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ABSTRACT An Italian dominating function (IDF) on a graph G = (V ,E) is a function f : V → {0, 1, 2}
satisfying the condition that for every vertex v ∈ V with f (v) = 0, either v is adjacent to a vertex assigned
2 under f , or v is adjacent to at least two vertices assigned 1 under f . The weight of an IDF f is the value∑

v∈V f (v). The Italian domination number of a graph G is the minimum weight of an IDF on G. The Italian
reinforcement number of a graph is the minimum number of edges that have to be added to the graph in
order to decrease the Italian domination number. In this paper, we initiate the study of Italian reinforcement
number and we present some sharp upper bounds for this parameter. In particular, we determine the exact
Italian reinforcement numbers of some classes of graphs.

INDEX TERMS Italian domination number, Italian reinforcement number, Cartesian product.

I. INTRODUCTION
Let G be a simple graph with vertex set V (G) and edge
set E(G). The open neighborhood of a vertex v in G is the
set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and its closed neigh-
borhood is the set NG[v] = NG(v) ∪ {v}. For a set S ⊆ V (G),
its open neighborhood is the set NG(S) =

⋃
v∈S NG(v). The

degree of a vertex v in G is dG(v) = |NG(v)|. The maximum
degree among all vertices of G is denoted by 1(G). For a set
S ⊆ V (G) and a vertex v ∈ S, the S-private neighborhood
of v, denoted by pnG(v, S), consists of all vertices u such that
N [u]∩ S = {v}. If the graph G is clear from the context, then
we will simply write N (v), N [v], N (S), d(v), 1 and pn(v, S)
rather than NG(v), NG[v], NG(S), dG(v), 1(G) and pnG(v, S),
respectively.

We write Cn for the cycle of length n, Pn for the path of
order n, Kn for the complete graph of order n and Kn1,n2,...,nt
for the complete t-partite graph with t partite sets of car-
dinality n1, n2, . . . , nt (t ≥ 2). A star of order n ≥ 2 is
the complete bipartite graph K1, n−1. We call the center of
a star to be a vertex of maximum degree. The corona graph
H ◦K1 of a graphH is the graph obtained fromH by attaching
one pendent edge at each vertex of H . A leaf of a graph
G is a vertex of degree 1, while a support vertex of G is a
vertex adjacent to a leaf. The complement of a graph G is
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the graph G, where V (G) = V (G) and uv ∈ E(G) if and
only if uv /∈ E(G). For a subset S of vertices of a graph
G and a real-valued function f : V (G) → R, we define
f (S) =

∑
x∈S f (x).

A dominating set S in a graph G is a set of vertices of G
such that each vertex not in S is adjacent to a vertex of S. The
domination number γ (G) of G is the minimum cardinality
of a dominating set. Kok and Mynhardt [1] introduced the
reinforcement number r(G) of a graph G as the minimum
number of edges that have to be added to the graph in order
to decrease the domination number. Since the domination
number of every graph G is at least 1, by convention Kok and
Mynhardt defined r(G) = 0 if γ (G) = 1. This concept of
the reinforcement number in a graph was further considered
for several domination variants, including total domination,
Roman domination and rainbow domination. See, for exam-
ple, [2]–[9], and elsewhere.

As a new variant of the domination, Italian domina-
tion was introduced in [10], where it was called Roman
{2}-domination. An Italian dominating function (IDF) on a
graph G is defined as a function f : V (G) → {0, 1, 2}
satisfying the condition that for every vertex v ∈ V (G) with
f (v) = 0, f (N (v)) ≥ 2, that is, either there is a vertex u ∈ N (v)
with f (u) = 2, or at least two vertices x, y ∈ N (v) with
f (x) = f (y) = 1. The weight of an IDF f is the value ω(f ) =
f (V (G)). The Italian domination number of a graph G,
denoted by γI (G), is the minimum weight of an IDF on G.

184448 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1267-696X
https://orcid.org/0000-0003-2298-4744
https://orcid.org/0000-0002-1723-5186
https://orcid.org/0000-0001-6569-5497


G. Hao et al.: Italian Reinforcement Number in Graphs

An IDF on G with weight γI (G) is called a γI (G)-function.
For a sake of simplicity, an IDF f onGwill be represented by
the ordered partition (V0,V1,V2) (or (V

f
0 ,V

f
1 ,V

f
2 ) to refer f )

of V (G) induced by f , where Vi = {v ∈ V (G) : f (v) = i}
for i ∈ {0, 1, 2}. For some advance we refer the reader
to [11]–[14].

In this paper, we extend the idea of reinforcement number
to Italian domination as follows: For a graph G, a subset F of
E(G) is an Italian reinforcement set (IR-set) of G if γI (G +
F) < γI (G). The Italian reinforcement number of a graph G,
denoted by rI (G), is the minimum size of an IR-set of G. An
IR-setF ofG is called a rI (G)-set if |F | = rI (G). Observe that
if γI (G) ∈ {1, 2}, then addition of edges does not reduce the
Italian domination number. We define rI (G) = 0 if γI (G) ∈
{1, 2}. Thus we always assume that when we discuss rI (G),
all graphs involved satisfy γI (G) ≥ 3.
Our purpose in this paper is to initiate the study of Italian

reinforcement number in graphs.We derive some sharp upper
bounds on the Italian reinforcement number and we also
determine exact values of Italian reinforcement number of
some classes of graphs.

II. PROPERTIES AND UPPER BOUNDS
Our aim in this section is to present basic properties of the
Italian reinforcement number and derive some sharp upper
bounds for this parameter.We start with a fundamental lemma
that will be used in the proof of some results.
Lemma 1: For any graph G with γI (G) ≥ 3, let F be an

rI (G)-set and let f be a γI (G+F)-function. Then the following
hold:

(i) For each edge v1v2 ∈ F, there exists an integer i ∈
{1, 2} such that f (vi) = 0 and f (v3−i) 6= 0.

(ii) γI (G+ F) = γI (G)− 1.

Proof: (i) Suppose, to the contrary, that there exists an
edge v1v2 ∈ F such that f (vi) 6= 0 for each i ∈ {1, 2}
or f (v1) = f (v2) = 0. Observe that f is an IDF on G +
(F\{v1v2}), and so F\{v1v2} is an IR-set of G, implying that
rI (G) ≤ |F\{v1v2}| = |F | − 1, a contradiction. So, (i) holds.

(ii) Since F is an rI (G)-set, γI (G + F) ≤ γI (G) − 1.
Suppose, to the contrary, that γI (G + F) ≤ γI (G) − 2.
Let v1v2 ∈ F . By (i), we may assume that f (v1) = 0 and
f (v2) 6= 0. Then the function g defined by g(v1) = 1 and
g(x) = f (x) otherwise, is an IDF on G + (F\{v1v2}) with
ω(g) = ω(f ) + 1 ≤ γI (G) − 1, and so F\{v1v2} is an
IR-set of G, implying that rI (G) ≤ |F\{v1v2}| = |F | − 1,
a contradiction. As a result, we have γI (G+ F) = γI (G)− 1
and so (ii) also holds. �
We now provide a characterization of all the graphsGwith

rI (G) = 1, which will be useful in many of the results of this
paper.
Theorem 1: For any graph G with γI (G) ≥ 3, rI (G) = 1 if

and only if there exist a γI (G)-function f = (V f
0 ,V

f
1 ,V

f
2 ) and

a vertex v ∈ V f
1 satisfying one of the following conditions:

(i) f (N (v)) = 1 and f (N (x)\{v}) ≥ 2 for each x ∈ N (v) ∩
V f
0 .

(ii) f (N (v)) = 0, f (N (x)\{v}) ≥ 2 for each x ∈ N (v) and
V f
2 6= ∅.

Proof: Suppose that (i) holds. Since f (N (v)) = 1,
we may assume that N (v) ∩ V f

1 = {u}. Since
ω(f ) = γI (G) ≥ 3, there exists some vertex w ∈ (V f

1 ∪

V f
2 )\N [v]. Moreover, since uv ∈ E(G) and f (N (x)\{v}) ≥ 2

for each x ∈ N (v)∩V f
0 , we have that the function g = (V f

0 ∪

{v},V f
1 \{v},V

f
2 ) is an IDF on G+ vw with ω(g) = ω(f )− 1,

and so {vw} is an IR-set of G, implying that rI (G) = 1. Now
suppose that (ii) holds and let u ∈ V f

2 . Since f (N (v)) = 0,
uv /∈ E(G). Furthermore, since f (N (x)\{v}) ≥ 2 for each
x ∈ N (v), we have that the function g defined earlier is also
an IDF on G + uv with ω(g) = ω(f ) − 1, and so {uv} is an
IR-set of G, implying that rI (G) = 1.
Conversely, suppose that rI (G) = 1. Let {uv} be an

rI (G)-set and let h = (V h
0 ,V

h
1 ,V

h
2 ) be a γI (G+ uv)-function.

By Lemma 1(i), we may assume that h(u) 6= 0 and h(v) = 0.
It is easy to check that the function f = (V h

0 \{v},V
h
1 ∪{v},V

h
2 )

is an IDF on G. By Lemma 1(ii), we have ω(f ) = ω(h)+1 =
(γI (G)−1)+1 = γI (G), implying that f is a γI (G)-function.
If f (N (v)) ≥ 2, then h(N (v)) = f (N (v)) ≥ 2 and hence h
is an IDF on G, implying that γI (G) ≤ ω(h) = γI (G + uv),
a contradiction to Lemma 1(ii). Therefore, we may assume
that f (N (v)) ≤ 1.
Since h(v) = 0 and h is a γI (G + uv)-function, we get

f (N (x)\{v}) = h(N (x)\{v}) ≥ 2 for each x ∈ N (v) ∩ V f
0 .

If f (N (v)) = 1, then (i) holds. Suppose now that f (N (v)) = 0.
Obviously, h(N (v)) = f (N (v)) = 0.Moreover, since h(v) = 0
and u is adjacent to v in G + uv, we have f (u) = h(u) = 2,
implying that (ii) is true.
The proof is completed. �
Theorem 2: Let G be a graph with γI (G) ≥ 3 and let f =

(V0,V1,V2) be a γI (G)-function. Then
(i) For any vertex v ∈ V1, rI (G) ≤ |(N (v)\pn(v,V1)) ∩

V0| + 2.
(ii) For any vertex v ∈ V2, rI (G) ≤ |pn(v,V2) ∩ V0|.

Proof:
(i) Let v be any vertex of V1. Suppose now that |V2| ≥ 1.

Let u be a vertex of V2 and let F = ({ux : x ∈
(N (v)\pn(v,V1)) ∩ V0} ∪ {uv})\E(G). Note that pn(v,V1) ∩
V0 ⊆ N (V2). Thus the function g1 = (V0 ∪ {v},V1\{v},V2)
is an IDF on G + F with ω(g1) = ω(f ) − 1. Therefore F is
an IR-set of G and so

rI (G) ≤ |F |

= |({ux : x ∈ (N (v)\pn(v,V1)) ∩ V0} ∪ {uv})\E(G)|

≤ |(N (v)\pn(v,V1)) ∩ V0| + 1.

Suppose next that |V2| = 0. Clearly pn(v,V1)∩V0 = ∅ and
hence (N (v)\pn(v,V1)) ∩ V0 = N (v) ∩ V0. Since γI (G) ≥ 3,
there exist two vertices u and w different from v in V1. Let
X = (N (v) ∩ V0) ∩ N (u), Y = (N (v) ∩ V0)\N (u) and let
F = ({vu, vw} ∪ {wx : x ∈ X} ∪ {ux : x ∈ Y })\E(G). It is
easy to verify that the function g1 defined earlier is an IDF on
G+ F with ω(g1) = ω(f )− 1. Therefore F is an IR-set of G
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and so

rI (G) ≤ |F |

= |({vu, vw} ∪ {wx : x ∈ X} ∪ {ux : x ∈ Y })\E(G)|

≤ |{wx : x ∈ X} ∪ {ux : x ∈ Y }| + 2

= |(N (v) ∩ V0)| + 2.

= |(N (v)\pn(v,V1)) ∩ V0| + 2.

Thus (i) holds.
(ii) Let v be any vertex of V2. Since γI (G) ≥ 3, there exists

some vertex u ∈ V1 ∪ V2. Let F = {ux : x ∈ pn(v,V2) ∩
V0}\E(G). Then the function g2 = (V0,V1 ∪ {v},V2\{v}) is
an IDF on G + F with ω(g2) = ω(f ) − 1. Therefore F is an
IR-set of G and so

rI (G) ≤ |F |

= |{ux : x ∈ pn(v,V2) ∩ V0}\E(G)|

≤ |pn(v,V2) ∩ V0|.

The proof is completed. �
We remark that the upper bound of Theorem 2 is sharp.

(i) Let n ≥ 8 be an even number and Cn = v1v2 · · · vnv1.
It is easy to check that the function f defined by f (vi) = 1
for each odd i and f (vi) = 0 for each even i, is an IDF
on Cn with ω(f ) = n/2 and hence by Proposition A(ii)
in Section III, f is a γI (Cn)-function. Observe that for each
odd i, |(N (vi)\pn(vi,V1)) ∩ V0| = |N (vi) ∩ V0| = 2 and
so by Theorem 6 in Section III, we obtain rI (Cn) = 4 =
|(N (vi)\pn(vi,V1)) ∩ V0| + 2.

(ii) Let X1 = {u} and Y1 = {u′1, u
′

2, . . . , u
′
s} be the partite

sets of K1,s and let X2 = {v1, v2} and Y2 = {v′1, v
′

2, . . . , v
′
t }

be the partite sets of K2,t (3 ≤ s ≤ t). We denote the graph
G obtained from K1,s and K2,t by joining u and v1. It is not
difficult to verify that the function f defined by f (u) = 2,
f (v1) = f (v2) = 1 and f (x) = 0 otherwise, is the unique
γI (G)-function and so γI (G) = 4.
We now claim that rI (G) = s. Let F ′ = {v1u′i : 1 ≤ i ≤ s}.

Then the function g2 defined by g2(u) = g2(v1) = g2(v2) = 1
and g2(x) = 0 otherwise, is an IDF on G+ F ′ with ω(g2) =
3 < γI (G). This implies that F ′ is an IR-set of G and so
rI (G) ≤ |F ′| = s. Hence it suffices to show that rI (G) ≥ s.
Let F be an rI (G)-set and let h be a γI (G + F)-function.
By Lemma 1(ii), we haveω(h) = γI (G+F) = γI (G)−1 = 3.
If h(V (K2,t )) ≤ 1, then at least t vertices in V (K2,t )\{v1}

are incident with an edge in F ; and if h(V (K2,t )) = 3, then
h(V (K1,s)) = 0 and so each vertex in Y1 is incident with an
edge in F . In both cases, we obtain |F | ≥ s. Suppose next that
h(V (K2,t )) = 2. This forces h(V (K1,s)) = 1. If h(u) = 1, then
each vertex in Y1 is incident with an edge in F and so |F | ≥ s.
Hence we may assume that h(u) = 0. Then there exists some
vertex, say u′1, in Y1 such that h(u

′

1) = 1. If h(v1) = h(v2) = 1,
then |NG+F (u′i) ∩ {u

′

1, v1, v2}| ≥ 2 for 2 ≤ i ≤ s and so
|F | ≥ 2(s− 1) > s. If exactly one of v1 and v2 is assigned 2
under h, then the other is assigned 0 and hence v1v2 ∈ F and
{u′2, u

′

3, . . . , u
′
s} ⊆ NG+F ({v1, v2}), implying that |F | ≥ s.

As a result, we obtain rI (G) = s.

Recall that f is the unique γI (G)-function and u is the
unique vertex assigned 2 under f . Thus rI (G) = s =
|pn(u,V f

2 ) ∩ V
f
0 |.

Theorem 3: Let G be a graph of order n with γI (G) ≥ 3.
Then

rI (G) ≤ min{1+ 2, n−1− γI (G)+ 2}.

Proof: Using Theorem 2, we obtain rI (G) ≤ 1 + 2.
Thus it suffices to show that rI (G) ≤ n − 1 − γI (G) + 2.
Let v be a vertex of degree 1. Since γI (G) ≥ 3, we have
|V (G)\NG[v]| = n−1− 1 ≥ n−1− γI (G)+ 2. Therefore,
there exists a subset F of {uv ∈ E(G) : u ∈ V (G)\N [v]} such
that |F | = n − 1 − γI (G) + 2. Then the function f defined
by f (v) = 2, f (x) = 0 for each x ∈ NG+F (v) and f (x) = 1
otherwise, is an IDF onG+F withω(f ) = n−|NG[v]|−|F |+
2 = n− (1+1)− (n−1−γI (G)+2)+2 = γI (G)−1. Thus
F is an IR-set of G and so rI (G) ≤ |F | = n−1− γI (G)+ 2,
establishing the desired upper bound. �

We remark that the upper bound of Theorem 3 is sharp. For
any integer m ≥ 2, let G be the corona graph Km ◦ K1. It is
easy to verify that |V (G)| = 2m, 1 = m, γI (G) = m+ 1 and
rI (G) = 1, implying that rI (G) = min{1+ 2, |V (G)| −1−
γI (G) + 2}. Moreover, we conclude from Proposition A(ii)
and Theorem 6 in Section III that for even n ≥ 8, rI (Cn) =
4 = min{1+ 2, n−1− γI (Cn)+ 2}.

Next result is an immediate consequence of Theorem 3.
Corollary 1: For any graph G of order n with γI (G) ≥ 3,

rI (G) ≤ dn/2e.
Proof: If1 ≤ dn/2e−2, then Theorem 3 yields rI (G) ≤

1 + 2 ≤ dn/2e. If 1 ≥ dn/2e − 1, then by Theorem 3,
we obtain rI (G) ≤ n−1− γI (G)+ 2 ≤ n− (dn/2e − 1)−
3+ 2 = bn/2c. �
As a special case, Theorem 3 implies that every graph G

with δ = 1 and γI (G) ≥ 3 satisfies rI (G) ≤ 1 + 2. Next,
we shall improve this upper bound. For this purpose, we first
derive the following result.
Lemma 2: Let G be a graph with γI (G) ≥ 3. If v is a

support vertex of G, then rI (G) ≤ max{d(v), 3}.
Proof: Let f be a γI (G)-function and let u be a leaf

adjacent to v. If f (u) ≥ 1, then we deduce from Theorem 2
that rI (G) ≤ 3. If f (u) = 0, then this forces f (v) = 2 and it
follows from Theorem 2(ii) that rI (G) ≤ d(v). �
Theorem 4: Let G be a graph of order n with δ = 1 and

γI (G) ≥ 3. Then rI (G) ≤ 1.
Proof: If1 ≥ 3, then the result follows from Lemma 2.

Suppose that 1 ≤ 2. Then G is a disjoint union of paths
and cycles. Since δ = 1, some connected components of
G are paths. If some connected component of G is a path of
order 2 or 3, then it is not different to verify that rI (G) ≤ 1.
If some connected component ofG is a path of order at least 4,
then by Theorem 5 in Section III, we have rI (G) ≤ 2 = 1.

�
It should be mentioned that the upper bound of Theorem 4

is sharp. Let G be a disjoint union of k ≥ 2 copies of P2.
It can be easily checked that rI (G) = 1 = 1. Moreover,
it follows from Theorem 5 in Section III that any path of odd
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order n ≥ 5 satisfies rI (Pn) = 2 = 1. Let 1 ≥ 3. We now
construct infinitely many trees T with rI (T ) = 1(T ) = 1.

LetH be a tree of order no less than 2with1(H ) ≤ 1−1. For
each v ∈ V (H ), let Sv be a star of order 1 and let cv be the
center of Sv. We let T (1,H ) denote the tree obtained from
H ∪ (

⋃
v∈V (H ) Sv) by joining v and cv for each v ∈ V (H ).

Proposition 1: Let 1 ≥ 3 be an integer, H be a tree of
order no less than 2with1(H ) ≤ 1−1 and let T = T (1,H ).
Then rI (T ) = 1(T ) = 1.

Proof: We first show that γI (T ) = 2|V (H )|. Let g be a
γI (T )-function. For each v ∈ V (H ), if a leaf u of Sv satisfies
g(u) = 0, then g(cv) = 2 and if all leaves u of Sv satisfies
g(u) ≥ 1, then g(V (Sv)\{cv}) ≥ 1 − 1 ≥ 2. In either case,
we obtain g(V (Sv)) ≥ 2 for each v ∈ V (H ). Therefore,

γI (T ) = ω(g) ≥
∑

v∈V (H )

g(V (Sv)) ≥ 2|V (H )|.

Moreover, we observe that the function h defined by
h(cv) = 2 for each v ∈ V (H ) and h(x) = 0 otherwise, is
an IDF on T and so γI (T ) ≤ ω(h) = 2|V (H )|. As a result,
we obtain γI (T ) = 2|V (H )|.
We next claim that rI (T ) = 1. By Theorem 4, we have

rI (T ) ≤ 1. Hence it is sufficient to show that rI (T ) ≥ 1. Let
F be an rI (T )-set and f be a γI (T + F)-function.
Claim 1: If f (V (Sv)) ≤ 1 for some v ∈ V (H ), then there

exists an edge in F incident with a vertex in V (Sv) assigned 0
under f .
Proof of Claim 1: Since f (V (Sv)) ≤ 1, we have f (cv) ≤ 1 and
there exists a leaf u of Sv such that f (u) = 0. Thus u must be
incident with an edge in F and so this claim is true.
Claim 2: Let f (V (Sv)∪ {v}) ≤ 1 for some v ∈ V (H ). Then
(i) There exist at least 1 − 1 edges in F incident with a

vertex in V (Sv) ∪ {v} assigned 0 under f .
(ii) If the number of edges in F incident with a vertex in

V (Sv)∪ {v} is1− 1, then f (V (Sv)) = 1 and no edge in
F is incident with v.

Proof of Claim 2: Since f (V (Sv) ∪ {v}) ≤ 1, we have
f (V (Sv)) + f (v) ≤ 1. If f (V (Sv)) = 0, then each vertex of
Sv is assigned 0 under f and hence is adjacent with an edge
in F . Suppose that f (V (Sv)) = 1. Obviously, f (v) = 0. Thus
exactly1−1 vertices of Sv are assigned 0 under f and hence
they are adjacent with an edge in F . This implies that this
claim holds.

By Lemma 1(ii), we obtain γI (T + F) = γI (T ) − 1 =
2|V (H )| − 1 and so there exists some vertex v ∈ V (H ) such
that f (V (Sv) ∪ {v}) ≤ 1. If there exists some vertex v′ ∈
V (H )\{v} such that f (V (Sv′ )∪ {v′}) ≤ 1, then by Lemma 1(i)
and Claim 2(i), |F | ≥ 2(1 − 1) > 1. Therefore, v is the
unique vertex such that f (V (Sv) ∪ {v}) ≤ 1. If f (V (Sv)) = 0
or v is incident with some edge in F , then it follows from
Claim 2(i) and (ii) that |F | ≥ 1. Hence we may assume
that f (V (Sv)) = 1 and no edge in F is incident with v. This
implies that f (v) = 0 and f (V (Sv)∪{v}) = 1. Moreover, since
ω(f ) = γI (T + F) = 2|V (H )| − 1 and v is the unique vertex
such that f (V (Sv) ∪ {v}) ≤ 1, this forces f (V (Sv′ ) ∪ {v′}) = 2
for each v′ ∈ V (H )\{v}. Noting that f (V (Sv)) = 1, f (v) = 0

and no edge in F is incident with v, we have that there exists
some vertex u ∈ NH (v) such that f (u) ≥ 1, implying that
f (V (Su)) ≤ 1 since f (V (Su) ∪ {u}) = 2. Using Claim 1,
there exists an edge in F incident with a vertex in V (Su)
assigned 0 under f . Moreover, since f (V (Sv) ∪ {v}) = 1,
we conclude from Claim 2(i) that there exists at least 1 − 1
edges in F incident with a vertex in V (Sv) ∪ {v} assigned 0
under f . Recall that each edge in F is incident with exactly
one vertex assigned 0 under f by Lemma 1(i). As a result,
we have rI (T ) = |F | ≥ 1, which completes our proof. �

III. SPECIAL CLASSES OF GRAPHS
In this section, we mainly obtain the exact value of rI (G)
for some specific families of graphs, such as paths, cycles,
complete multipartite graphs and ladders.

A. PATHS AND CYCLES
In order to determine the Italian reinforcement number of
paths and cycles, we need the following well-known result
due to Chellali et al. [10].
Proposition A: ( [10]).
(i) For any integer n ≥ 1, γI (Pn) = d(n+ 1)/2e.
(ii) For any integer n ≥ 3, γI (Cn) = dn/2e.
Theorem 5: For any integer n ≥ 4,

rI (Pn) =

{
1, if n is even,
2, if n is odd .

Proof: Let Pn = v1v2 · · · vn. If n is even, then by
Proposition A, we have γI (Pn + v1vn) < γI (Pn) and hence
rI (Pn) = 1. Suppose next that n is odd. By Proposition A(i),
it is easy to verify that the function g defined by g(vi) = 1 for
each odd i and f (vi) = 0 for each even i, is the unique γI (Pn)-
function. Then g and each vertex vi do not satisfy one of the
conditions (i) and (ii) of Theorem 1 and hence rI (Pn) ≥ 2.
On the other hand, the function h defined by h(vi) = 0 for
each odd i and h(vi) = 1 for each even i, is an IDF on
Pn+{v1vn−1, v2vn}withω(h) = (n−1)/2 = γI (Pn)−1. Thus
the set {v1vn−1, v2vn} is an IR-set of Pn and so rI (Pn) ≤ 2.
Consequently, we have rI (Pn) = 2.
The proof is completed. �
Theorem 6: For any integer n ≥ 5,

rI (Cn) =


2, if n is odd,
3, if n = 6,
4, if n ≥ 8 is even.

Proof: Let Cn = v0v1 · · · vn−1v0. Suppose first that n
is odd. Observe that the function g defined by g(vi) = 1 for
each even i ≤ n − 3 and g(vi) = 0 otherwise, is an IDF on
Cn + {v0vn−2, v2vn−1} and so by Proposition A(ii), ω(g) =
(n − 1)/2 = γI (Cn) − 1. Thus the set {v0vn−2, v2vn−1} is an
IR-set of Cn and so rI (Cn) ≤ 2. Hence it suffices to show
that rI (Cn) ≥ 2. Suppose, to the contrary, that rI (Cn) = 1.
Using Theorem 1, we have that there exist a γI (Cn)-function
f = (V0,V1,V2) and a vertex v ∈ V1 satisfying one of the
conditions (i) and (ii) given in Theorem 1. If (i) holds, then we
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may assume, without loss of generality, that v1, v2 ∈ V1, v3 ∈
V0 and v4 ∈ V2. If (ii) holds, then we may assume, without
loss of generality, that v2 ∈ V1, v1, v3 ∈ V0 and v0, v4 ∈ V2.
In either case, the restriction f ∗ of f on V (Cn)\{v2} is an IDF
on Cn − v2 (∼= Pn−1). Using Proposition A,

n+ 1
2
= γI (Cn) = ω(f )

= ω(f ∗)+ 1 ≥ γI (Pn−1)+ 1 =
n+ 1
2
+ 1,

a contradiction. Therefore, we obtain rI (Cn) ≥ 2.
Suppose next that n is even. It is easy to see that rI (C6) = 3.

Let n ≥ 8. Using Theorem 3, we have rI (Cn) ≤ 1 + 2 = 4.
Hence it suffices to show that rI (Cn) ≥ 4. In the remainder of
the proof, we emphasize that the index of each vertex of Cn
is taken modulo n.

Let F be an rI (Cn)-set and f be a γI (Cn+F)-function such
that V f

2 = ∅. We first assume that Cn has three consecutive
vertices vi, vi+1, vi+2 ∈ V

f
0 . Then the following hold:

(a) For each j ∈ {i, i + 2}, F has an edge joining vj to a
vertex assigned 1 under f .

(b) F has two edges joining vi+1 to two vertices assigned
1 under f .

As a result, we obtain |F | ≥ 4. Hence we may assume that∑i+2
j=i f (vj) ≥ 1 for each 0 ≤ i ≤ n − 1. It follows from

Lemma 1(ii) and PropositionA(ii) that γI (Cn+F) = γI (Cn)−
1 = n/2− 1 and hence there exist two indices i1 and i2 such
that |i1 − i2| ≥ 3 and {vi1 , vi1+1, vi2 , vi2+1} ⊆ V f

0 . Moreover,
sinceV f

2 = ∅, we have thatF has an edge joining vj to a vertex
assigned 1 under f for each j ∈ {i1, i1 + 1, i2, i2 + 1}. As a
result, we also obtain |F | ≥ 4. So in the following we may
assume that any rI (Cn)-set F and any γI (Cn + F)-function f
satisfy V f

2 6= ∅.
Claim 3: There exists an rI (Cn)-set F and a γI (Cn + F)-

function f such that v0 ∈ V
f
2 and every edge in F is incident

with v0.
Proof of Claim 3: Let F ′ be an rI (Cn)-set and f be a γI (Cn +
F ′)-function. From our earlier assumptions, we note that
V f
2 6= ∅. Without loss of generality, assume that v0 ∈ V f

2 .
Using Lemma 1(i), each edge in F ′ is incident with exactly
one vertex assigned 0 under f . Let X = {v ∈ V f

0 :

v is incident with an edge in F ′} and let F = {vv0 : v ∈
X}\E(Cn). It is easy to see that f is an IDF on Cn + F and
hence by Lemma 1(ii), γI (Cn + F) ≤ ω(f ) = γI (Cn + F ′) =
γI (Cn)−1, implying thatF is an IR-set ofCn. Moreover, since
|F | ≤ |F ′|, we have that F is also an rI (Cn)-set. Again by
Lemma 1(ii), ω(f ) = γI (Cn+F ′) = γI (Cn)−1 = γI (Cn+F)
and hence f is also a γI (Cn + F)-function. As a result, F and
f is a desired pair of an rI (Cn)-set and a γI (Cn+F)-function.
So, this claim is true.

Let F and f be defined as in Claim 3. We may choose f
so that |NCn+F (v0)∩V

f
0 | is as large as possible. Suppose that

NCn+F (v0) * V f
0 . Let vs ∈ NCn+F (v0)\V

f
0 for some 0 ≤ s ≤

n−1. Moreover, since each edge in F is incident with exactly

one vertex assigned 0 under f by Lemma 1(i), we have s ∈
{1, n−1}. Note that dCn+F (vs) = 2. LetNCn+F (vs) = {v0, vt }.
If v0vt ∈ F , or v0vt /∈ F and f (vt ) ≥ 1, then the function

f1 defined by f1(vs) = 0 and f1(vi) = f (vi) otherwise, is an
IDF on Cn + F with ω(f1) ≤ ω(f ) − 1 < γI (Cn + F),
a contradiction. Assume that v0vt /∈ F and f (vt ) = 0. Observe
that the function f2 defined by f2(vs) = 0, f2(vt ) = f (vs) and
f2(vi) = f (vi) otherwise, is an IDF on Cn + F with ω(f2) =
ω(f ) = γI (Cn + F), and so f2 is also a γI (Cn + F)-function.
However, F and f2 satisfy the properties of Claim 3 with
|NCn+F (v0) ∩ V

f2
0 | = |NCn+F (v0) ∩ V

f
0 | + 1, contradicting

to the choice of f . As a result, we get NCn+F (v0) ⊆ V f
0 .

Let H = (Cn + F) − NCn+F [v0] and let H1,H2, . . . ,Hk
be the connected components of H . Clearly |V (H )| = n −
|NCn+F [v0]| = n−|F |−3 andHi is a path for each 1 ≤ i ≤ k .
Observe that the restriction f ∗ of f on V (H ) is an IDF on H .
Using Proposition A(i), we have

ω(f ∗) ≥
∑
1≤i≤k

γI (Hi) =
∑
1≤i≤k

⌈
|V (Hi)| + 1

2

⌉
. (1)

Moreover, by Lemma 1(ii) and Proposition A(ii),

ω(f ∗) = ω(f )− f (NCn+F [v0])

= γI (Cn + F)− 2 = γI (Cn)− 3 =
n
2
− 3. (2)

Combining (1) and (2), we obtain

n
2
− 3 = ω(f ∗) ≥

∑
1≤i≤k

⌈
|V (Hi)| + 1

2

⌉
>

∑
1≤i≤k

|V (Hi)|
2
=
n− |F | − 3

2
,

implying that rI (Cn) = |F | ≥ 4, which completes our proof.
�

B. COMPLETE MULTIPARTITE GRAPHS
According to the following results presented in [15],
we derive the exact value of Italian domination number of a
complete multipartite graph, based on which we shall deter-
mine its Italian reinforcement number.
Proposition B: ( [15]) Let G be a graph of order n ≥ 3.

Then γI (G) = 3 if and only if one of the following holds:

(i) 1 < n−2 and γ2(G) = 3, where γ2(G) is 2-domination
number of G.

(ii) 1 = n− 2 and {v ∈ V (G) : d(v) = n− 2} is a clique.

Proposition C: ( [15]) Let G ∨ H denote the join of two
graphs G and H. Then γI (G ∨ H ) ≤ 4. Moreover, if k =
γI (G) ≤ γI (H ), then

(i) k ≤ 2 if and only if γI (G ∨ H ) = 2.
(ii) k = 3 or k = 4 and γ (H ) = 2 if and only if γI (G ∨

H ) = 3.

Using Propositions B and C, we can derive the following
result.
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Proposition 2: For any positive integers n1 ≤ n2 ≤ · · · ≤
nt with t ≥ 2,

γI (Kn1,n2,...,nt ) =


2, if 1 ≤ n1 ≤ 2,
3, if n1 = 3, or n1 ≥ 4 and t ≥ 3,
4, if n1 ≥ 4 and t = 2.

Theorem 7: For any positive integers 3 ≤ n1 ≤ n2 ≤
· · · ≤ nt with t ≥ 2,

rI (Kn1,n2,...,nt )

=

{
n1 − 1, if n1 = 3, or n1 ≥ 4 and t ≥ 3,
n1 − 2, if n1 ≥ 4 and t = 2.

Proof: Since1 = |V (Kn1,n2,...,nt )|−n1, we deduce from
Theorem 3 and Proposition 2 that

rI (Kn1,n2,...,nt )

≤ |V (Kn1,n2,...,nt )| −1− γI (Kn1,n2,...,nt )+ 2

=

{
n1 − 1, if n1 = 3, or n1 ≥ 4 and t ≥ 3,
n1 − 2, if n1 ≥ 4 and t = 2.

To prove the inverse inequality, let X1,X2, . . . ,Xt be the
partite sets of Kn1,n2,··· ,nt with |Xi| = ni (1 ≤ i ≤ t) and
let Xi = {vi1, v

i
2, . . . , v

i
ni}. We let F and f = (V0,V1,V2)

be an rI (Kn1,n2,...,nt )-set and a γI (Kn1,n2,...,nt + F)-function,
respectively.
Suppose first that n1 = 3, or n1 ≥ 4 and t ≥ 3.

By Lemma 1(ii) and Proposition 2, ω(f ) = γI (Kn1,n2,...,nt +
F) = γI (Kn1,n2,...,nt ) − 1 = 2. Thus we have |V1| = 2 and
|V2| = 0, or |V1| = 0 and |V2| = 1.
Assume now that |V1| = 2 and |V2| = 0. Without loss of

generality, assume that vk1, v
l
2 ∈ V1 (1 ≤ k, l ≤ t). If k = l,

then {vk1, v
k
2} ⊆ NKn1,n2,...,nt+F (v

k
i ) for each 3 ≤ i ≤ nk

and so |F | ≥ 2(nk − 2) ≥ n1 − 1; and if k 6= l, then
{vk2, v

k
3, . . . , v

k
nk } ⊆ NKn1,n2,...,nt+F (v

k
1) and so |F | ≥ nk − 1 ≥

n1−1. Assume next that |V1| = 0 and |V2| = 1. Without loss
of generality, assume that vk1 ∈ V2 (1 ≤ k ≤ t). Obviously,
{vk2, v

k
3, . . . , v

k
nk } ⊆ NKn1,n2,...,nt+F (v

k
1) and so |F | ≥ nk − 1 ≥

n1 − 1.
Suppose second that n1 ≥ 4 and t = 2. By Lemma 1(ii) and

Proposition 2,ω(f ) = γI (Kn1,n2,...,nt+F) = γI (Kn1,n2,...,nt )−
1 = 3. Thus we have |V1| = 3 and |V2| = 0,
or |V1| = |V2| = 1.
Assume now that |V1| = 3 and |V2| = 0. Without loss of

generality, assume that vk1, v
k
2, v

l
3 ∈ V1 (1 ≤ k, l ≤ 2). If

k = l, then |NKn1,n2,...,nt+F (v
k
i ) ∩ {v

k
1, v

k
2, v

k
3}| ≥ 2 for each

4 ≤ i ≤ nk and so |F | ≥ 2(nk − 3) ≥ n1 − 2; and if k 6= l,
then |NKn1,n2,...,nt+F (v

k
i ) ∩ {v

k
1, v

k
2}| ≥ 1 for each 3 ≤ i ≤ nk

and so |F | ≥ nk − 2 ≥ n1 − 2. Assume next that |V1| =
|V2| = 1. Without loss of generality, assume that vk1 ∈ V1 and
vl2 ∈ V2 (1 ≤ k, l ≤ 2). If k = l, then {vki : 3 ≤ i ≤ nk} ⊆
NKn1,n2,...,nt+F (v

k
2) and so |F | ≥ nk −2 ≥ n1−2; and if k 6= l,

then {vli : 1 ≤ i ≤ nl and i 6= 2} ⊆ NKn1,n2,...,nt+F (v
l
2) and so

|F | ≥ nl − 1 > n1 − 2.
The proof is completed. �

C. LADDERS
In this subsection, we restrict our attention to the ladder
P2�Pn, whereG�H is the Cartesian product of two graphsG
and H .

We emphasize that V (P2�Pn) = {vij : 1 ≤ i ≤ 2, 1 ≤
j ≤ n} and E(P2�Pn) = {v1j v

2
j : 1 ≤ j ≤ n} ∪ {vijv

i
j+1 :

1 ≤ i ≤ 2, 1 ≤ j ≤ n − 1}, throughout our argument. Let f
be an IDF on P2�Pn. Then for each 1 ≤ j ≤ n, we denote
aj = f (v1j )+ f (v

2
j ).

In order to determine the Italian reinforcement num-
ber of a ladder, we need the following result and some
lemmas.
Proposition D: ( [15]) For any integer n ≥ 2,

γI (P2�Pn) = n.
Next, we shall determine the Italian reinforcement number

ofP2�Pn. Recall that if f is an IDF onP2�Pn, thenwe denote
aj = f (v1j )+ f (v

2
j ) for each 1 ≤ j ≤ n.

Lemma 3: Let n ≥ 1 be an integer and let f be an
IDF on P2�Pn. If aj ≥ 2 for some j ∈ {1, n}, then
ω(f ) ≥ n+ 1.

Proof: By symmetry, it suffices to show that if a1 ≥ 2,
then ω(f ) ≥ n+ 1. We proceed by induction on n. The basis
step of the induction is obvious for n = 1. Assume that the
result holds for any integer 1 ≤ n′ < n.
If a1 ≥ 3, then the function g defined by g(v11) = 0,

g(v21) = 1, g(v12) = 2 and g(x) = f (x) otherwise, is an IDF
on P2�Pn and the restriction g∗ of g on V (P2�Pn)\{v11, v

2
1}

is an IDF on P2�Pn−1 with g∗(v12)+g
∗(v22) ≥ 2 and hence by

the induction hypothesis, ω(f ) ≥ ω(g) = ω(g∗)+ 1 ≥ n+ 1.
So in the following we may assume that a1 = 2.
Case 1: f (v11) = 2 and f (v21) = 0 (the case f (v11) = 0 and

f (v21) = 2 is similar).
If a2 ≥ 2, or f (v12) = 1 and f (v22) = 0, then it is easy

to verify that the restriction f ∗1 of f on V (P2�Pn)\{v11, v
2
1} is

an IDF on P2�Pn−1 and hence by Proposition D, ω(f ) =
ω(f ∗1 ) + 2 ≥ (n − 1) + 2 = n + 1. If f (v12) = 0 and
f (v22) = 1, then the function g1 defined by g1(v11) = 1
and g1(x) = f (x) otherwise, is also an IDF on P2�Pn and
hence by Proposition D, ω(f ) = ω(g1) + 1 ≥ n + 1. If
f (v12) = f (v22) = 0, then f (v23) = 2 and so the restriction
f ∗2 of f on V (P2�Pn)\{v11, v

2
1, v

1
2, v

2
2} is an IDF on P2�Pn−2

and hence by the induction hypothesis, ω(f ) = ω(f ∗2 ) + 2 ≥
(n− 1)+ 2 = n+ 1.
Case 2: f (v11) = f (v21) = 1.
If a2 = 0, then a3 ≥ 2 and so the restriction f ∗3 of

f on V (P2�Pn)\{v11, v
2
1, v

1
2, v

2
2} is an IDF on P2�Pn−2 and

hence by the induction hypothesis, ω(f ) = ω(f ∗3 ) + 2 ≥
(n − 1) + 2 = n + 1. If a2 ≥ 2, then the restriction f ∗4 of
f on V (P2�Pn)\{v11, v

2
1} is an IDF on P2�Pn−1 and so by the

induction hypothesis,ω(f ) = ω(f ∗4 )+2 ≥ n+2. Suppose now
that a2 = 1.Without loss of generality, assume that f (v12) = 1
and f (v22) = 0. Then the function g2 defined by g2(v11) = 0
and g2(x) = f (x) otherwise, is also an IDF on P2�Pn and
hence by Proposition D, ω(f ) = ω(g2)+ 1 ≥ n+ 1.
The proof is completed. �

VOLUME 7, 2019 184453



G. Hao et al.: Italian Reinforcement Number in Graphs

Lemma 4: Let n ≥ 2 be an integer and let f be an IDF on
P2�Pn. If there exists some k ∈ {1, 2, . . . , n − 1} such that
ak ≥ 2 and ak+1 ≥ 2, then ω(f ) ≥ n+ 2.

Proof: Observe that the restriction f ∗1 of f on {vij : 1 ≤
i ≤ 2, 1 ≤ j ≤ k} is an IDF on P2�Pk with f ∗1 (v

1
k )+ f

∗

1 (v
2
k ) =

ak ≥ 2 and the restriction f ∗2 of f on {vij : 1 ≤ i ≤ 2, k + 1 ≤
j ≤ n} is an IDF on P2�Pn−k with f ∗2 (v

1
k+1) + f ∗2 (v

2
k+1) =

ak+1 ≥ 2. Using Lemma 3, we have ω(f ) = ω(f ∗1 )+ω(f
∗

2 ) ≥
(k + 1)+ (n− k + 1) = n+ 2, as desired. �
The proof of the next result is similar to the proof of

Lemma 4 and therefore omitted.
Lemma 5: Let n ≥ 3 be an integer and let f be an IDF

on P2�Pn. If there exist integers k, l ≥ 1 such that ak ≥ 2,
ak+l+1 ≥ 2 and

∑l
i=1 ak+i ≥ l − 1, then ω(f ) ≥ n+ 1.

Lemma 6: Let n ≥ 3 be an integer and let f be an IDF on
P2�Pn. If there exists some k ∈ {1, 2, . . . , n − 2} such that
ak ≥ 2, ak+1 ≥ 1 and ak+2 ≥ 1, then ω(f ) ≥ n+ 1.

Proof: Suppose that there exists some k ∈ {1, 2, . . . ,
n− 2} such that ak ≥ 2, ak+1 ≥ 1 and ak+2 ≥ 1. If ak+1 ≥ 2
or ak+2 ≥ 2, then by Lemma 4 or 5, we haveω(f ) ≥ n+1. So
in the following we may assume that ak+1 = ak+2 = 1. By
symmetry, we may assume that one of the following holds:
(a) f (v1k+1) = f (v2k+2) = 1 and f (v2k+1) = f (v1k+2) = 0.
(b) f (v1k+1) = f (v1k+2) = 1 and f (v2k+1) = f (v2k+2) = 0.
Noting that ak ≥ 2, it is easy to check that the restriction

f ∗1 of f on {vij : 1 ≤ i ≤ 2, 1 ≤ j ≤ k} is an IDF on P2�Pk
with f ∗1 (v

1
k ) + f ∗1 (v

2
k ) = ak ≥ 2 and hence by Lemma 3,

ω(f ∗1 ) ≥ k + 1.
Suppose that (a) holds. Observe that the restriction f ∗2 of f

on {vij : 1 ≤ i ≤ 2, k + 1 ≤ j ≤ n} is an IDF on P2�Pn−k
and hence by Proposition D, ω(f ∗2 ) ≥ n − k , implying that
ω(f ) = ω(f ∗1 )+ ω(f

∗

2 ) ≥ (k + 1)+ (n− k) = n+ 1.
Suppose that (b) holds. Obviously, f (v2k+3) ≥ 1. Then the

restriction f ∗3 of f on {vij : 1 ≤ i ≤ 2, k + 2 ≤ j ≤ n} is
an IDF on P2�Pn−k−1 and hence by Proposition D, ω(f ∗3 ) ≥
n − k − 1, implying that ω(f ) = ω(f ∗1 ) + ω(f

∗

3 ) + ak+1 ≥
(k + 1) + (n − k − 1) + 1 = n + 1, which completes the
proof. �
Lemma 7: Let n ≥ 4 be an integer and let f be an IDF on

P2�Pn. If there exists some k such that ak = 1, ak+1 = 0 and
ak+2 = 4, then ω(f ) ≥ n+ 1.

Proof: Since ak = 1, we may assume that f (v1k ) = 1
and f (v2k ) = 0 by symmetry. Noting that ak+2 = 4, we have
f (v1k+2) = f (v2k+2) = 2. Observe that the function g defined
by g(v2k+1) = 1, g(v2k+2) = 0, g(v2k+3) = max{1, f (v2k+3)}
and g(x) = f (x) otherwise, is an IDF on P2�Pn with ω(g) ≤
ω(f ). Furthermore, we have g(v1k ) + g(v2k ) = g(v1k+1) +
g(v2k+1) = 1 and g(v1k+2)+ g(v

2
k+2) = 2, and so by symmetry

and Lemma 6, ω(f ) ≥ ω(g) ≥ n+ 1, as desired. �
Lemma 8: Let n ≥ 3 be an integer and let f be a

γI (P2�Pn)-function. If there exists some k ≥ 2 such that
ak = 1 and ak+1 = 0, then n ≥ k + 5.

Proof: By symmetry, it suffices to show that if there
exists some k ≥ 2 such that f (v1k ) = f (v1k+1) = f (v2k+1) =
0 and f (v2k ) = 1, then n ≥ k + 5. To Italian dominate

the vertices v1k+1, v
2
k+1, we must have f (v1k+2) = 2 and

f (v2k+2) ≥ 1. If f (v2k+2) = 2, then the function g1 defined
by g1(v1k+1) = g1(v2k+2) = 1, g1(v1k+2) = 0, g1(v1k+3) =
max{1, f (v1k+3)} and g1(x) = f (x) otherwise, is an IDF
on P2�Pn with ω(g1) ≤ ω(f ) − 1, a contradiction. Thus
f (v2k+2) = 1.
Claim 4: f (v1k+3) = f (v2k+3) = 0.

Proof of Claim 4: If n = k + 2, then Lemma 3 implies that
ω(f ) ≥ n + 1, a contradiction to Proposition D. Therefore,
n ≥ k + 3. Note that ak+2 = 3. If ak+3 ≥ 2, then
by Lemma 4, we have ω(f ) ≥ n + 2, a contradiction to
Proposition D. If ak+3 = 1, then the function g2 defined
by g2(v1k+1) = 1, g2(v1k+2) = 0, g2(v1k+3) = f (v1k+3) + 1
and g2(x) = f (x) otherwise, is also a γI (P2�Pn)-function
with g2(v1k+1) + g2(v2k+1) = g2(v1k+2) + g2(v2k+2) = 1
and g2(v1k+3) + g2(v2k+3) = 2, and hence by symmetry and
Lemma 6, ω(f ) = ω(g2) ≥ n + 1, a contradiction to
PropositionD. Thuswe have ak+3 = 0, implying that Claim 4
is ture.
Claim 5: f (v1k+4) = 0 and f (v2k+4) = 1.

Proof of Claim 5: Recall that ak+2 = 3. If ak+4 ≥ 2,
then by Lemma 5, we have ω(f ) ≥ n + 1, a contradiction
to Proposition D. Therefore, ak+4 ≤ 1. Moreover, since
f (v2k+2) = 1 and f (v1k+3) = f (v2k+3) = 0, f (v2k+4) ≥ 1. As
a result, we have f (v2k+4) = 1 and f (v1k+4) = 0. Claim 5
follows.
Since f (v1k+3) = f (v1k+4) = 0 and f (v2k+4) = 1 by

Claims 4 and 5, this forces f (v1k+5) ≥ 1, implying that
n ≥ k+5, establishing the desired lower bound. The proof is
completed. �
Nowwe are ready to state themain result of this subsection.
Theorem 8: For any integer n ≥ 3,

rI (P2�Pn) =


3, if n = 4,
2, if 3 ≤ n ≤ 9 and n 6= 4,
1, if n ≥ 10.

Proof: By a tedious check, we can verify that
rI (P2�P4) = 3. If n ≥ 10, then the function h1 defined by

h1(vij) =


1, if i = 1 and j = 1, or i = 1 and j ≥ 7 is odd,

or i = 2 and j 6= 8 is even,
2, if i = 1 and j = 4,
0, otherwise,

is an IDF on P2�Pn + {v14v
2
8} and so ω(h1) = n − 1 <

γI (P2�Pn) by Proposition D, implying that the set {v14v
2
8} is

an IR-set of P2�Pn and so rI (P2�Pn) = 1. If 3 ≤ n ≤ 9 and
n 6= 4, then the function h2 defined by

h2(vij) =


1, if i = 1 and j ≥ 4 is even,

or i = 2 and j ≥ 5 is odd,
2, if i = 1 and j = 2,
0, otherwise,
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is an IDF on P2�Pn + {v12v
2
1, v

1
2v

2
3} and so ω(h2) = n −

1 < γI (P2�Pn) by Proposition D, implying that the set
{v12v

2
1, v

1
2v

2
3} is an IR-set of P2�Pn and hence rI (P2�Pn) ≤ 2.

It remains to show that if 3 ≤ n ≤ 9 and
n 6= 4, then rI (P2�Pn) ≥ 2. Suppose, to the contrary,
that rI (P2�Pn) = 1. By Theorem 1, there must exist a
γI (P2�Pn)-function f = (V0,V1,V2) and a vertex v ∈ V1
satisfying one of the conditions (i) and (ii) in Theorem 1. For
each 1 ≤ j ≤ n, we let aj = f (v1j )+ f (v

2
j ).

Suppose now that (i) holds. Without loss of generality,
assume that there exists some k such that one of the following
holds: (a) f (v1k ) = f (v2k ) = 1, f (v1k−1) = f (v1k+1) = 0,
f (v1k−2)+f (v

2
k−1) ≥ 2 and f (v2k+1)+f (v

1
k+2) ≥ 2. (b) f (v1k ) =

f (v1k+1) = 1, f (v2k+1) = f (v1k+2) = 0, f (v2k ) + f (v2k+2) ≥ 2
and f (v2k+2)+ f (v

1
k+3) ≥ 2.

Assume first that (a) is true. If n = k , then an = 2 and
hence by Lemma 3, we have ω(f ) ≥ n + 1, a contradic-
tion to Proposition D. Thus n > k . Noting that ak = 2,
if f (v2k+1) = 0, then ak+2 ≥ 2 and hence by Lemma 5,
ω(f ) ≥ n + 1; if f (v2k+1) = 1, then f (v1k+2) ≥ 1 since
f (v2k+1)+ f (v

1
k+2) ≥ 2, and hence by Lemma 6, ω(f ) ≥ n+1;

and if f (v2k+1) = 2, then by Lemma 4, ω(f ) ≥ n+ 2. In each
case, we have a contradiction to Proposition D.
Assume second that (b) is true. If n = k + 1, then

f (v2n−1) = 2 since f (v2k )+ f (v
2
k+2) ≥ 2, implying that the

restriction f ∗1 of f on V (P2�Pn)\{v1n, v
2
n} is an IDF on

P2�Pn−1 and so by Lemma 3, ω(f ) = ω(f ∗1 ) + 1 ≥ n + 1,
a contradiction to Proposition D. Thus n > k + 1. Note that
ak ≥ 1 and ak+1 = 1. If f (v2k+2) = 2, then by symmetry
and Lemma 6, we have ω(f ) ≥ n + 1, a contradiction to
Proposition D. Suppose that f (v2k+2) = 1. Since f (v2k ) +
f (v2k+2) ≥ 2, f (v2k ) ≥ 1 and so ak ≥ 2. Moreover, since
ak+1 = ak+2 = 1, we have ω(f ) ≥ n + 1 by Lemma 6,
a contradiction to Proposition D. Hence we may assume
that f (v2k+2) = 0. Moreover, since f (v2k+2) + f (v1k+3) ≥ 2
(resp., f (v2k+1) = f (v1k+2) = 0), we have f (v1k+3) = 2 (resp.,
f (v2k+3) = 2). Noting that ak+1 = 1, ak+2 = 0 and ak+3 = 4,
it follows from Lemma 7 that ω(f ) ≥ n + 1, a contradiction
to Proposition D.
Suppose next that (ii) holds. Then V2 6= ∅. Without

loss of generality, assume that there exists some k such
that f (v1k ) = 1, f (v1k−1) = f (v2k ) = f (v1k+1) = 0,
f (v1k−2) + f (v2k−1) ≥ 2, f (v2k−1) + f (v2k+1) ≥ 2 and
f (v2k+1)+ f (v

1
k+2) ≥ 2.

Assume that k = 1 (the case k = n is similar). Then
clearly f (v22) = 2. Observe that the restriction f ∗2 of f on
V (P2�Pn)\{v11, v

2
1} is an IDF on P2�Pn−1 and hence by

Lemma 3, ω(f ) = ω(f ∗2 ) + 1 ≥ n + 1, a contradiction to
Proposition D. Consequently, we have k ∈ {2, 3, . . . , n− 1}.
Assume first that f (v2k+1) = 0 (the case f (v2k−1) = 0

is similar). Moreover, since f (v2k ) = f (v1k+1) = 0 (resp.,
f (v2k+1) + f (v1k+2) ≥ 2), this forces f (v2k+2) = 2 (resp.,
f (v1k+2) = 2). Noting that ak = 1, ak+1 = 0 and ak+2 = 4,
it follows from Lemma 7 that ω(f ) ≥ n + 1, a contradiction
to Proposition D.

Assume second that f (v2k+1) = 2 (the case f (v2k−1) = 2 is
similar). Recall that ak = 1 and ak+1 = 2. If f (v2k−1) ≥ 1,
then ak−1 ≥ 1 and so by symmetry and Lemma 6, ω(f ) ≥
n+1, a contradiction to Proposition D. Hence wemay assume
that f (v2k−1) = 0. Moreover, since f (v1k−2)+f (v

2
k−1) ≥ 2, this

forces f (v1k−2) = 2. Noting that ak−2 ≥ 2, ak−1+ak = 1 and
ak+1 = 2, we conclude from Lemma 5 that ω(f ) ≥ n + 1,
a contradiction to Proposition D.

Now we consider the last case that f (v2k−1) = f (v2k+1) = 1.
Moreover, since f (v2k+1) + f (v1k+2) ≥ 2, this forces
f (v1k+2) ≥ 1. Note that ak = ak+1 = 1. If ak+2 ≥ 2, then
by symmetry and Lemma 6, we have ω(f ) ≥ n + 1, a con-
tradiction to Proposition D. Thus we have ak+2 = f (v1k+2)+
f (v2k+2) ≤ 1, implying that f (v1k+2) = 1 and f (v2k+2) = 0.
By symmetry, we obtain f (v1k−2) = 1 and f (v2k−2) = 0. This
implies that k ≥ 3.

We proceed to show that aj = 1 for each j ≤ k − 3 and
j ≥ k + 3 by induction on j. By symmetry, it suffices to show
that aj = 1 for each j ≥ k + 3.
Assume that j = k + 3. Recall that ak+1 = ak+2 = 1.

If ak+3 ≥ 2, then by symmetry and Lemma 6, we haveω(f ) ≥
n+1, a contradiction to Proposition D. Noting that ak+2 = 1,
if ak+3 = 0, then by Lemma 8, n ≥ (k + 2) + 5 ≥ 10
since k ≥ 3, a contradiction to the assumption that n ≤ 9.
Therefore, we obtain ak+3 = 1. Assume that the result holds
for all k + 3 ≤ j′ < j.
Note that ak+2 = 1 and if k + 3 ≤ j′ < j, then by the

induction hypothesis, aj′ = 1. If aj ≥ 2, then by symmetry
and Lemma 6,ω(f ) ≥ n+1, a contradiction to Proposition D;
and if aj = 0, then by Lemma 8, we have n ≥ (j− 1)+ 5 =
j + 4 > (k + 3) + 4 ≥ 10 since k ≥ 3, a contradiction to
the assumption that n ≤ 9. As a result, aj = 1. Therefore,
we have aj = 1 for each j ≤ k − 3 and j ≥ k + 3. Recall
that aj = 1 for each k − 2 ≤ j ≤ k + 2. This implies that
V2 = ∅, a contradiction to (ii). Therefore, we have that if 3 ≤
n ≤ 9 and n 6= 4, then rI (P2�Pn) ≥ 2, which completes our
proof. �

IV. CONCLUSION
As a variation of domination, the Italian domination was
introduced by Chellali et al. [10], where it was called Roman
{2}-domination. This paper initiate the study of Italian rein-
forcement number in graphs. We give some sharp bounds on
the Italian reinforcement number and we also determine exact
values of Italian reinforcement number of several special
graph classes including paths, cycles, complete multipartite
graph and ladders.
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