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ABSTRACT The stacker crane is a long-and-thin structure with a large length-to-width ratio. It is difficult to
obtain a topology configuration with good period properties using traditional optimization methods. While
the mathematical model of periodic topology optimization—in which the elements’ relative densities are
selected as design variables, and mean compliance as the objective function—is established. To find a
topology configuration with a good period property, an additional constraint condition must be imported
into the mathematical model. According to the optimization criteria method, the iterative formula of design
variables is derived in the virtual sub domain. To verify the capability and availability of the proposedmethod,
periodic topology optimization of a single-mast stacker crane is investigated in this paper. The results show
that configurations with good periodicity can be obtained when the number of sub domains is varied. After
considering mean compliance and complexity, the optimal configuration has eight periods. A preliminary
lightweight design scheme is proposed based on this configuration of a stacker crane, which is a periodic
feature structure.

INDEX TERMS Periodic topology optimization, long-and-thin structures, stacker crane, variable density
method, optimization criteria method.

I. INTRODUCTION
An effective design tool, structural topology optimization,
can obtain a lighter structure than size and shape optimiza-
tion, and it has broad application prospects with regard to the
lightweight design of engineering structures [1]–[4]. There
have been many topology optimization methods presented,
including the homogenization method [5], [6], variable den-
sity method [7], [8], level set method [9], [10], evolution-
ary structural optimization method [11], [12], phase field
method [13], [14], independent continuous mapping method
[15], [16] and topological derivative method [17]. Many
international research studies have been carried out on this
topic. Yuanfang et al. [18] used topology optimization to
study a mini-electrical vehicle frame. Considering the impact
loads under multiple working conditions, a new structure was
proposed using the variable density method to meet layout
and real driving demands. The new structure is rational and
can reduce the weight of the mini-electrical vehicle frame
and improve mechanical performance. The modified P-norm
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correction method proposed by Lee et al. was used to present
maximum stress-constrained structural optimization based
on the phase field design method [19]. To overcome the
limitation of conventional P-norm methods, the lower-bound
P-norm stress curve was employed. Lightweight designs for
the L-shaped and cantilever beams were proposed for the ver-
ification of the proposed method under the condition of yield
strength constraint. The level set-based topology optimization
method proposed by Wang and Kang [9] was used to study
the design of structures with coating layers. The optimization
problem of compliance minimization was considered with a
material mass constraint. To solve the optimization problem,
the steepest descent methodwas used. Some examples in both
2D and 3D designable domains were researched to show the
effectiveness of the proposed method. The variable density
method, phase field design method, and level set method can
be used to research the topology optimization of engineering
structures. However, topology configurations with periodic-
ity are not obtained through these traditional methods.

Periodic feature structures have attracted the attention of
academic and industrial technicians with their unique struc-
tural form, excellent visual aesthetics, extensibility in array
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direction, physical versatility, and good manufacturing and
design [20]–[25]. Many topology optimization methods have
been presented to research periodic topology optimization,
including the homogenization method, evolutionary struc-
tural optimization method [26]–[29], and independent con-
tinuous mapping method [30], [31]. Huang and Xie [26]
used bidirectional evolutionary structural optimization to
research the topology optimization of periodic structures and
presented a new method. This method is widely applied
to structural periodic topology optimization problems on
cyclic-symmetry structures [27], natural frequencies [28] and
unstructured design points [29]. The topology optimization
model of the periodic structures was established by Long
and Jia using the solid isotropic material with penaliza-
tion (SIMP) method and the independent continuous map-
ping (ICM) method. This model is used to optimize the
optimal topological configuration for thermal conductive
microstructures of compositematerials [30], [31]. The stacker
crane is considered a long-and-thin structure because it has
a large length-to-width ratio. It is often difficult to obtain
a topology configuration with a good period property by
traditional topology optimization methods. The abovemen-
tioned studies provide an important basis and reference for
the topology optimization of stacker cranes.

The paper is structured as follows. First, in the second
section, we introduce the problem description of periodic
topology optimization and the material interpolation model.
In the third section, the mathematical model of periodic
topology optimization is established. The iterative formula
of the virtual sub domain can be obtained based on the
optimization criteria method. Section 4 presents the filter
function and convergence criterion. Section 5 studies finite
element analysis of a single-mast stacker crane. To verify the
capability and availability of the proposed method, periodic
topology optimization of stacker cranes is investigated in
section 6. A preliminary lightweight design scheme is pro-
posed in section 7. Final conclusions are drawn in section 8.

II. LONG-AND-THIN STRUCTURES FOR
PERIODIC DESIGN
A. PROBLEM DESCRIPTION OF PERIODIC TOPOLOGY
OPTIMIZATION
The objective of periodic topology optimization is to seek
an optimal topology configuration with good period prop-
erties. To consider the periodicity of long-and-thin struc-
tures in a given design domain, the design domain is
divided into m sub domains on the length direction, where
m denotes the number of sub domains along direction x,
as shown in Fig. 1. The number of sub domains is usu-
ally prescribed according to the length-to-width ratio of
long-and-thin structures. The conventional topology opti-
mization is considered periodic topology optimization for
m = 1. xi,j is the design variable, where i denotes the
sub domain number, and j denotes the element number in a
sub domain.

FIGURE 1. Design domain with m=3 sub domains.

B. MATERIAL INTERPOLATION MODEL IN
THE VARIABLE DENSITY METHOD
SIMP is one of the most popular material interpolation meth-
ods and was first considered by Bendsøe in 1989. This inter-
polation model is referred to as the power law or penalized,
proportional stiffness model [32]. In this paper, the relation-
ship between the modulus of elasticity after interpolation and
relative density is expressed as:

E(xi,j) = Emin + (xi,j)p(E0 − Emin) (1)

where E(xi,j) is the modulus of elasticity after interpolation,
E0 is the modulus of elasticity of the material, Emin is usually
restricted to 0.001∗E0 for the numerical stability, xi,j is the
relative density of the jth element in the ith sub domain, and
p is the penalization factor.

III. SOLVING THE PROBLEM OF PERIODIC
TOPOLOGY OPTIMIZATION
A. MATHEMATICAL MODEL OF PERIODIC
TOPOLOGY OPTIMIZATION
The objective function of periodic topology optimization is
to minimize the mean compliance of long-and-thin struc-
tures subjected to volume constraints and other factors. The
elements’ relative densities are selected as design variables.
Based on the variable density method, the mathematical
model of periodic topology optimization can be written as:

Find X = (x1,1, x1,2, x1,3, . . . , xi,j)T ∈ R

i = 1, 2, · · · ,m, j = 1, 2, · · · , n

Min C(X) =
1
2
FTU =

1
2
UTKU

=
1
2

m∑
i=1

n∑
j=1

uTi,jki,jui,j =
1
2

m∑
i=1

n∑
j=1

(
xi,j
)p uTi,jk0ui,j

s.t KU = F

V = f · V0 =
m∑
i=1

n∑
j=1

xi,j · vi,j

x1,j = · · · = xi,j = · · · xm,j
0 < xmin ≤ xi,j ≤ xmax ≤ 1 (2)

where C is the mean compliance; U and F are the displace-
ment vectors and applied load, respectively; K is the total
stiffness matrix; vi,j and ki,j are the volume and the stiffness
matrix, respectively, of the jth element in the ith sub domain;
ui,j is the nodal displacement vector of the jth element in
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the ith sub domain; and xmax and xmin are the maximum and
minimum relative density of elements, respectively.

To make each sub domain have a periodic topology config-
uration, a constraint condition is set up in the mathematical
model, which is expressed as:

x1,j = · · · = xi,j = · · · xm,j (3)

The solution method of topology optimization is generally
divided into two categories: the mathematical programming
method [33], [34] and the optimization criteria method [35],
[36]. The mathematical programming method is highly ver-
satile and can be applied to different optimization problems.
However, the number of iterations is large, and the solution
efficiency is not high. The outstanding advantage of the opti-
mization criteria method is that the convergence speed is fast,
the number of iterations is small, and it has nothing to do with
the size and complexity of the structure. The topology opti-
mization problem with simple constraints and a large number
of optimization variables has higher efficiency. Due to the
above advantages, the optimization criteriamethod is selected
as the solution method of periodic topology optimization.

B. OPTIMIZATION CRITERIA METHOD FOR PERIODIC
TOPOLOGY OPTIMIZATION
The optimization criteria formula, which consists of an objec-
tive function and constraint conditions, can be derived from
the Lagrange function [37]. The Lagrange function of the
periodic topology optimization problem can be written as:

L = C + λ1 (V − f · V0)+ λT
2 (KU − F)

+

m∑
i=1

n∑
j=1

λ3i,j(xmin − xi,j + a2i,j)

+

m∑
i=1

n∑
j=1

λ4i,j(xi,j − xmax + b2i,j)+
m−1∑
i=1

βi
(
xi,j − xi+1,j

)
(4)

where λ1,λ2, λ3i,j, λ4i,j, βi are Lagrange multipliers; λ1,
λ3i,j, λ4i,j, βi are scalars; λ2 is a column vector; and a2i,j and
b2i,j are relaxation factors.
When xi,j is taken as the extreme value x∗i,j, the Lagrange

function should satisfy the following Kuhn-Tucker
conditions:

∂L
∂xi,j
=
∂C
∂xi,j
+ λ1

∂V
∂xi,j
+ λT

2
∂ (KU)
xi,j

− λ3i,j + λ4i,j = 0

V = f · V0
F = KU
λ3i,j

(
xmin − xi,j

)
= 0 i = 1, 2, · · · ,m

λ4i,j
(
xi,j − xmax

)
= 0 j = 1, 2, · · · , n

λ3i,j > 0
λ4i,j > 0
xmin ≤ xi,j ≤ xmax

(5)

If xmin < xi,j < xmax, then:

∂L
∂xi,j
=
∂C
∂xi,j
+ λ1

∂V
∂xi,j
+ λT

2
∂ (KU)
∂xi,j

= 0 (6)

When the equation C = 1/
2U

TKU is plugged into Eq.6,
the following can be obtained:

∂L
∂xi,j
=

1
2
(
∂UT

∂xi,j
KU + UT ∂K

∂xi,j
U + UTK

∂U
∂xi,j

)

+ λ1
∂V
∂xi,j
+ λT

2

(
∂K
∂xi,j

U + K
∂U
∂xi,j

)
= 0 (7)

Using the symmetry of the stiffness matrix, Eq. 7 can be
written as:
∂L
∂xi,j
= (λT

2K + U
TK)

∂U
∂xi,j
+ λ1

∂V
∂xi,j

+

(
1
2
UT
+ λT

2

)
∂K
∂xi,j

U = 0 (8)

If λ2 is a column vector and its value is no limit. The
equation λ2 = −U is substituted with Eq.8, and then the
following can be obtained:

∂L
∂xi,j
= −

1
2
UT ∂K

∂xi,j
U + λ1

∂V
∂xi,j
= 0 (9)

When the equations ki,j = (xi,j)pk0 and V =
m∑
i=1

n∑
j=1

xi,jvi,j

are plugged into Eq.9, then:

−
p
2
(xi,j)p1uTi,jk0ui,j + λ1vi,j = 0 (10)

Usually, the design domain is divided into several elements
in which the element size is identical. Thus, element volume
vi,j in the design domain is given by:

vi,j = v0 (11)

where v0 is the volume of finite element mesh.
Then, multiply both sides by xi,j

/
p:

1
2
uTi,jki,jui,j =

λ1v0
p
× xi,j (12)

The strain energy of the jth element in the ith sub domain
is calculated by:

ci,j =
1
2
uTi,jki,jui,j (13)

Then, Eq. 12 is expressed as:

ci,j =
λ1v0
p
× xi,j (14)

Eq.14 applies to all elements in the design domain. Its
physical meaning is that the relative density is proportional
to the strain energy of the element. It is easy to find that both
sides of Eq.14 are summed simultaneously, and then

m∑
i=1

ci,j =
λ1v0
p
×

m∑
i=1

xi,j (15)
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A virtual sub domain is constructed, and the size, number,
and distribution of elements in the virtual sub domain must
be identical to each sub domain. The average strain energy of
elements in all sub domains is taken as the strain energy of
elements in the virtual sub domain, which can be formulated
as follows:

cj =
1
m

m∑
i=1

ci,j (16)

To obtain an optimal periodic topology, a constraint condi-
tion is set up. This means that the average relative density of
the jth element in all sub domains is calculated as:

xj =
1
m

m∑
i=1

xi,j = xi,j (17)

If we put Eq. 16 and Eq. 17 into Eq. 15, we obtain the
following:

cj =
λ1v0
p
× xj (18)

The physical meaning of Eq. 18 is that the relative density
is proportional to the strain energy of elements in the virtual
sub domain. It is expressed in another form as:

D(k)
j =

pcj
λ1v0xj

= 1 (19)

The iterative formula of the virtual sub domain based on
the optimality criterion method can be obtained, as follows:

x(k+1)j =


[
D(k)
j

]η
x(k)j xmin <

[
D(k)
j

]η
x(k)j < xmax

xmin

[
D(k)
j

]η
x(k)j ≤ xmin

xmax

[
D(k)
j

]η
x(k)j ≥ xmax

(20)

where η is the damping coefficient. It is generally taken as
0.5. The aim of introducing η is to ensure that optimization
results are convergent.

IV. FILTER FUNCTION AND CONVERGENCE CRITERION
A. FILTER FUNCTION
Due to the instability of numerical calculations, checker-
board patterns are often observed in the topology optimiza-
tion process. A filter function proposed by Sigmund and
Petersson in 1998 is imported to solve these checkerboard
and mesh-independent problems [38]. Huang and Xie [39]
studied convergent and mesh-independent solutions for the
BESO method. A mesh-independency filter function was
introduced into BESO to determine the addition of elements
and to eliminate unnecessary structural details below a certain
length scale in the design. Based on the filtration scheme in
reference [39], an improved filtration scheme was proposed
based on the element strain energy.

The zone �a denotes an open ball centered on element a
and with a radius of rmin. We note that all elements in the

zone are used to calculate the strain energy of element a after
filtering:

c′a =

l∑
e=1

dece

l∑
e=1

de

(21)

where c′a is the strain energy of element a after filtering; ce
is the strain energy of element e before filtering, which is ci,j
in Eqs. 13∼16 replacing the subscript symbol because i is
the sub domain number, and its value is i = 1, 2, . . . ,m;
j is the element number in a sub domain, and its value is
j = 1, 2, . . . , n. There are N = m × n elements in the entire
optimization domain. The strain energy of all the elements
in the entire optimization domain can be filtered as a whole,
and it is not necessary to distinguish each sub domain. Thus,
the subscript of the element strain energy symbol is replaced
in Eq. 21. l is the element number in zone�a. de is the weight
coefficient:

de = rmin − rea (22)

where rea is the distance from the center of each element in
the zone to the center of element a.

B. CONVERGENCE CRITERION
It is well known that if the relative error τ of the two adja-
cent optimization results is less than the given convergence
accuracy τmax = 0.001, then the periodic layout optimiza-
tion has converged. The mean compliance is selected as the
objective function of periodic topology optimization. The
relative change in the objective function is regarded as the
convergence criterion. It can be formulated as follows:

τ =

∣∣∣∣ N∑
k=1

(Ck
− Ck−1)

∣∣∣∣
N∑
k=1

Ck−1

≤ τmax (23)

In the optimization process, the relative error τ of the two
adjacent optimization results must be calculated. When the
convergence criterion shown in Eq.23 is satisfied, we propose
that xi,j is taken as the extreme value x∗i,j.

V. FINITE ELEMENT ANALYSIS OF A SINGLE-MAST
STACKER CRANE
A. THE MECHANICAL MODEL OF A SINGLE-MAST
STACKER CRANE
Single-mast stacker cranes are in their worst condition when
the pallet is fully loaded and extended to the highest position.
If a single-mast stacker crane is simplified as the mast and
bottom end rail. Other parts are equivalent to forces in the
mechanical model [40]–[42] shown in Fig. 2, as follows: H
and B are the height and wheel track of the stacker crane, and
PH is a horizontal inertia force. When the stacker crane is in
a condition of rest, the value of PH is zero; h is the distance
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FIGURE 2. Mechanical model of a single-mast stacker crane.

of top contact roller and the top of mast; b1 and b2 are the
distance of the neutral axis of the mast cross section and two
fulcrums of the bottom end rail, respectively; F is an axial
force on the top of the mast; and Pz is a horizontal force
between the mast and rollers.

B. FINITE ELEMENT MODEL OF A STACKER CRANE
Our research object is a single-mast stacker crane with a
1-ton lifting capacity Q and 8 meters of lifting height H.
The mast and bottom end rail are welded with several pieces
of steel plate of different thicknesses. The mast and bot-
tom end rail are simulated with shell element 63 for dif-
ferent thicknesses, and the material is steel Q235B. The
guide rail adopts 60×40 square steel from steel Q345. The
guide rail is simulated with beam element 188. The finite
element model of a stacker crane is established in ANSYS
shown in Fig. 3.

The constraints and loads are applied to the finite element
model according to the mechanical model shown in Fig. 2.
The bottom end rail is studied as simply a supported beam.
The most dangerous condition is when the pallet is fully
loaded at the highest position. In this case, the force con-
dition of the mast is the most unfavorable. The horizontal
force between the mast and rollers Pz and axial force on
the top of mast F can be obtained from the equilibrium
condition of mechanics. Please see the reference [41] for
the details.

The finite element analysis of a single-mast stacker crane
is implemented programmatically using the ANSYS APDL
language. Its purpose is to facilitate multiple finite element
analysis in the topology optimization process.

C. STRENGTH ANALYSIS
The stacker crane is regarded as a bidirectional bending
member. Its verifying calculation of strength is performed
using the National Standard of China GB50017-2017 Code
for Design of Steel Structures [43]. Basic allowable stress

FIGURE 3. Finite element model of a stacker crane.

FIGURE 4. Equivalent stress cloud diagram of a stacker crane.

should be met as follows:

[σ ] = 180MPa (24)

The equivalent stress cloud diagram of a stacker crane is
shown in Fig. 4. The maximum equivalent stress is 54.9 MPa,
which appears at the junction of the bottom end rail and
the mast. The maximum equivalent stress is less than the
basic allowable stress, which meets the requirements for the
strength of a stacker crane in the Code for Design of Steel
Structures. The equivalent stress of the roller action area on
the stacker crane is large, while other areas are in the low-
stress area. This shows that the stacker crane has a large
potential for weight reduction.

D. STATIC STIFFNESS ANALYSIS
There is no requirement for static stiffness of the bending
member in the Code for Design of Steel Structures. There is
no uniform standard for the static stiffness of a stacker crane.
According to design experience, the allowable value of the
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FIGURE 5. Displacement cloud diagram of a stacker crane along
direction x.

FIGURE 6. Optimization domain of a stacker crane.

FIGURE 7. Optimization curve of mean compliance, volume ratio,
maximum equivalent stress and maximum displacement along direction x
for m=8.

static deflection [f ] usually satisfies the requirement as:

[f ] =
H

2000
∼

H
1000

= 4 ∼ 8mm (25)

The displacement cloud diagram of a stacker crane along
direction x is shown in Fig. 5. The maximum displacement
along direction x is 1.085 mm, which appears at the top
of the mast. The maximum displacement is much smaller
than the allowable static deflection, which meets the design’s
empirical requirements.

FIGURE 8. Process of periodic topology optimization for m=8.

VI. PERIODIC TOPOLOGY OPTIMIZATION
OF A SINGLE-MAST STACKER CRANE
A. OPTIMIZATION DOMAIN AND PARAMETERS
OF PERIODIC TOPOLOGY OPTIMIZATION
FOR A STACKER CRANE
The optimization domain, with H1 = 7.2 m and W = 0.6
m, is in the middle of the mast frontage, as shown in Fig. 6.
The optimization domain is divided into m = 6, 8, 9 and
12 sub domains by partitions for Hz = 1.2 m, 0.9 m, 0.8 m
and 0.6 m, respectively. The bottom end rail and other areas
of the mast are non-optimization domains. Periodic topology
optimization of the stacker crane is conducted based on the
variable density method, in which elements’ relative densities
are selected as design variables and mean compliance is
selected as the objective function under volume constraints.
The modulus of elasticity of material and Poisson’s ratio of
material are E0 = 210 GPa and v = 0.3. The penalization
factor and volume ratio are p = 3 and f = 35%, respectively.
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FIGURE 9. Optimal topology of a stacker crane for m=8.

The filtering radius and initial value of the design variable are
rmin = 0.04 m and X (0)

= (1, 1, · · · , 1)Tm×n.

B. PERIODIC TOPOLOGY OPTIMIZATION OF
A STACKER CRANE FOR m=8
Fig. 7 shows the optimization curve of mean compliance C ,
volume ratio f , maximum equivalent stress and maximum
displacement along direction x for m = 8. The mean com-
pliance increases slowly as the volume ratio decreases stably.
After 60 iterations, the volume ratio reaches 35%. Addition-
ally, mean compliance varies from 1.777 N.m to 5.465 N.m.
The maximum equivalent stress increases from 54.9 MPa to
69.3 MPa, and the maximum displacement along direction x
ranges from 1.085 mm to 1.431 mm. The strength and static
stiffness of the stacker crane still meet the requirements for
the strength of a stacker crane in the Code for Design of Steel
Structures and empirical design.

To distinctly express the process of periodic topology opti-
mization, certain parts of the stacker crane are amplified.
Fig. 8 shows the process of periodic topology optimization
for m = 8, and Fig. 8f is the optimal periodic topology
configuration. All elements with relative densities greater
than 0.1 are displayed. Two holes appear simultaneously in
each sub domain, which is a good period property. With the
number of iterations increasing, some holes increase gradu-
ally or merge together. After the 35th iteration, the number
of holes in each sub domain does not change, which means
that the main body of optimal topology is forming. Until
periodic topology optimization is complete, a similar trussed
topology configuration is obtained, which has good period-
icity. Fig. 8 shows the optimal topology of a stacker crane
for m = 8, which is displayed entirely. Fig. 9a is the stereo
view of the optimal topology, and Fig. 9b is the front view.

FIGURE 10. Optimal topology of a stacker crane for m=6.

FIGURE 11. Optimal topology of a stacker crane for m=9.

The optimal topology is composed of eight upside-down ‘M’
shapes, which satisfy the defined periodic conditions.

C. PERIODIC TOPOLOGY OPTIMIZATION OF A STACKER
CRANE FOR m=6, 9, 12
Fig. 10, Fig. 11 and Fig. 12 show the optimal topologies of a
stacker crane for m = 6, 9, and 12, respectively. The optimal
topology form = 6 is presented as six ‘M’ shapes, which have
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FIGURE 12. Optimal topology of a stacker crane for m=12.

FIGURE 13. Curve of mean compliance, iteration number, maximum
equivalent stress, and maximum displacement along direction x with sub
domain number in the optimal topology.

a good period property. The optimal topology for m = 9 is
more complicated than the optimal topology for m = 6 and
8. The optimal topology for m = 12 is composed of 12 ‘X’
shapes. As the number of sub domains increases, different
optimal topology configurations can be similarly obtained.
This is mainly due to the change in the length-width ratio in
the sub domain.

D. FINAL OPTIMAL TOPOLOGY OF A STACKER CRANE
Fig. 13 shows the curve of mean compliance C , itera-
tions k , maximum equivalent stress and maximum displace-
ment along direction x with the sub domain number in the
optimal topology. When the sub domain numbers are
6 and 12, the maximum displacements along direction x are
15.12 mm and 13.52 mm, respectively, which do not satisfy
the requirement for the static stiffness of a stacker crane.

FIGURE 14. Equivalent stress cloud diagram of a stacker crane after
optimization for m=8.

FIGURE 15. Displacement cloud diagram of a stacker crane along
direction x after optimization for m=8.

The equivalent stress cloud diagram of a stacker crane after
optimization for m = 8 is shown in Fig. 14. The maximum
equivalent stress after optimization is 69.3 MPa. It is still
smaller than the basic allowable stress, which meets the
requirements for the strength of a stacker crane in theCode for
Design of Steel Structures. The displacement cloud diagram
of a stacker crane along direction x after optimization for
m = 8 is shown in Fig. 15. The maximum displacement along
direction x is 1.431 mm. It is still smaller than the allowable
static deflection, which meets the design’s empirical require-
ments. By considering mean compliance and the complexity
of optimal topology configuration further, the optimal topol-
ogy for m = 8 is the final optimal topology of periodic
topology optimization for a stacker crane.

VII. LIGHTWEIGHT DESIGNS FOR THE
STACKER CRANE
A preliminary lightweight design scheme is proposed based
on the final optimal topology of the stacker crane, which
is a periodic feature structure, as shown in Fig. 16.

186560 VOLUME 7, 2019



H.-Y. Jiao et al.: Periodic Topology Optimization of a Stacker Crane

FIGURE 16. A preliminary lightweight design scheme for the stacker.

FIGURE 17. Process plan of sub domains.

The optimization domain is divided into eight by partitions.
Each part has triangular form holes, and three corners of the
hole are rounded off, as shown in Fig. 17.

VIII. CONCLUSION
In this paper, a method for periodic topology optimization of
long-and-thin structures has been presented using the vari-
able density method. The mathematical model of periodic
topology optimization, in which elements’ relative densities
are selected as design variables and mean compliance as
the objective function, has been established. An additional
periodic constraint has been added to the mathematical model
to ensure that the structure comprises a prescribed number
of identical sub domains. The iterative formula of the virtual
sub domain can be obtained based on the optimization criteria
method.

To verify the capability and availability of the proposed
method, periodic topology optimization of a single-mast
stacker crane was investigated. The results show that a similar
trussed topology configuration is obtained, which has good
periodicity. As the number of sub domains increases, dif-
ferent optimal topology configurations with periodicity can
be obtained likewise. This is mainly due to the change in
the length-width ratio in the sub domain. By considering the
mean compliance and complexity of the optimal topology
configuration, the optimal topology for m = 8 is the final
optimal topology of periodic topology optimization for the
stacker crane.

A preliminary lightweight design scheme is proposed
based on the final optimal topology of a stacker crane, which
is a periodic feature structure.
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