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ABSTRACT This paper is concerned with the synchronization of memristor-based chaotic system subject
to actuator saturation via variable impulsive control. Firstly, a memristor-based circuit model is considered,
and an impulsive controller subject to actuator saturation is designed. Based on the Lyapunov stability
theory and some inequality techniques, some sufficient conditions are derived to guarantee the asymptotic
synchronization of the memristor-based chaotic systems. Compared with the common fixed impulsive
control, the variable impulsive control used in this paper is more reliable in practical application. Finally,
the numerical simulations are given to verify the effectiveness of the proposed method.

INDEX TERMS Synchronization, memristor-based chaotic system, variable impulsive control, actuator
saturation.

I. INTRODUCTION
The memristor was first postulated as the fourth circuit com-
ponent by Leon O. Chua in 1971 [1]. It replaces other more
familiar circuit elements, such as resistors, capacitors and
inductors. However, until a team of scientists at HP Labs
announced that they had built a prototype memristor in 2008,
the great discovery did not attract scientists’ attention [2].
Since then, it has been widely studied in theory and appli-
cation. Itoh and Chua as well as Muthuswamy and Kokate
proposed some memristor-based circuits [3], [4]. In the last
five years, memristor-based system has been widely studied
by many scholars [5]–[12]. Reference [5] studied a kind of
inertia neural network (Minn) based on memristor with exter-
nal input and output. Reference [6] used nonsmooth analysis
and control theory to deal with chaotic neural network based
onmemristor with discontinuous right hand side. In [7], a new
neural network with time-varying delay based on complex
memristor was proposed and its exponential stability was
discussed. A novel memristor chaotic circuit was proposed
in [8], which was derived from classical Chua’s circuit by
replacing Chua’s diode with a first-order memristor diode
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bridge. In [9], a novel Chua’s hyperchaotic circuit based on
five-order dual memristors was introduced. In [10], a control
strategy for extreme multistability exhibited in an active band
pass filter-based memristive circuit was explored in flux–
charge domain. Reference [11] investigated extreme multi-
stability and its controllability for an ideal voltage-controlled
memristor emulator-based canonical Chua’s circuit. Some
unrevealed features of a newly introduced megastable chaotic
oscillator was investigated in [12], and a novel fuzzy-based
robust and adaptive control method was designed to control
this oscillator. In [13], two ideal memristor simulators and
the fifth order memristor Chua’s circuit based on them were
analyzed from a new perspective of flux and charge.

In recent years, the synchronization problem of chaotic
systems has attracted extensive attention [14]–[18]. So far,
many different methods have been proposed to solve the
synchronization problem of memristor-based chaotic sys-
tems, such as pinning control [19], adaptive control [20],
sliding mode control [21], finite-time control [22], etc. Com-
pared with continuous control method, the impulsive control
method based on impulsive differential equation can reduce
the state information transmission load greatly, where the
state information between the master and slave chaotic sys-
tems is transmitted only at impulsive instants. It is obviously
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that the impulsive controlmethod has high robustness and low
control cost in practical applications [23]–[25].

In the actual control system, the controller mostly drives
the controlled object through the actuator. Due to the phys-
ical limitation of the actuator, the control input cannot be
arbitrarily large. On the other hand, if the actuator satu-
ration is not considered in the designing of control sys-
tem, the system performance will be deteriorated, such as
causing hysteresis, overshoot, increase of adjustment time,
increased oscillation, etc., and even lead to system insta-
bility [26]–[28]. Because of the importance of saturation,
there have been many achievements on actuator saturation
of chaotic systems in recent years [29]–[31]. For example,
the synchronization of chaotic systems with unknown con-
trol direction subject to input saturation nonlinearity was
studied in [29]. In [30], the stabilization of actuators satu-
ration in uncertain chaotic systems was investigated by an
adaptive PID control method. The prescribed performance
adaptive neural network synchronization was researched for
a class of unknown chaotic systems subject to input sat-
uration in [31]. However, there are few works about the
actuator saturation of memristor-based chaotic circuits. For
example, Reference [32] investigated the H∞ control design
for memristor-based neural networks (MNNs) in the pres-
ence of actuator saturation and external disturbance. Note
that the above literatures adopted the continuous control
methods. Due to the high robustness and low control cost
of the impulsive control, it is necessary to explore the
synchronization problem of master-slave memristor-based
systems.

In the literature on impulsive synchronization of chaotic
systems with master and slave memristors, some impor-
tant issues have been investigated, such as time-delayed in
memristor-based chaotic systems [33], TS fuzzy model [34],
pinning impulsive control [35], finite-time synchroniza-
tion [36], etc. It should be noted that the impulsive control
schemes proposed in the above literatures were carried out
at fixed impulsive instants. However, in practical applica-
tions, due to hardware constraints and disturbance, the sys-
tem cannot accurately be imposed at the expected impulsive
instants, and there will be deviation between the expected
instants and the actual occurrence instants [37]–[39]. For
example, we plan to input an control impulse at time instant η,
But the actuator might place the impulse in a time window
[η − υ, η + υ], where η and υ are the center and radius
of the impulsive time window respectively. This situation
obviously does not meet the theoretical synchronization con-
ditions of fixed impulsive control, thus it is important to
study the synchronization of memristor-based chaotic sys-
tems with variable impulsive control. In recent years, there
are many literatures about variable impulsive control, such
as stochastic fuzzy delayed neural networks [40], cyclic con-
trol system [41], sandwich control systems [42], a class of
stochastic systems [43], periodically control system [44],
a memristor-based lorenz circuit [45], memristor-based
chaotic system [46].

Inspired by the above discussions, the purpose of this
paper is to study the variable impulsive synchronization of
master and slave memristor-based chaotic system subject
to actuator saturation. By designing an effective variable
impulsive controller, some sufficient conditions are obtained.
The synchronization of memristor-based system with actu-
ator saturation can be realized, which is more effective in
practical application. As far as we know, there is little work
to combine variable control method with actuator saturation
of memristor-based chaotic system. It is noteworthy that this
paper adopts two types of impulsive time window methods:
left endpoint and center point. Compared with the existing
fixed impulsive control algorithms, the variable impulsive
control method adopted in this paper can allow the error at a
certain impulse input instants. Therefore, the synchronization
scheme with variable impulsive control and actuator satura-
tion is more practical in actual application.

The remainder of this paper is arranged as follows.
In Section 2, the model of master and slave memristor-based
chaotic systems is given. In Section 3, variable impul-
sive synchronization of master and slave memristor-based
chaotic systems subject to actuator saturation is analyzed.
In Section 4, the effectiveness of the main results is verified
by the numerical simulation examples. Finally, the conclusion
of this paper is drawn in Section 5.

Throughout this paper, R, Rn, Rm×n denote the real
numbers, the n-dimensional Euclidean space, the set of all
m × n real matrices respectively. λmax(ϒ) denotes the max-
imal eigenvalue of matrix ϒ . Let N = {1, 2, ...}. In is the n
dimensional identitymatrix.⊗ denote theKronecker product,
diag{d1, . . . , dn} denotes the diagonal matrix with diagonal
elements d1 to dn.

II. PROBLEM DESCRIPTION
The memristor-based chaotic circuit considered in this paper
was described in [47], [48], which is shown in Fig.1.

FIGURE 1. The memristor-based chaotic circuit.

From Fig.1, the memristor-based chaotic system can be
written as follows:

dv1(t)
dt
=

1
C1

(
v2(t)− v1(t)

R
− i(t)

)
,

dv2(t)
dt
=

1
C2

(
v1(t)− v2(t)

R
− iL(t)

)
,

diL(t)
dt
=
v2(t)
L
,

dϕ
dt
= v1(t),

(1)
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where ϕ is flux, i(t) is derived in [49],

i(t) = W (ϕ)v1(t) =
dq
dϕ

v1(t), (2)

where q is charge, W (ϕ) = dq
/
dϕ = α + 3βϕ2 is the

flux-dependent rate of change of charge.
In order to obtain the chaos generation, the parame-

ters of (1) generating chaotic dynamics are as follows:
R = 2k�,L = 15.8mH ,C1 = 6.1µF,C2 = 71µF ,
α = −0.663 ∗ 10−3 and β = 0.004 ∗ 10−3.
For convenience, let v1 = x1, v2 = x2, iL = x3,

ϕ = x4; a1 = 1
/
C1, a2 = 1

/
C2, a3 = 1

/
R, a4 = 1

/
L,

then the memristor-based chaotic system is given as
ẋ1 = a1(a3(x2 − x1)−W (x4)x1),
ẋ2 = a2(a3(x1 − x2)− x3),
ẋ3 = a4x2,
ẋ4 = x1,

(3)

which is equivalent to
ẋ1 = a1(a3(x2 − x1)− αx1 − 3βx1x24 ),
ẋ2 = a2(a3(x1 − x2)− x3),
ẋ3 = a4x2,
ẋ4 = x1.

(4)

The memristor-based chaotic circuit system in (3) can
be decomposed into linear and nonlinear parts, so one can
rewrite it as

ẋ = Ax + ψ(x), (5)

where

x = [x1, x2, x3, x4]T ,

A =


−a1(α + a3) a1a3 0 0

a2a3 −a2a3 −a2 0
0 a4 0 0
1 0 0 0

,

ψ(x) =


−3a1βx1x24

0
0
0

.
Let system (5) be the master memristor-based chaotic cir-

cuit system, and the slave system is given as

ẏ = Ay+ ψ(y), (6)

where y = [y1, y2, y3, y4]T is the state variables of the driven
system, and the synchronization error vector is defined as
e(t) = y(t)− x(t) = [e1(t), e2(t), e3(t), e4(t)]T .

The controller u(t) = [u1(t), u2(t), u3(t), u4(t)]T in (3) is
given as

u(t) = sat(Bke(tk ))δ(t − tk ), (7)

where the impulsive sequence {tk} satisfies 0 < t0 <

t1 < t2 < · · · < tk−1 < tk < · · · , lim
k→∞

tk = ∞,

lim
h→0+

x(tk + h) = x(t+k ), lim
h→0+

x(tk − h) = x(t−k ) = x(tk )

implies that x(t) is left continuous at tk , δ(t) is the Dirac delta
function and satisfies δ(t) = 0 for t 6= 0, the saturation
function sat(Bke(tk )) = (sat(b1ke1(tk )), . . . , sat(b4ke4(tk )))T

with sat(s) = sign(s) min{1, |s|}, s ∈ R, where 1 ∈ R+ is
the known saturation level, Bk = diag{b1k , . . . , b4k} is the
impulsive control gain matrix.

Subtract system (5) from (6), one gets the impulsive syn-
chronization error system{

ė = Ae+ ψ(e), t 6= tk ,
1e(tk ) = e(t+k )− e(t

−

k ) = sat(Bke(tk )), k ∈ N,
(8)

where ψ(e) = ψ(y)− ψ(x) =


−3a1β(y1y24 − x1x

2
4 )

0
0
0

.
Define a time-varying parameter hi(tk ), i = {1, 2, 3, 4} as

hi(tk ) =


1

|bikei(tk )|
|bikei(tk )| > 1,

1 |bikei(tk )| ≤ 1.
(9)

It is easy to check that hi(tk ) ∈ (0, 1] and the saturation
input in (7) can be expressed as

sat(bikei(tk )) = bikhi(tk )ei(tk ). (10)

Then one can get

sat(Bke(tk )) = (sat(b1ke1(tk )), sat(b2ke2(tk )),

sat(b3ke3(tk )), sat(b4ke4(tk )))T

= (b1kh1(tk )e1(tk ), b2kh2(tk )e2(tk ),

b3kh3(tk )e3(tk ), b4kh4(tk )e4(tk ))T

= BkH (tk )e(tk ), (11)

where H (tk ) = diag{h1(tk ), h2(tk ), h3(tk ), h4(tk )}.
In this paper, the impulsive controller is designed to syn-

chronize the slave system with the master system, i.e.,

lim
t→∞

e(t) = 0. (12)

For convenience and simplicity, all time-varying variables
in the rest of this paper will be represented without the time
parameter x , x(t), y , y(t), e , e(t).

III. MAIN RESULTS
The relationship between the impulsive radius {rk} and the
impulsive centers {τk} satisfies assumption 1, and some
important moments are shown in Fig. 2. The shaded area in
Fig. 2 represents the possible range of the actual pulse time
corresponding to the so-called pulse time window.
Assumption 1:

τ lk−1 < tk−1 < τ rk−1 < τ lk < tk < τ rk < τ lk+1 < tk+1
< τ rk+1, k ∈ N,

where τ lk = τk − rk and τ
r
k = τk + rk are the left and right

endpoints of the k-th impulsive time window respectively.
τk and rk are the center and radius of the k-th time window.
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FIGURE 2. The diagram of impulsive time window.

Theorem 1: Let � denote the chaos attractor of (3) and
|x1| ≤ M1, |x4| ≤ M2, |y4| ≤ M2. Let λk be the largest
eigenvalue of (In + BkH (tk ))T (In + BkH (tk )), and λA be the
largest eigenvalue of A+ AT . There exists the constant ε and
ξ > 1 such that

(λA + 6a1βM1M2)(τ lk+2 − τ
l
k+1)+ ln(λkξ ) < 0, (13)

then the synchronization of memristor-based chaotic circuit
system (5) and (6) can be realized with controller (7).

Proof: Choose the Lyapunov function as V (t) = eT e,
for t ∈ (tk−1, tk ],

D+V (t) = ėT e+ eT ė

= eT (A+ AT )e+ eTψ(e)+ ψT (e)e.

≤ λAeT e− 6a1β(y1y24 − x1x
2
4 )e1

= λAeT e− 6a1β(y1y24 − x1y
2
4 + x1y

2
4 − x1x

2
4 )e1

= λAeT e− 6a1βy24e
2
1 − 6α1β(x24 − y

2
4)x1e1

≤ λAeT e+ 3a1β |x1| (|x4| + |y4|)(e21 + e
2
4)

≤ (λA + 6a1βM1M2)eT e. (14)

Then (14) can be transformed into

D+V (t) ≤ (λA + 6a1βM1M2)V (t). (15)

This lead to

V (t) ≤ V ((t+k−1) exp((λA + 6a1βM1M2)(t − tk−1)). (16)

When t = tk , one can get

V (t+k ) = eT (t+k )e(t
+

k )

= eT (tk )((BkH (tk )+ In)T (BkH (tk )+ In))e(tk )

≤ λkV (tk ). (17)

For t ∈ (t0, τ l1], it follows from (16) that

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (18)

If t ∈ (τ l1, t1], from (16), one can get

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (19)

If t ∈ (t1, τ l2], from (16) and (17), it yields

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (20)

Therefore, for t ∈ (τ l1, τ
l
2], one can derive

V (t) ≤ λκ11 V (t0) exp((λA + 6a1βM1M2)(t − t0)), (21)

where κk =
{
0, t ≤ tk
1, t > tk

, k ∈ N.

In general, for t ∈ (τ lk+1, τ
l
k+2], one can attain

V (t) ≤ V (t0)λ1λ2 · · · λk−1λkλ
κk+1
k+1

× exp((λA + 6a1βM1M2)(t − t0))

≤ V (t0)λ1λ2 · · · λk−1λkλ
κk+1
k+1

× exp((λA + 6a1βM1M2)(τ lk+2 − t0))

≤ V (t0)λ1 exp((λA + 6a1βM1M2)(τ l3 − τ
l
2))

× λ2 exp((λA + 6a1βM1M2)(τ l4 − τ
l
3)) · · ·

λk−1 exp((λA + 6a1βM1M2)(τ lk+1 − τ
l
k ))

× λk exp((λA + 6a1βM1M2)(τ lk+2 − τ
l
k−1))

× λ
κk+1
k+1 exp((λA + 6a1βM1M2)(τ l2 − τ0)). (22)

From condition (13), one can get

λk exp(λA + 6a1βM1M2)(τ lk+2 − τ
l
k+1) <

1
ξ
. (23)

From (22) and (23), one can attain when t ∈ (τ lk+1, τ
l
k+2],

V (t) ≤
1
ξ k
V (t0)λ

κk+1
k+1 exp((λA + 6a1βM1M2)(τ l2 − t0)).

(24)

Since V (t0)λ
κk+1
k+1 exp((λA + 6a1βM1M2)(τ l2 − t0)) is a finite

contest, and 1
/
ξ k → 0 as k →∞. Thus the synchronization

error e(t) can globally asymptotically converges to zero. The
proof is completed. �
Remark 1: The consensus condition (13) can be trans-

formed into the following form:

1

exp((λA + 6a1βM1M2)(τ lk+2 − τ
l
k+1))λk

> ξ

That’s to say, the consensus condition is that the constraint
combination, which includes system parameters, impulsive
control gain, impulsive interval τ lk+2 − τ

l
k+1, is greater than

a finite constant ξ > 1. Therefore, the constant ξ contributes
to the recursive result (24), which shows the existence and
necessity of ξ in the consensus condition.

In the proof of Theorem 1, we discuss the interval
t ∈ (τ lk+1, τ

l
k+2], k ∈ N, i.e., the interval between two left

endpoints of the adjacent impulsive time windows. If the
interval is changed to t ∈ (τk+1, τk+2], similarly, i.e., two
centers distance of the adjacent impulsive time windows, then
we can derive the following Theorem 2.
Theorem 2: Suppose that Assumption 1 hold, if there exists

a constant ξ > 1 such that

(λA + 6a1βM1M2)(τk+2 − τk+1)+ ln(λkξ ) < 0, (25)
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where λA and λk have same definitions with Theorem 1.
Then the synchronization of memristor-based chaotic circuit
system (5) and (6) can be realized with controller (7).

Proof: Choose the Lyapunov function as V (t) = eT e,
similar to the proof of Theorem 1, i.e., (14)∼(16), for
t ∈ (tk−1, tk ], it yields

V (t) ≤ V ((t+k−1) exp((λA + 6a1βM1M2)(t − tk−1)). (26)

When V (t+k ) ≤ λkV (tk ), similar to Theorem 1, i.e., (17),
one can get

V (t+k ) ≤ λkV (tk ). (27)

For t ∈ [t0, τ1], there are three cases (see Table 1 and
Figs. 3∼5) to be considered.

TABLE 1. The possible case for t ∈ [t0, τ1].

FIGURE 3. The diagram of Case 1 for t ∈ [t0, τ1].

FIGURE 4. The diagram of Case 2 for t ∈ [t0, τ1].

� Case 1:
It follows from (26) that

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (28)

� Case 2:
It follows from (27) and (28)that

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t1 − t0))

× exp((λA + 6a1βM1M2)(t − t1))

= λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (29)

� Case 3:

FIGURE 5. The diagram of Case 3 for t ∈ [t0, τ1].

It follows from (26) that

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (30)

Therefore, from (28)∼(30), for t ∈ (t0, τ1], one can get

V (t) ≤ λκ11 V (t0) exp((λA + 6a1βM1M2)(t − t0)), (31)

where κk (k ∈ N+) has the same definition with Theorem 1.
For t ∈ (τ1, τ2], there are eight cases (see Table 2 and

Figs. 6∼13) to be considered.

FIGURE 6. The diagram of Case 1 for t ∈ (τ1, τ2].

� Case 1:
It follows from (26) and (27) that

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t1 − t0))

× exp((λA + 6a1βM1M2)(t − t1))

= λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (32)

VOLUME 7, 2019 185843
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TABLE 2. The possible case for t ∈ [τ1, τ2].

FIGURE 7. The diagram of Case 2 for t ∈ (τ1, τ2].

FIGURE 8. The diagram of Case 3 for t ∈ (τ1, τ2].

FIGURE 9. The diagram of Case 4 for t ∈ (τ1, τ2].

� Case 2:
It follows from (27) and (32) that

V (t) ≤ V (t+2 ) exp((λA + 6a1βM1M2)(t − t2))

≤ λ2V (t2) exp((λA + 6a1βM1M2)(t − t2))

≤ λ2λ1V (t0) exp((λA + 6a1βM1M2)(t2 − t0))

× exp((λA + 6a1βM1M2)(t − t2))

= λ1λ2V (t0) exp((λA + 6a1βM1M2)(t − t0)). (33)

FIGURE 10. The diagram of Case 5 for t ∈ (τ1, τ2].

FIGURE 11. The diagram of Case 6 for t ∈ (τ1, τ2].

FIGURE 12. The diagram of Case 7 for t ∈ (τ1, τ2].

FIGURE 13. The diagram of Case 8 for t ∈ (τ1, τ2].

� Case 3:
It follows from (26) and (27) that

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t1 − t0))

× exp((λA + 6a1βM1M2)(t − t1))

= λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (34)
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� Case 4:
It follows from (26) that

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (35)

� Case 5:
It follows from (27) and (35) that

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t1 − t0))

× exp((λA + 6a1βM1M2)(t − t1))

= λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (36)

� Case 6:
It follows from (27) and (36) that

V (t) ≤ V (t+2 ) exp((λA + 6a1βM1M2)(t − t2))

≤ λ2V (t2) exp((λA + 6a1βM1M2)(t − t2))

≤ λ2λ1V (t0) exp((λA + 6a1βM1M2)(t2 − t0))

× exp((λA + 6a1βM1M2)(t − t2))

= λ1λ2V (t0) exp((λA + 6a1βM1M2)(t − t0)). (37)

� Case 7:
It follows from (26) that

V (t) ≤ V (t0) exp((λA + 6a1βM1M2)(t − t0)). (38)

� Case 8:
It follows from (27) and (38) that

V (t) ≤ V (t+1 ) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t1) exp((λA + 6a1βM1M2)(t − t1))

≤ λ1V (t0) exp((λA + 6a1βM1M2)(t1 − t0))

× exp((λA + 6a1βM1M2)(t − t1))

= λ1V (t0) exp((λA + 6a1βM1M2)(t − t0)). (39)

Based on (32)∼(39), for t ∈ (τ1, τ2], one can get

V (t) ≤ λκ11 λ
κ2
2 V (t0) exp((λA + 6a1βM1M2)(t − t0)). (40)

In general, for t ∈ (τk−1, τk ], one can derive

V (t) ≤ V (t0)λ1λ2 · · · λk−2λ
κk−1
k−1 λ

κk
k

× exp((λA + 6a1βM1M2)(t − t0)). (41)

From condition (25), one can get

λk exp(λA + 6a1βM1M2)(τk+2 − τk+1) <
1
ξ
. (42)

Therefore, for t ∈ (τk+1, τk+2], k ∈ N+,

V (t) ≤ V (t0)λ1λ2 · · · λkλ
κk−1
k+1 λ

κk
k+2

× exp((λA + 6a1βM1M2)(t − t0))

≤ V (t0)λ1λ2 · · · λkλ
κk−1
k+1 λ

κk
k+2

× exp((λA + 6a1βM1M2)(τk+2 − t0))

≤ V (t0) exp((λA + 6a1βM1M2)((τ2 − t0))

× λ1 exp((λA + 6a1βM1M2)(τ3 − τ2)) · · ·

λk exp((λA + 6a1βM1M2)(τk+2 − τk+1))λ
κk−1
k+1 λ

κk
k+2

≤
1
ξ k
V (t0)λ

κk−1
k+1 λ

κk
k+2

× exp((λA + 6a1βM1M2)(τ2 − t0)). (43)

Since V (t0)λ
κk−1
k+1 λ

κk
k+2 exp((λA + 6a1βM1M2)(τ2 − t0)) is a

finite constant, and 1
/
ξ k → 0 as k →∞, Thus the synchro-

nization error e(t) can globally asymptotically converges to
zero. The proof is completed. �
Remark 2: Because λk is the largest eigenvalue of (In +

BkH (tk ))T (In + BkH (tk )), we can obtain that λk ∈ (0, 1)
always holds if bik ∈ ϒ = (−2, 1) ∪ (−1, 0) and hi(tk ) ∈
(0, 1]. One can choose suitable control gain bik ∈ ϒ to guar-
antee synchronization goal of the memristor-based chaotic
system.

IV. NUMERICAL EXAMPLES
In this section, an example is provided to verify the effective-
ness of the main results and illustrate the characteristics of the
control method.

Let the parameters be a1 = 1
6.1 ∗ 10

6, a2 = 1
71 ∗ 10

6,

a3 = 1
2000 , a4 =

1
15.8 ∗ 10

3, then one gets

A =


27 82 0 0
7 −7 14000 0
0 63 0 0
1 0 0 0

.
The estimation of the boundary of the stable region is

given by

τ lk+2 − τ
l
k+1 <

− ln(λkξ )
λA + 6a1βM1M2

, (44)

where M1 = 200,M2 = 10.
In this example, we choose the matrix Bk as

Bk =


−1.5 0 0 0
0 −1.5 0 0
0 0 −1.5 0
0 0 0 −1.5

 .
The saturation level is set to 1 = 0.25 in

this paper. The initial conditions are given by x =

[0.1253, 0.1302, 0.0924, 0.0078]T and y = [0.6787, 0.7577,
0.7431, 0.3922]T respectively. The relation between the
impulsive instant tk and left endpoint τ lk of k-th impulsive
window is shown in Fig.14. Obviously, the actual impulsive
instant tk is greater than the left endpoint instant τ lk .
The trajectories in Fig. 15 presents that the synchronization

can be realized less than 1.5ms under the proposed impulsive
controller, which shows the effectiveness of the proposed
variable impulsive control method. With the asymptotic con-
vergence of synchronization error, the control system is no
longer affected by the actuator saturation (now matrix H (tk )
become an identity matrix), which is shown in Fig. 16. The
impulsive control input is shown in Fig. 17. From Fig. 17,
one can see that the size of the impulsive control input will
not exceed 0.25 (saturation bound).
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FIGURE 14. The relation between tk and τ l
k .

FIGURE 15. Synchronization error for the result in Theorem 1.

FIGURE 16. The time-varying function hi (tk ) vs k in Theorem 1.

Now keep Bk , 1 and ξ unchanged, from (25), one can get
the center distance of two adjacent impulsive time window as

τk+2 − τk+1 <
− ln(λkξ )

λA + 6a1βM1M2
. (45)

FIGURE 17. The impulsive controller u(tk ) vs k in Theorem 1.

FIGURE 18. The relation between tk and τk .

FIGURE 19. Synchronization error for the result in Theorem 2.

The relation between the impulsive instant tk and the
distance between the central points of adjacent impulsive
time window τk is shown in Fig. 18, which shows that red
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FIGURE 20. The time-varying function hi (tk ) vs k in Theorem 2.

FIGURE 21. The impulsive controller u(tk ) vs k in Theorem 2.

nodes are distributed at both sides of black points (the central
points of impulsive time window). Fig. 19 shows that the
synchronization of the memristor-based chaotic system can
be achieved in 1ms. The corresponding curve of impulsive
controller u(tk ) and time-varying function hi(tk ) are shown in
Figs. 20 and 21 respectively.

V. CONCLUSION
This paper studies the variable impulsive synchronization
of the memristor-based chaotic system subject to actuator
saturation. The controller is provided based on the Lyapunov
analysis method. It is worth noting that the impulsive instants
are unnecessary to be fixed in this paper. The variable impul-
sive controller and actuator saturation are considered, which
is more reasonable in practical applications. Finally, two
simulation examples are given to illustrate the effectiveness
of the proposed results. It should be pointed out that future
research topics include further promotion and improvement
as well as various potential applications, mainly involving the
following aspects.

(1) The impulsive synchronization condition in this paper
is only a sufficient condition, and it is necessary to further
reduce its conservation in our future work.

(2) In practical applications, time delay is inevitable, and
how to extend the results in this paper to a more general delay
system is an important issue.

(3) For the synchronization problem in real system,
the parameters information of systems is usually unknown
to the designer. Therefore, adaptive control needs to achieve
synchronization when parameters are unknown.
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