contact, different finger postures can
lead to displacement or deformation of acquired finger-vein
images [10], [11]. Generally speaking, these uncontrolled
factors mentioned above could ultimately degrade the perfor-
mance of finger-vein recognition system. To overcome these
issues, a huge number of approaches have been proposed
to extract more robust features, which aim at improving
the property of identification systems. Based on different
descriptions of finger-vein features, they can be basically
classified into two categories:

1) Skeleton-based methods. In this category, finger-vein
patterns are considered as dark networks on the
relatively bright background. In other words, they
focus on extracting the whole vein network accu-
rately from the complex background. Contrast-based
methods [12]–[14] were proposed to enhance the con-
trast between the vein network and background. Since
the cross section of vein networks shows valley
forms, different valley detected methods [15]–[18]
were presented to directly detect the entire vein net-
work using repeated line and curvature. In addition,
the atmospheric scattering model [19] was applied
to obtain the restored finger-vein image and showed
power of extracting the vein network from blurred
images.

2) Minutiae-based methods. Since the recognition result
of using vein networks extracted by algorithms is
susceptible to finger shift and rotation, a number of
minutiae-based methods, which are invariant to rota-
tion, have been proposed to improve the recognition
accuracy. Local binary pattern (LBP) [20], local line
binary pattern (LLBP) [21] and pyramid histogram of
double competitive pattern (PHDCP) [22] encoded the
vein pattern using local statistical information. Relying
on the bifurcation and termination of veins, various
methods [23]–[26] were proposed to extract such key
points with different feature descriptor. Furthermore,
the scale invariant feature transform (SIFT) [27], [28]
was employed to acquire minute features that are more
robust to rotation and translation.

Most of the above approaches have achieved promising
results in improving finger-vein recognition, whereas they
still suffer from some drawbacks, mainly related to the way
itself extracting features. For skeleton-based methods, they
are hard to accurately acquire vein networks in a poor-quality
finger-vein image, whose acquisition process may be affected
by ambient lighting conditions and infrared light scattering
inside fingers. Besides that, temperature variation could influ-
ence the thickness of veins, and it has a negative impact on the
final matching accuracy. For minutiae-based methods, noise

inherently existing in the image could seriously affect the
accuracy of extracting feature points.

Inspired by tremendous achievements made by deep neu-
ral networks recently in various fields of computer vision,
a number of researchers have tried to solve problems existing
in finger-vein recognition by using deep learning methods.
By using a set of vein extraction algorithms, an approach [29]
for automatically labeling the vein network was proposed
to solve the problem of lacking annotated datasets. Then,
CNN was trained for obtaining the vein network by itself.
Fang et al. [30] proposed a lightweight finger-vein ver-
ification system based on two-stream convolutional net-
work. They took two finger-vein images as input of the
network and solve the finger posture issue by extract-
ing the mini-ROI from the original image. Furthermore,
inspired by the VGG-Net-16 model [31], different deep
CNNs were presented [32]–[34] and achieved good perfor-
mances on different finger-vein datasets. Most of methods
above focused on the innovation of CNNs architecture to
improve finger-vein recognition accuracy, and indeed they
achieved inspiring results.

However, except optimizing the framework of models,
data source also plays an important role in training proce-
dure, since models are totally driven by data. For instance,
GoogLeNet is often taken as a fine-tuned model, which
is attributed to its pre-training by using a large number
of various images. Besides that, insufficient training data
could lead models to overfitting status, which needs to be
avoided in real applications. Finger-vein recognition system
is facing similar problems, which could be summarized as
follows:

• Although deep learning methods have achieved good
results in various finger-vein applications, they are still
susceptible to training dataset and exhibit serval prob-
lems, such as training on the small-scale dataset, unsta-
ble classification performance on different datasets and
so on.

• Since the acquisition equipment is basically designed to
be non-contact, offset and deformation which are caused
by finger shift and rotation could degrade the robustness
of deep learning methods and reduce the accuracy of
finger-vein verification system in real-life scenario.

In order to overcome above issues, in this study an effective
GAN-based architecture is presented to generate high-quality
and diverse finger-vein images and accomplish the sample
augmentation. In addition, the augmented sample is further
employed for improving the classification accuracy of pro-
posed CNN on finger-vein images.

The main contributions of this study are summarized as
follows:

1) A fully convolutional GAN-based architecture named
FCGAN is proposed to generate high-quality and
diverse finger-vein images.

2) FCGAN is designed as a fully convolutional struc-
ture to solve the problem that the existing GAN-based
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FIGURE 2. Finger-vein ROIs extracted using a gradient-based phalangeal joint detection
approach. (a) Examples of HKPU dataset, (b) Phalangeal joints detection on corrected image,
(c) ROIS with fixed size 160× 80.

methods are likely to produce grid effect due to the
deconvolution operation.

3) A preliminary batch normalization is presented and
used in FCGAN to improve the diversity of synthetic
finger-vein images.

4) A tightly-constrained loss function with a penalty
term is employed in FCGAN to relieve the uni-
lateral dominance and unbalance between generator
and discriminator during the training procedure of
GANs.

5) We present a novel scheme FCGAN-CNN for
finger-vein classification, which reveals that synthetic
finger-vein images using FCGAN are capable of
improving the property of CNN for finger-vein image
classification.

II. CLASSICAL SAMPLE AUGMENTATION
As described above, deep learning methods applied in
finger-vein applications are still susceptible to the training
dataset and faced with many challenges. Thus, to expand the
training dataset and improve the recognition performance,
we augment the samples in two ways:
• Firstly, we increase samples using classic augmentation
techniques which try to simulate the deformation phe-
nomenon occurred in real scenarios.

• Using generated samples with classical augmentation
techniques, we further augment samples utilizing the
proposed FCGAN.

In this section we first describe the original finger-vein
dataset and their specific properties. Then we introduce the
preprocessing method and classical augmentation techniques
in detail. In the next section, we will elaborate the structure of
proposed FCGAN for synthesizing high-quality finger-vein
images.

A. ORIGINAL DATA
The original data used in our work is obtained from
Hong Kong Polytechnic University database, which is intro-
duced briefly as follows:

The Hong Kong Polytechnic University finger-vein image
database [13] consists of 3132 images acquired from 156 vol-
unteers using an opening and contactless imaging device. The
finger-vein images belong to 105 subjects were captured in
two separate sessions, in which each subject provided 6 image
samples from the index finger and middle finger respectively
and the size of the original image is 513 × 256 pixels. The
remaining 51 subjects only provided images of one single
session.

B. PREPROCESSING
In our study, a gradient-based algorithm is used to
extract finger-vein ROIs from original images. The ROI
extraction process can be briefly summarized as three
steps.

Firstly, finger-vein images are corrected in vertical direc-
tion based on the finger contour. Then a sub region, the max-
imal inscribed rectangle of the finger area, is segmented.
Finally, two phalangeal joints are located in the sub region,
which helps to obtain the whole ROI. The detailed ROI
extraction process could be referred to our previous work
in [35].

Some examples of original finger-vein images and
extracted ROIs are shown in Fig. 2. Note that the extracted
ROIs are totally normalized to fixed size of 160× 80.
There are two advantages by taking finger-vein ROIs as

input for training CNNs:
1) The displacement of vein patterns is corrected by using

ROIs extraction method [35], which could improve the
classification stability of CNNs.
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FIGURE 3. An example of finger-vein image augmentation. (a) Original
finger-vein ROI, (b)Examples of image augmentation by using translation.

2) Most irrelevant areas are filtered and primary vein pat-
terns are preserved, which could improve the training
process effectively.

C. CLASSIC AUGMENTATION TECHNIQUES
As an effective solution to reduce overfitting, sam-
ple augmentation mainly includes geometric transforma-
tions such as rotation, scaling, flipping, cropping and
translation [36], [37]. Since the inherent characteristic of
finger-vein patterns and finger-vein images have been
cropped into ROIS, some augmentation techniques like flip-
ping and cropping are not suitable for finger-vein image aug-
mentation. For instance, a finger-vein image will be changed
into another category if it is flipped horizontally. Moreover,
our purpose is to enlarge and enrich the dataset, which
can better reflect different vein pattern deformations in real
scenarios.

Thus, in our study we realize the image augmentation
by using translation in different direction. The translation
operation could be concretely represented as T θδ , where θ =
{x|x = 360◦

Nθ
× i, 1 ≤ i ≤ Nθ } denotes the translation

orientation which consists of Nθ directions, and δ = {y|1 ≤
y ≤ Nδ, y ∈ N+} represents the translation distance which
is measured by pixels. All these images translated by T θδ are
resized to fit a uniform size of 160× 80 pixels using bicubic
interpolation. As a result of above augmentation procedure,
the total amount of augmentations is up to N = Nθ × Nδ .
An example of finger-vein image augmentations is shown
in Fig. 3.

III. GANS FOR FINGER-VEIN IMAGE AUGMENTATION
GAN architecture was first proposed by [38], which aims at
learning to represent an estimation of the sample distribu-
tion which includes samples {x(1), x(2), ..., x(n)} drawn from
a distribution Pdata. Afterwards, a number of GAN-based
augmentationmethods have been presented to deal with prob-
lems in various pattern recognition tasks, such as palmprint

recognition [39], finger spelling recognition [40], person
re-identification [41] and so on.

The nascent methods were suitable to be applied in
small-scale datasets like MNIST and could not achieve
a stable performance, until the Deep Convolutional GAN
(DCGAN) [42] was proposed, which provided a fun-
damental framework for solving existing issues. Along
with the requirement for generating images with high
definition, ResNet [43] unit was integrated into GANs
to increase depth and nonlinear capability of networks.
As a typical ResNet-based GANs, the Self-Attention GANs
(SAGAN) [44] achieved a remarkable performance on gener-
ating more exquisite facial images, by introducing the atten-
tion map and spectral normalization.

A. ARCHITECTURE OF PROPOSED FCGAN
Although DCGAN [42] achieved encouraging results in vari-
ous vision tasks, it still faced serval challenges. Firstly, it was
likely to produce grid effects in synthetic images because
of using deconvolutions with a large stride in the generator
network [45].

Secondly, the batch normalization (BN) was efficient for
accelerating the training procedure of discriminator network,
but it simultaneously put side effect on the generator network,
which is analyzed as follows:

Generally, a set of random noise which conforms to the
prior probability distribution is taken as the input of generator
network. However, the BN layer breaks this randomness and
degrades the independence among synthetic samples, which
eventually makes the generator network tend to synthesize
samples with the same tone under the same batch of training
data.

In addition, since the loss function totally depends on the
label-data to implement weights learning, it could lead to
unilateral dominance and unbalance between generator and
discriminator during alternate training [46].

To deal with the above issues, we present a fully con-
volutional GAN architecture, which is named FCGAN,
using tightly-constrained loss function for implementing
finger-vein image augmentation. The main contributions of
the proposed architecture FCGAN consist of three aspects:

1) A global polling is integrated into discriminator net-
work to extract representative features and support the
construction of penalty term which is able to accelerate
the convergence of proposed FCGAN.

2) The generator network is designed with a fully con-
volutional network to resist grid effect induced by the
deconvolution operation.

3) A preliminary batch normalization (PBN) scheme is
presented and used in the generator network to improve
the diversity of synthetic samples.

The architecture of proposed FCGAN is shown in Fig. 4.
Specifically, the generator network consists of 4 convolu-
tional layers with a [3× 3] kernel size, 4 up-sampling layers
and 4 PBN layers. ReLU function is taken as the activation
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FIGURE 4. The architecture of proposed FCGAN.

function of each layer other than the final layer that employs
the tanh function. In addition, the convolutional stride and
padding are both set to 1.

The discriminator network consists of 4 convolutional lay-
ers with a [3×3] kernel size and one global polling layer with
a [10×5] kernel size. ReLU function is taken as the activation
function of each layer other than the final layer that employs
the sigmoid function. In addition, the convolutional stride and
padding are both set to 2.

The detailed description is given as follows.

1) PENALTY TERM
The primary concept of classical GANs is to establish a game
between two players, which could be represented by

min
G

max
D
Ex∼Pdata logD(x)+ Ez∼Pz

[
log(1− D(G(z)))

]
(1)

where x represents the real sample belonging to the dis-
tribution Pdata, z denotes a random series belonging to the
distribution Pz which obeys a normal distribution or uniform
distribution. D and G represent the discriminator and genera-
tor respectively.

The ideal condition is that the generator and discriminator
supervise and motivate each other to make synthetic samples
G(z) extremely approach to the distribution Pdata. Never-
theless, sometimes the unilateral dominance and unbalance
occurs in the real training process, which slows down the
training procedure. It could be mainly attributed to the fact
that back propagation excessively relies on label-data and
lacks attention to the similarity between real and synthetic
samples.

Therefore, this paper integrates a penalty term into the loss
function to constrain the similarity between real and synthetic

samples and the specific definition is given as follows.

‖Ex∼Pdatah(x)− Ez∼Pzh(G(z))‖
2
2 (2)

Here a global polling layer is inserted in front of the discrimi-
nator network’s output layer to extract representative features
with 512 dimensions, as shown in Fig. 4. Then L2-norm is
used to measure the distance between feature vector h(x) and
h(G(z)), where h(x) is the output of global polling layer in
the discriminator network. Finally, the loss function can be
rewritten as

min
G

max
D
Ex∼Pdata logD(x)+ Ez∼Pz

[
log(1− D(G(z)))

]
+min ‖Ex∼Pdatah(x)− Ez∼Pzh(G(z))‖

2
2 (3)

Note that in the training procedure of each mini-batch we
calculate the average value of feature vectors, which means
h(x) is computed by

h(x) =
1
m

m∑
i=1

h(x(i)) (4)

where m is the mini-batch size. Then Eq. 2 can be rewritten
as

E =
1
m

m∑
i=1

‖h(x(i))− h(G(z(i)))‖22 (5)

The discriminator and generator are trained alternately. For
the training process of generator, the synthetic samplesG(z) is
taken into the discriminator and the produced loss value lossG
is transmitted back to the generator for updating weights
using the back propagation algorithm, as shown in Fig. 5.

Here the stochastic gradient descent method is employed
to learn the weights of each layer in the generator. The
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FIGURE 5. The loss transfer diagram in the training process of FCGAN.

computational formula is given as follows.

w′(k) = w(k)
− ηδ(k)

∂F (k)(x)
∂x

x(k) (6)

where the superscript (k) denotes the kth layer of generator,w
is the weight to be learned, x and δ represent the input and loss
value separately, η is the learning rate which determines the
descent stride per iteration, and F(x) denotes the activation
function.

Note that the loss value δ(k) in Eq. 6 is calculated by using
lossG that is totally induced by the label-data of discriminator,
which maybe lead to serval problems as discussed above.
Thus, the penalty term which represents the loss value of
similarity between real and fake samples is integrated into
lossG, as red dashed line shown in Fig. 5.
Finally, the gradient descent formula can be rewritten as

follows.

w′(k) = w(k)
− η

[
δ(k) + E

]∂F (k)(x)
∂x

x(k) (7)

It is obvious that the introduction of the penalty term is able
to alleviate the issue of overdependence on label-data and
lead the weight-learning to focus on the similarity between
real and synthetic samples. The weight-learning is updated by
using the above gradient descent algorithm until convergence.

2) FULLY CONVOLUTION
As discussed above, DCGAN [42] is likely to induce grid
effect in synthetic images due to deconvolution operations
with a large stride (stride > 1) in the generator network.
Therefore, we design a fully convolutional network with a
small stride (stride = 1) as the generator to relieve the grid
issue, as shown in Fig. 4. In addition, an effective up-sampling
method is conducted to ensure the feasibility of fully convo-
lution. The specific design is summarized as follows.
• The up-sampling algorithm is employed to reshape the
feature maps of each layer for the following convo-
lution operation. Here we define the feature map as{
H(x, y)|x ∈ [1,w], y ∈ [1, h]

}
, then it is reshaped to{

H′(x, y)|x ∈ [1, α ∗ w], y ∈ [1, β ∗ h]
}
, where w and

h denotes the width and height of feature map, α and
β are the scale factors along the horizontal and vertical
direction separately.

For any coordinate (x0, y0) inH′(x, y), its corresponding
coordinate mapped to H(x, y) can be located by the
following formula:

H′(x0, y0)→ H(x0
/
α , y0

/
β ) = H(i+ u, j+ v) (8)

where i and u represent the integer and fractional parts of
x0
/
α separately. Similarly, j and v represent the integer

and fractional parts of y0
/
β .

Then, the value of each coordinate in H′(x, y) can
be calculated according to the following interpolation
algorithm:

H′(x, y) =
[
1− u u

]
Q
[
1− v
v

]
(9)

whereQ is a matrix comprised of four coordinate points
closest to (x0

/
α , y0

/
β ), which is defined as follows.

Q =
[

H(i, j) H(i, j+ 1)
H(i+ 1, j) H(i+ 1, j+ 1)

]
(10)

In the design of FCGAN, the scale factors α and β are
both set to 2.

• As shown in Fig. 4, convolutional layers are used to
deal with each output of up-sampling layer. Here the
convolutional kernel and stride are both set to small
size ([3 × 3] and 1), which is beneficial for decreasing
the complexity of the generator and keeping details of
feature maps (compared with large convolutional kernel
and stride).

3) PRELIMINARY BATCH NORMALIZATION
The classical batch normalization is calculated by the follow-
ing formula:

x̂i =
xi − µB√
σ 2
B + ε

(11)

where

µB =
1
n

n∑
i=1

xi, σ 2
B =

1
n

n∑
i=1

(xi − µB)
2 (12)

B denotes a mini-batch of samples with size n, xi is the output
of neurons in the ith hidden layer, x̂i is the updated value of xi
using batch normalization,µB and σB are the mean value and
standard deviation of B in the ith hidden layer respectively,
and ε is an extremely small constant.

From Eq. 11 and Eq. 12, it can be seen that the batch
normalization makes the distribution of each layer’s output
tend to a normal distribution N (µB, σ

2
B), which is capable

of alleviating the vanishing gradient issue and improve the
training process of networks effectively.

However, for a mini-batch of samples, it employs the same
mean value and standard deviation (µB, σ 2

B), which is likely
to make the generator network tend to synthesize samples
with the same tone and degrade the diversity of synthetic
samples. The specific examples and discussions will be elab-
orated in Section V.
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FIGURE 6. The architecture of our employed CNN for finger-vein image classification.

Here a preliminary batch normalization (PBN) is presented
to solve the issue induced by batch normalization in the
generator network, as shown in Fig. 4. The specific scheme
of PBN is introduced in detail as follows.

• Before the formal training process begins, a pre-training
is conducted using a batch of samples. Then the mean
value and standard deviation of each hidden layer in
the generator, which are defined as µ̄ and σ̄ separately,
could be statistically figured out according to Eq. 12.
Note that µ̄ and σ̄ will never be altered in the following
formal training process.

• The obtained µ̄ and σ̄ are taken as dynamic variables to
adjust the distribution of each hidden layer’s output in
the formal training procedure. Thus, the Eq. 11 can be
rewritten as

x̂i =
xi − (µB + λµ̄)√
(σB + λσ̄ )2 + ε

(13)

where λ is a real number ranged to [−1, 1]. Note
that λ will be randomly initialized with regard to each
mini-batch of training samples, which means that λ
varies in the training process of each mini-batch sam-
ples.
Obviously, the distribution of each hidden layer’s output
is extended to the normal distributionN (µ̂B, σ̂

2
B), where

µ̂B ∈ [µB − µ̄, µB + µ̄] and σ̂ 2
B ∈

[
(σB − σ̄ )2, (σB +

σ̄ )2
]
. That is, the distribution of each hidden layer’s

output varies in a certain range through Eq. 13, which
is beneficial for improving the diversity of synthetic
samples by generator.

4) TRAINING PROCESS
The proposed FCGAN is trained to generate finger-vein ROIs
for each category respectively and the training procedure is
conducted alternately for the generator and discriminator.
The mini-batch is set to 60 and weights are initialized by
using a standardized normal distribution with a standard devi-
ation of 0.01. We use stochastic gradient descent with the
Adam optimizer [47] controlled by parameters β1 = 0.5 and

β2 = 0.99 separately, and adopt a learning rate of 0.0002 for
30 epochs.

IV. CNN FRAMEWORK
The proposed CNN architecture of finger-vein classifica-
tion system is shown in Fig. 6. The CNN network consists
of 5 convolutional layers, 2 pooling layers, 1 ReLU, and a
soft-max layer. The elaboration of CNN topology and training
procedure is introduced as follows.
Convolutional layers: In the first two convolutional lay-

ers, larger convolutional kernel size ([7 × 7 × 1] and
[5 × 5 × 1]) is used for acquiring a broader vision, which
is capable of decreasing the false rejection rate caused by
finger-vein image deformation or displacement. Besides that,
larger stride is utilized to serve as the substitute of polling
layers, which is able to reduce the dimension of the input
image and prevent overfitting. In the latter convolutional
layers, small convolutional kernel size ([3×3×1]) is adopted
to obtain more representative features, which could improve
classification accuracy of the network.
Pooling layers:As depth of the network increases, the ker-

nel number of every convolutional layer grows fast and
corresponding parameters increase dramatically. To relieve
the negative effect caused by overlarge parameters, a global
polling [48] with size [14 × 4 × 1] is introduced in L5
layer to immediately obtain the feature vector of 1024 dimen-
sions. Then, the 1024-dimensional feature vector is fed into
a classifier which is composed by a fully connected layer-L6.
Finally, the network ends with a softmax layer to predict
the probability that the input finger-vein image belongs to a
specific category.

The detailed configuration of proposed CNN is shown
in Table 1.
Training process: Input finger-vein images are totally

cropped into ROIs (in Section II-B) and fixed into size
160 × 80. In the training procedure, the mini-batch and
learning rate are separately set to 64 and 0.0001 for 30 epochs.
Furthermore, we adopt ReLU as the activation function and
stochastic gradient descent optimized by using the Adam
optimizer in which parameters β1 and β2 are set to 0.8 and
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TABLE 1. The detailed parameters of employed CNN.

0.99 respectively. Besides that, to further lower the overfitting
risks, during the training process we introduce the dropout
technique [49] with a probability of 0.75 into the fully con-
nected layer-L6.

V. EXPERIMENTS
In this section, a series of experiments are conducted to eval-
uate the performance of the proposed FCGAN on enhancing
the quality of synthetic finger-vein images and improving the
recognition results of the presented CNN architecture which
is introduced in Section IV.

In addition, to evaluate the generalization ability of pre-
sented CNN well trained by FCGAN-augmented finger-
images, a totally different database is taken for further verifi-
cation. Note that in our experiments all the finger-vein images
are preprocessed into ROIs utilizing the method elaborated in
Section II-B.

The architectures of GANs and CNN employed in this
paper are entirely implemented in tensorflow framework. All
the experiments have been performed using i5, 3.20GHzCPU
and an NVIDIA GeForce GTX 1080 Ti GPU. The detailed
experiments and discussions are described as follows.

A. EVALUATION OF FCGAN AUGMENTATION
In this section, DCGAN [42] and SAGAN [44] are taken to
compare with the proposed FCGAN on the following two
aspects:
• Comparison on the quality of synthetic finger-vein
images.

• Comparison on improving the recognition accuracy of
finger-vein images.

Since the experiments of above two points depend on
each other and more importantly, a progressive increase
method is presented to evaluate the performance of various
GAN-based methods on improving the recognition accu-
racy of finger-vein images. For clarity, the test on recog-
nition accuracy is first conducted and in the last part a
detail analysis and discussion about the quality of synthetic
finger-vein images using different GAN-based methods is
elaborated.

1) EVALUATION OF CLASSIFICATION PERFORMANCE
To exhibit the impact of FCGAN-augmentation on the clas-
sification performance of CNN more clearly, the presented
CNN architecture is trained with a progressive increase way.
It means that in every period samples are increased once, and
a classification result can be obtained. Note that the same
amount of samples is added into every finger-vein category
in one period, which makes sure the balance of training sam-
ples among different finger-vein categories. The progressive
increase method is elaborated in the following.
Classical sample augmentation: As mentioned in

Section II-A, the HKPU dataset includes 210 categories
of finger-vein images, which are captured from 105 sub-
jects’ index and middle fingers in two sessions. Taking into
account the effect in different acquisition periods, we take
finger-vein images of the first session as training samples and
the second session as testing samples. We utilize classical
sample augmentation techniques described in Section II-C
to augment every finger-vein ROIs in each category. In this
study, Nθ and Nδ are set to 8 and 10 respectively, which
producesN = 80 augmented images for each finger-vein ROI
and almost 500 images per category. We randomly divide
the 500 images of each category into 10 mutually-exclusive
groups equally and each group includes 50 images. In order
to quantify easily, we define each group as G(i)

class, where
i ∈ [1, 10].
GAN-based augmentation: We take the augmented

images which are generated with classical sample augmen-
tation above as the training data for generating synthetic
images with GAN-based methods. Note that we utilize the
GAN-based architecture to train each finger-vein category
respectively.

Here DCGAN [42], SAGAN [44] and the proposed
FCGAN are taken to produce synthetic images and demon-
strate their impact on finger-vein classification accuracy
using presented CNN, respectively. As implementing in
classical sample augmentation, 500 synthesis images per
category are generated by using GAN-based methods and
randomly divide 500 images into 10 mutually-exclusive
groups equally. Similarly, each group is denoted as G(j)

gans,
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FIGURE 7. The Schematic diagram of training CNN with the progressive increase method.

Algorithm 1Algorithm of Training the Employed CNNWith
a Progressive Increase Way
1: Classical Augmentation:
2: for each i ∈ [1, 10] do
3: Take the data group {G(m)

class, 1 ≤ m ≤ i} per finger-vein
category as training data for training the employed
CNNM;

4: UpdateM by stochastic gradient descent until training
process is finished;

5: end for
6: Find out the optimal status M(o) which gets the best

classification performance while i equals to o, and the
corresponding data group of each category GM

class =

{G(m)
class, 1 ≤ m ≤ o}.

7: GAN-based Augmentation:
8: for each j ∈ [1, 10] do
9: Take the data group {GM

class,G
(n)
gans, 1 ≤ n ≤ j} per

finger-vein category intoM(o) for training;
10: UpdateM(o) by stochastic gradient descent until train-

ing process is finished;
11: end for

where j ∈ [1, 10]. For simplicity, classification schemes using
different augmentation methods are separately denominated
as CLA-CNN, SAGAN-CNN, DCGAN-CNN and FCGAN-
CNN.

Separately utilizing the classical and GAN-based sample
augmentation methods, the training dataset is totally aug-
mented to 2.1×105 images. In addition, the second session in
HKPU database is taken as the testing dataset which includes
1260 images. Since the augmented samples of each category
are randomly divided into 10 groups, so the training proce-
dure is carried out using 10-fold cross-validation to evaluate
our experimental performance.
Training CNN by a progressive increase method: The

employed CNN is trained by two stages. Firstly,G(i)
class of each

finger-vein category is put into CNN regularly from i = 1
to i = 10 for training, then the optimal point M(o), achiev-
ing first-rank classification result, could be determined. Sec-

FIGURE 8. The classification accuracy for finger-vein classification with
progressive increase method. The blue curve represents the classification
accuracy trained by using classical augmented data which is increased
from G(1)

class to G(10)
class. The other three lines represent the classification

accuracy trained by using GAN-based augmented data which is increased
from G(1)

gans to G(10)
gans.

ondly, M(o) is trained sequentially, like the way described
in stage 1, using GAN-based augmented sample G(j)

gans. The
detailed training scheme is elaborated in Algorithm 1 and
Fig. 7.

2) EVALUATION RESULTS
Fig. 8 shows classification results using progressive increase
method elaborated in Algorithm 1. From Fig. 8, it can be
seen that while the number of finger-vein images in each
category equals to 200 ({G(m)

class,m ∈ [1, 4]}), the employed
CNN reaches to optimal point M(o) and the classifica-
tion accuracy gets to 96.34%. After the optimal point
M(o), the network tends to be saturated and continuing
to increase training data cannot improve the classification
accuracy efficiently. However, when GAN-based augmented
data is integrated into M(o) increasingly, the classifica-
tion accuracy has been improved greatly. The best classi-
fication performance of CNN using different GAN-based
methods and corresponding sample size are summarized
in Table 2.
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TABLE 2. The best classification performance and corresponding sample
size (each category).

Algorithm 2Algorithm for Computing the Coordinate Points
(FPR, TPR) of ROC Curves
Require: τ -a threshold, different threshold corresponds to

different coordinate point (FPR, TPR).
1: for each i ∈ [1, 210] do
2: Treat images of i-th category as positive examples and

images of other categories as negative examples;
3: Referring to binary classification, compare the pre-

dicted probability per image to the threshold τ and
obtain the confusion matrices statistically;

4: Calculate FPR(i) and TPR(i) using confusion matrices;
5: end for

6: FPR =
210∑
i=1

FPR(i)/210, TPR =
210∑
i=1

TPR(i)/210.

7: return Coordinate point (FPR, TPR).

TABLE 3. The classification accuracy and EER of different methods.

It is obvious that compared with SAGAN [44] and
DCGAN [42], the proposed FCGAN achieves a better
performance on improving the classification accuracy of
CNN. In addition, the presented CNN converges faster
while it is trained by utilizing FCGAN-augmented sam-
ples. It means that FCGAN is able to generate more
high-quality and diverse finger-vein images, which is ben-
eficial for improving the training procedure of CNN. The
visualization of synthetic finger-vein images using differ-
ent GAN-based methods will be shown at the end of this
section.

In order to further demonstrate the reliability of integrating
FCGAN-augmented data into training process, we validate
accuracy of the three well-trained models (as the curves
shown in Fig. 8) on samples of second session consisting
of 1260 samples from 210 categories. We calculate false
positive rate (FPR) and true positive rate (TPR) using Algo-
rithm 2 to draw the receiver operating characteristic (ROC)
curves for three models, as shown in Fig. 9. Table 3 gives the
classification accuracy and equal error rate (EER) of the three

FIGURE 9. Receiver operating characteristic curves of different
augmentation approaches.

FIGURE 10. Examples of grid effect using different GAN-based methods.
(a) Original finger-vein image, (b1)-(b3) Synthetic finger-vein images
using SAGAN, DCGAN and FCGAN separately, (c1)-(c3) Grid effect
of (b1)-(b3).

models on 1260 test samples, respectively. As can be seen
fromFig. 9 and Table 3, the proposed FCGANhasmaintained
a highest classification accuracy and lowest EER, which are
both superior to other augmentation schemes. Accordingly,
it further illustrates that generating finger-vein images using
FCGAN is indeed beneficial for improving finger-vein recog-
nition accuracy and it is capable of producing finger-vein
images which are more diverse and high-quality than other
augmentation methods.

3) ANALYSIS ON IMAGE QUALITY
In this section, finger-vein images which are generated using
different GAN-based methods are given to visually reveal the
performance of generative models. Here the evaluation index
is focused on the following two points that the inhibition of
grid effect and the diversity of synthetic samples. The detailed
discussion is given as follows.
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FIGURE 11. Finger-vein images generated by using various GAN-based methods. (a)-(c) Examples of synthetic finger-vein images using SAGAN,
DCGAN and FCGAN respectively.

a: GRID EFFECT
Since DCGAN [42] excessively depends on the label-data
to update weights and lose sight of the similarity between
real and synthetic samples, unilateral dominance and unbal-
ance maybe occurs in the training process. As shown
in Fig. 10(b2), strip-shaped creases (areas marked by green
lines) unexpectedly appear in the synthetic finger-vein image,
which indicates that the generator surpasses and cheats the
discriminator and finally dominates the training process to
achieve convergence. The above situation could take side
effect on the training of classification networks and degrade
the classification accuracy. However, the strip-shaped creases
do not appear in the finger-vein image generated by FCGAN,
as shown in Fig. 10(b3). It uncovers that the penalty term
integrating into the loss function is able to tighten the criterion
of discriminator and lead the feature of synthetic samples
closer to that of real samples.

In addition, due to the deconvolution operation, the finger-
vein image generated by SAGAN [44] and DCGAN [42]
shows obvious grid effect, as shown in Fig. 10(c1) and
Fig. 10(c2). The grid effect is also a negative factor for the
training of classification networks. By contrast, the finger-
vein image generated by FCGAN is relatively smooth and
the grid effect is well suppressed, as shown in Fig. 10(c3).
It reveals that the proposed fully convolutional architecture
used in FCGAN is able to effectively resist the grid effect
induced by deconvolution operation and improve the quality
of synthetic finger-vein images.

b: SAMPLE DIVERSITY
It is well known that the sample diversity is of great sig-
nificance to improve the robustness of classification mod-
els. Therefore, it is also an important index to evaluate
the generative networks. As shown in Fig. 11(b), the syn-
thetic finger-vein images using DCGAN [42] tend to the

TABLE 4. The time consumption results of different methods during
training procedure.

similar tonewhich shows dark visually. Although strip-shaped
crease does not appear in synthetic finger-vein images using
SAGAN [44], the generated images also tend to the similar
tone, as shown in Fig. 11(a). As discussed above, it is
attributed to the fact that batch normalization degrades the
individual independence among generated samples, although
it is able to accelerate the convergence of networks.

On the contrary, the synthetic finger-vein images generated
by FCGAN show more variable tones, which reveals that
the proposed PBN used in FCGAN is capable of improving
the diversity of synthetic samples by dynamically chang-
ing the distribution of each hidden layer’s output in the
generator.

In summary, the proposed FCGAN is able to generate
more diverse and high-quality finger-vein images, which
simultaneously uncovers the reason why FCGAN-augmented
finger-vein images are capable of improving the classification
accuracy better.

4) ANALYSIS ON TIME CONSUMPTION
To fully demonstrate the advantages of the proposed scheme
FCGAN-CNN in computational time during the training
process, Table 4 shows the time consumption of different
schemes which are all conducted with 1× 105 training sam-
ples, 64 batches and 10 epochs.
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TABLE 5. The encoding forms of various feature extraction methods.

Compared with other baseline methods, the proposed
scheme FCGAN-CNN takes a lower time consumption,
which is attributed to following aspects:

• Compared with SAGAN [44] which owns large net-
work depth and parameter size, FCGAN belongs to the
lightweight network.

• The penalty term is able to improve the balance between
generator and discriminator and accelerate the training
process of FCGAN.

• Both FCGAN and CNN used in this paper adopt the
global polling layer to replace the dense layer, which
is capable of decreasing the parameter size greatly and
reducing the risk of overfitting.

B. EVALUATION OF GENERALIZATION ABILITY
In this section, we adopt a totally different dataset
SDUMLA to evaluate the generalization ability of FCGAN-
CNN, and reveal the prominent ability of FCGAN-CNN
to extract effective features by comparing with differ-
ent existing minutiae-based methods. The detailed valida-
tion scheme and experimental results are introduced as
follows.

1) TEST DATASET AND SCHEME
The test dataset used in this experiment is acquired from
SDUMLA finger-vein image database, which is introduced
briefly as follows:

The SDUMLA finger-vein image database [50] consists
of 636 fingers captured from 106 subjects, which were col-
lected by Shandong University of China. Each of the subjects
provided 6 image samples from the index, middle and ring
fingers of left and right hands. All the finger-vein images are
stored as BMP format with a fix size of 320× 240 pixels.
In our experiment, the finger-vein images are totally nor-

malized to fixed size of 160× 80 using the preprocess proce-
dure described in Section II-B.

We obtain feature vectors from finger-vein images of
SDUMLA database using FCGAN-CNN, and evaluate the
performance of networks utilizing One-to-many matching
approach. The detailed scheme is given as follows.

a: EXTRACTING FEATURE VECTOR
Firstly, we take each finger-vein image of SDUMLAdatabase
into the well-trained FCGAN-CNN. Then, through the

FIGURE 12. ROC curves of various feature extraction methods.

output of L5 layer we could obtain a feature vector with
1024 dimensions V (i)

= [p(i)1 , p
(i)
2 , ..., p

(i)
1024]

T corresponding
to each finger-vein image I (i).

b: ONE-TO-MANY MATCHING
We utilize the feature vector V (i) to match 636 finger-vein
images (one-to-many comparison) with six images stored per
finger. Therefore, the matching number of same category is
19080 (636×C1

6×C
1
5 ), and the matching number of different

categories is 384780 (636× (636− 1)− 636× C1
6 × C

1
5 ).

2) TEST RESULTS
To further demonstrate the performance of FCGAN-CNN to
extract effective features, various latest minutiae-based meth-
ods are taken in this experiment for comparison. The encod-
ing forms of different methods are elaborated in Table 5,
where N is the number of minutiae. The feature vector
extracted by Fei et al. [24] includes two parts, the spa-
tial information encoded in decimal and the LEBP descrip-
tor encoded in binary. Hence, Fei et al. utilized Euclidean
and Hamming distance to evaluate the similarities of fea-
ture vector, respectively. In addition, Wang et al. [26]
divided a finger-vein image into 96 patches and each patch
encoded as a 19-dimensional decimal vector, then the whole
1824-dimensional decimal feature was compacted and
encoded as a 128-dimensional binary feature. Based on the
one-to-many matching scheme above, we calculate the false
acceptance rate (FAR) and the false rejection rate (FRR),
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TABLE 6. The classification accuracy and EER of three different methods
(GAR=1-FRR).

and by adjusting the recognition threshold we draw the ROC
curves of various approaches, as shown in Fig. 12. Table 6
illustrates the EERs, and genuine acceptance rates (GARs) of
existing methods under different FARs.

The experimental results show that compared with lat-
est feature extraction methods the FCGAN-CNN reaches
a higher GAR and lower EER, which reveals that using
FCGAN to generate finger-vein images for sample augmen-
tation is beneficial for improving the ability of networks
to extract deep features. Moreover, the FCGAN-CNN gets
better results than CLA-CNN, which further confirms that
integrating GAN-based sample augmentation into the train-
ing procedure could break through the limitation of classical
augmentation in improving the classification result of net-
works.

VI. CONCLUSION
The existing finger-vein identification systems, especially
deep learning based methods, are mainly implemented on
small-scale dataset. It is hard to ensure a high tolerance
to the deformation caused by finger position, or the sta-
ble recognition accuracy on different finger-vein dataset.
Hence, this paper proposes a lightweight GAN-based archi-
tecture named FCGAN, using fully convolutional networks
and tightly-constrained loss function for implementing
finger-vein image augmentation. In addition, we present
a novel scheme FCGAN-CNN for finger-vein classifica-
tion, which reveals that synthetic finger-vein images using
FCGAN are capable of improving the property of CNN for
finger-vein image classification.

Firstly, to weaken the side impact of finger position on
classification accuracy, a robust gradient-based approach is
applied to detect phalangeal joints accurately and achieve
well-corrected finger-vein ROIs. Furthermore, large-stride
convolution layers are applied in our employed CNN to
acquire a broader vision and further decrease the false rejec-
tion rate caused by finger-vein position.

Secondly, the proposed FCGAN is designed as a fully
convolutional network with a small stride to relieve the
grid effect caused by the deconvolution operation. In addi-
tion, a novel preliminary batch normalization is employed in
FCGAN to improve the diversity of synthetic samples. To fur-
ther improve the quality of synthetic samples and relieve
the unilateral dominance and unbalance during the training

procedure of GANs, the tightly-constrained loss function
with a penalty term is employed in FCGAN.

Finally, we validate the effectiveness of our proposed
FCGAN-CNN scheme through two groups of experiments.
In the first experiment, we verify that sample augmenta-
tion using FCGAN is able to generate more diverse and
high-quality finger-vein images than existing augmentation
methods. In addition, it can break through the limitation
of classical augmentation and achieve a better performance
on improving the classification accuracy of employed CNN.
In the second experiment, we evaluate the generalization
ability of FCGAN-CNN scheme on a totally different dataset
and reveal its reliability on new datasets.

VII. FUTURE WORK
As the proposed system has not yet been perfected, there are
still many challenges in our future work.

A. NETWORK VISUALIZATION
The visualization of neural networks is an important research
field and we can obtain output results of each hidden layer
visually using this technology. It is worthwhile to investigate
related approaches of implementing the visualization of neu-
ral networks and make the experimental results more clear
and convincing.

B. TRAINING COMPLEXITY
The training procedure of FCGAN is complicated and now
we train separate FCGAN for each finger-vein category,
which increases the training complexity greatly. Hence, it is
worthwhile to investigate GAN architectures and find out the
solution to generate multi-class samples together.

C. EXPANSION PLAN
The two groups of experiments validate that our proposed
FCGAN-CNN scheme could effectively obtain the deep fea-
tures from a finger-vein image. Therefore, the proposed
scheme could be also extended to other biometric domains,
such as finger print and palm vein, which can benefit from
synthetic images augmented with GAN-based methods for
improving the training procedure.
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