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ABSTRACT The ‘false-negative’ and ‘false-positive’ outcomes of the 0-1 test for chaos in continuous
dynamical systems are described and analyzed in this paper. First, typical false outcomes of the 0-1 test
for chaos are illustrated through several numerical examples of the solutions of chaotic continuous systems.
Those examples are based on computation of the K values in the 0-1 test (0 ≤ K ≤ 1) for a selection
of two parameters, namely the dt , output step in the numerical solver, and the T value (integer denoting
the step of the output sample selection). The central role in the ‘false-negative’ outcome is played by the
oversampling phenomenon in the 0-1 test, while the ‘false-positive’ results are possible for a complicated
periodic signal having a spectrum with multiple frequencies. Analyzing the spectra of the signals is the key
method to avoid the false outcomes and also an important tool in the process of reconstructing of chaotic
attractors from the time series signals. The correct computing process for continuous dynamical systems and
selection of the parameters dt and T depend on the analyzed system (dynamical model) and should always
be preceded (or combined with) the frequency analysis of the examined signals. The computation of special
multi-parameter (n−parameter; n ≥ 2) bifurcation diagrams for the 0-1 test should, in most cases, be done
by parallel computing, since, obtaining one such multi-parameter bifurcation diagram in practice requires
solving of the underlying mathematical model (system of ODEs) millions of times.

INDEX TERMS Oscillatory chaotic and periodic circuits and systems, the 0-1 test for chaos, bifurcation
diagrams, oversampling, reconstruction of chaotic attractors.

I. INTRODUCTION: THE 0-1 TEST FOR CHAOS
The relatively new 0-1 test for chaos continues to interest
more and more researchers dealing with various continu-
ous and discrete oscillatory dynamical systems. The area
of possible application of the test is quite wide, from engi-
neering systems through financial markets, industry man-
ufacturing processes, transportation systems, atmospheric
signal analysis and weather prediction, biology, chemistry,
medicine to energy harvesting. Typical continuous systems
being tested with the 0-1 test are the well-known Lorenz,
Rössler, Lü and Chua systems or circuits, oscillatory mem-
ristor and arc circuits, mechanical systems, stock market,
chaotic plasma, epilepsy and traffic models, laser systems,
interactions in industrial production models, experimental
data and others [1]–[14]. The test can be applied to a time
series obtained, for example, from an experiment, even when
a mathematical model is unknown [15]. The reliability of the
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0-1 test has been questioned in [16] for the cases of edge
of chaos, weak chaos and 1/f α noise in which the 0-1 test
for chaos may misclassify the signals. Apart from these
border-like cases, in certain scenarios, the 0-1 test for chaos
may give a ‘false-negative’ outcome and a chaotic system or
signal is classified as a periodic one [17], [18]. On the other
hand, it is also possible to obtain a ‘false-positive’ outcome,
when a periodic signal is classified as a chaotic one. Both
of such cases are, obviously, undesirable and lead to wrong
conclusions.

In this paper we illustrate the false outcomes, focus on the
‘false-negative’ ones, and answer the question: what should
be done to avoid those undesirable outcomes? The answer
is surprisingly simple and an appropriate way of handling
the 0-1 test is to implement the well-known discrete Fourier
transform to identify the maximum frequency of the chaotic
signal or time series. Our analysis applies to the following
scenarios. First, we assume that a mathematical model of a
continuous dynamical process is available in the form of a
system of ordinary differential equations (ODEs). The system
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TABLE 1. Results of 0-1 test for Lorenz system: σ = 10, ρ = 28,
β = 8/3 [19].

is solved be a numerical solver with constant or variable
step size and an output is created at uniform spacing, say
0, dt, 2dt, 3dt, . . . . Besides the dt value, another important
parameter, T , a positive integer, plays a crucial role when
using the 0-1 test: from all possible output values we select
every T sample and the new sequence of discrete values is
tested by the 0-1 test for chaos. An example of such a case
obtained for electric arc circuits via numerical solutions in
Matlab with the options feature is given in [19].

II. PROBLEMS WITH USING THE 0-1 TEST FOR CHAOS
Problems with using the 0-1 test in the cases of edge of
chaos, weak chaos and stochastic noise are well-reported
in the literature, see, for example [16], and those with the
oversampling phenomenon in [18], [19]. The later issue is
related to the dt step size and another parameter T , which
is a specially chosen integer, preventing the oversampling
phenomenon to occur. This paper presents an extension of
some results from [19], in which the data shown in Table 1 has
been described in details. The numbers are the K values
obtained by using the 0-1 test for chaos for the chaotic Lorenz
system with parameters σ = 10, ρ = 28 and β = 8/3. The
numbers written in red indicate erroneously a periodic system
(K is close to 0), while those in black (and bold) correctly
identify the Lorenz system as a chaotic one (K close to 1).
Notice the peculiar combination of the dt and T values for
the incorrect and correct outcomes of the 0-1 test for chaos.
Also, paper [18] includes examples when a periodic signal
with multiple frequencies in its spectrum can be erroneously
classified as a chaotic with the K parameter from the 0-1 test
being close to 1. Thus, when the oversampling phenomenon
occurs, the well-known chaotic systems of Lorenz, Rössler
and Chua, may be classified as periodic by the 0-1 test, even
when other tools (i.e. Lyapunov exponents, power spectrum)
indicate otherwise. The values of K in the empty spaces
in Table 1 do not exist because of the assumed value of tspan
in 0 ≤ t ≤ tspan and the fact that 5, 000 discrete values were
used for the 0-1 test [19].
Example 1:A similar result to that presented in Table 1 but

obtained for Rössler system is illustrated in Table 2. It is

TABLE 2. Results of 0-1 test for Rössler system: a = b = 0.1, c = 14.

well-known that Rössler system is chaotic for the coeffi-
cients a = 0.1, b = 0.1 and c = 14. The K values
shown in Table 2 were obtained from the 0-1 test by using
tspan=[0:dt:32000], initial condition [-10, 0, 1], the options
feature (in the ode45 Matlab’s solver) and various dt and T
values. In addition to the ‘false-negative’ cases represented
by the K values written in red, we also marked the cases with
0.5 < K < 0.9 with regular black fonts. As in Table 1,
all values K ≥ 0.9 are written in bold (black) font.
As the next case in this example consider the chaotic arc

circuit described in Appendix A. The result of using the
0-1 test with tspan=[0:dt:10000], initial conditions [0.5, 4.0,
1.0], the options feature and various dt and T values is shown
in Table 3. The parameters of the model were L = 0.147,
C = 4.437, R = 15 and m = −2/3 for which the system
is a chaotic one (see [20]). Notice the smaller values of dt
and larger values of T used in this case compared with the
previous two cases of Lorenz and Rössler systems. The cases
with values of K highlighted in yellow and green in the three
tables are analyzed in more detail below. �

The three cases of the Lorenz, Rössler and electric arc
circuits discussed above indicate that the correct outcomes of
the 0-1 test are obtained with the proper value of the product
dt ·T . It turns out that the product dt ·T is related to the chaotic
signal’s maximum frequency. We now illustrate this fact by
analyzing the graphs in Figs. 1 and 2. The first row in Fig. 1
shows the time series, its DFT and the outcome of the 0-1 test
for the Lorenz system with dt = 0.01 and T = 2. Notice that
the maximum frequency of the signal is fmax ≈ 13 Hz and the
0-1 test yields K ≈ 0. The actual value of K is highlighted
in yellow in Table 1. The outcome is ‘false-negative’. Since
dt = 0.01, therefore fs/2 = 1/(2 · dt) = 50 Hz in this
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TABLE 3. Results of 0-1 test for electric arc circuits described by (1) in
Appendix A with L = 0.147, C = 4.437, R = 15, m = −2/3.

FIGURE 1. Results of the 0-1 test for Lorenz (first row) Rössler (middle
row) and electric arc circuits (bottom row) for selected values of dt and T .
The time series are shown in the first column (only the last 500 samples
are shown for the Rössler and arc circuit cases). The DFTs are shown in
the second column, while the graphs of Kc ’s and the final K values from
the 0-1 test (see Appendix B) are shown in the third column.

case. Also, the values of c in the 0-1 test are chosen randomly
from the interval (0, π) [1]. The ratio 13/50 translates into the
corresponding graph in the third column as (13/50)π = 0.82.
Notice from the third graph in the first row in Fig. 1 that the
Kc values (K = median[K1, . . . ,K100], c = 1, . . . , 100, [1])

FIGURE 2. Results of the 0-1 test for the electric arc circuit and selected
values of T =1700 (top), 900 (middle) and 700 (bottom). The dt = 0.001
in all three cases.

are close to 1 exactly in the interval c ∈ (0, 0.82) and they are
close to 0 in the interval c ∈ (0.82, π). Since the later interval
contain more c values than the former one, therefore the
median of all Kc values is close to 0. Thus the 0-1 test results
in the incorrect ‘false-negative’ outcome. Table 1 indicates
that for dt = 0.01 one obtains the correct outcome (that is the
values of K close to 1) for T equal 8, 12 and 16 (see the green
highlighted values in Table 1). Of course, other values of T
greater than 8, say 9, 10, 11, 13, etc. will also yield the correct
outcomes. Such cases were not analyzed in this paper. It may
also be expected that the minimum value of T guaranteeing a
correct outcome is probably equal 7.

The third row in Fig. 1 is for the electric arc chaotic system
with dt = 0.001 and T = 1700, thus fs/2 = 500 Hz.
From the second graph in the third row in Fig. 1 we obtain
fmax ≈ 500 Hz, and π fmax/(fs/2) = π . Thus, for almost all
values c ∈ (0, π) we have Kc ≈ 1, and the median value of
all those 100 values of Kc is close to 1. The 0-1 test outcome
is correct. See the yellow highlighted value of K in Table 3.
Notice that much smaller values of T in this case will also
yield a correct outcome. It follows from the first column
in Table 3 that the values of T greater or equal 700 will all
yield the correct outcome - the 0-1 test will result in K values
close to 1 (for dt = 0.001).
Finally, the second row in Fig. 1 illustrates the borderline

outcome of the 0-1 test for the Rössler system. The dt = 0.4,
yielding fs/2 = 1.25 Hz. The second graph in the middle
row in Fig. 1 shows that while the maximum frequency
of the analyzed signal is close to 1.25 Hz, in the interval
(0, 1.25) Hz we have certain gaps, for example the intervals
(0, 0.1) Hz, (0.83, 0.93) Hz and others, without any frequency
components in the spectrum of that signal. The corresponding
c intervals result in Kc ≈ 0. On the other hand, for the
respective intervals of c in the third graph of the second
row for which the spectrum is non-zero we have Kc ≈ 1.
Overall, we get that median value of all the one hundred
values of Kc is approximately in the middle between 0 and 1,
as the yellow highlighted value of 0.5454 indicates in Table 2.
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Increasing the value of T for the fixed value dt = 0.4 will
result in the correct values of K from the 0-1 test, indicating
chaotic Rössler system. Those cases have their K values
highlighted in green in Table 2.

Notice the one-to-one correspondence shown in Fig. 2
between the spectrum of the analyzed signal and the intervals
where the Kc values from the 0-1 test are close to 0 or 1.
The first row in Fig. 2 is equivalent to the last row in Fig. 1.
However, different seed values of the rand generator in Mat-
lab were used in the two runs of the 0-1 test, resulting in a
slightly different sequences of the Kc values in both runs. The
outcomes of both runs are correct though, as we get K ≈ 1 in
both cases. The second row in Fig. 2 is for T = 900. Notice,
that the second graph in the second row in Fig. 2 indicates
the maximum frequency fmax = 300 Hz. This translates into
the interval (0, 0.60)π in the third graph in the second row,
where the Kc values are close to 1. The value of 0.60 comes
from fmax/(fs/2) = 300/500 = 0.60. There are no spectral
components in the frequency range (300, 500) Hz, so the
values of Kc in the corresponding interval for c, that is in
the interval (0.60, 1)π are close to 0. Overall, there are more
values of Kc close to 1 than those close to 0, so the median
value is K = 0.94, as indicated by the corresponding value
of 0.9338 in the first column in Table 3. The third row in Fig. 2
illustrates the case with T = 700, which is practically the
border line for the 0-1 test for chaos. Again, the one-to-one
correspondence between the lengths of the non-zero spectrum
interval in the second graph of the third row and the length
of the interval where the values of Kc are close to 1 in the
third graph in the third row are clearly visible. The median of
those Kc values is K = 0.86. Reducing the T value slightly
below 700 results in an incorrect outcome of the 0-1 test. For
example, for T = 600 we get K = 0.0461 (see column one
in Table 3).
Example 2: The 0-1 test has also been applied to create

two-parameter bifurcation diagrams for the electric arc circuit
as shown in Fig. 3. Those diagrams are of size 600 × 600,
that is 600 discrete values of each of the two parameters,
L and C , have been used. The ODE model of the circuit
has been solved 360, 000 times. For each pair of discrete
values of the two parameters the ODE system was solved in
the interval 0 ≤ t ≤ 10000 and the solutions were output
with the constant time step of dt = 0.001 to form various
sequences being analyzed with the 0-1 test. Notice that the
pair of parameters (L,C) = (0.147, 4.437) used in the third
case in Example 1, is inside the range of the parameters L
and C considered in this example (see Fig. 3). As in the
previous example (with the values of K close to 1 obtained
for T ≥ 700), the results shown in Fig. 3 confirm that the
excellent quality picture obtained for T = 1700 deteriorates
with the decreased T values. The outcomes of the 0-1 test for
T less than 700 are problematic, as the 0-1 test fails to identify
chaotic signals represented by the white color and K ≈ 1.
Practically, no values of K greater than 0.9 are obtained in
the diagrams shown in Figs. 3(d)-3(f). �

III. PRACTICAL HINTS FOR THE USE OF
0-1 TEST FOR CHAOS
The examples presented in the previous section, the fact that
the relatively new test 0-1 for chaos relies on the randomly
chosen parameters c ∈ (0, π) [2], and the fact that c =
2π f /fs in the 0-1 test [18], all show that there is a one-
to-one relation between the outcome of the 0-1 test and
the frequency analysis of the tested signal or solution of a
system of ODEs. The values of c, spread out uniformly in
the interval c ∈ (0, π) in the 0-1 test and work as identifiers
of the frequency components in the analyzed signal. If a
chaotic signal with spectrum f ∈ (0, fmax) is analyzed by
the 0-1 test and the output sampling rate is fs = 1/dt ,
then

• if 2π fmax/fs < π/2 (or equivalently if fs > 4fmax), then
such a chaotic signal will always result in K ≈ 0, since
the number of Kc values close to 1 is smaller than the
number of Kc values close to 0. This yields the median
K = median{Kc} ≈ 0. This is the ‘false-negative’
outcome. Those are all the cases with dt and T values
that have their corresponding K values written in the red
color (K < 0.5 in Tables 1-3). This is also the graphing
case illustrated in the first row in Fig. 1 (solution of the
Lorenz system with dt = 0.01 and T = 2). All such
cases are commonly referred to as the oversampling
cases of the 0-1 test.

• if fs < 4fmax , then the 0-1 test for chaos will yield a
correct result, that is K ≈ 1 for a chaotic signal. This
case is illustrated by all the cases with dt and T yielding
K close to 1 in Tables 1 through 3 and by the cases
in Figs. 1 and 2 with K ≈ 1.

• if fs ≈ 4fmax , then the outcome of the 0-1 test is
problematic (or a borderline case for using the 0-1 test).
This is illustrated by those cases with dt and T yielding
K values greater than approximately 0.25 and smaller
than 0.75. See the cases illustrated by the second row
in Fig. 1 and also the third row in Fig. 2. The given
value of 0.25 and 0.75 are somewhat blurry, may be
different for different individuals, as they, in fact, depend
of subjective perception.

The above analysis gives the following practical hints
about the 0-1 test for chaos in continuous systems. When one
expect to deal with a chaotic signal, then it is advisable to
check the signal’s spectrum.

1) Continuous nature of that spectrum in a certain fre-
quency interval is the first indication of a possibility
of having a chaotic signal.

2) Second, if the continuous spectrum is, say within the
lowest frequency f0 and maximum frequency fmax ,
then, for the chosen fs = 1/dt , the length of
the corresponding c interval should be such that
1c = 2π (fmax − f0)/fs > π/2 (or equivalently
fs < 4(fmax − f0)). This will guarantee that the number
of discrete values of c with their corresponding Kc
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FIGURE 3. Two-parameter diagrams with varying L and C , various values of T and constant dt = 0.001, R = 15. Obtaining the
above and similar two-parameter diagrams of larger than 600× 600 sizes requires using parallel computation. Details of
such computation are provided in [19], [21].

values close to 1 will be more than 50% of all values
of c in the interval (0, π). This will further yield the
median to be close to 1, indicating correctly the chaotic
nature of the analyzed signal.

3) If the condition fs < 4(fmax − f0) is not satisfied,
then increasing the T value, that is creating a sig-
nal with increased value of fmax − f0 will eventually

make the condition fs < 4(fmax − f0) to be satisfied.
This concept is clearly illustrated and supported by the
data in Tables 1 through 3, and also by the graphs
in Fig. 2.

Finally, when a complex periodic signal with multi-
ple individual frequencies (the number must be more than
50 when 100 values of c are used in the 0-1 test) is
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misclassified by the 0-1 test as a chaotic one (see [18]), then
the spectrum of such a periodic signal has a different nature -
is not continuous as in the chaotic case - therefore a spectrum
analysis should be sufficient to identify the false outcome of
the 0-1 test.

IV. CONCLUSION
We have analyzed possibilities of false outcomes of the 0-1
test for chaos and presented practical hints to avoid such
outcomes. The recommended steps are based on using DFTs
of the analyzed signal to establish the range of its spectrum.
Such a range is further used to identify a proper combination
of two parameters, dt and T , that are crucial in a creation of
time series sequences tested by the 0-1 test. This confirms,
once again, that while the 0-1 test is simple, it can rarely be
used alone in testing oscillatory circuits, systems and signals.

Another conclusion one can draw, based on a visual
inspection of the diagrams in Fig. 3, is that the oversampling
phenomenon in the 0-1 test for chaos results in blurred dia-
grams of the two-parameter bifurcation diagrams. While the
spread of the gray levels in Fig. 3a is full (from 0 to 255,
as described in [19]), such a spread of gray levels decreases
and becomes narrower with the decreased T value. This
indicates the increased oversampling problem in the 0-1 test
for chaos.

Finally, it is worth mentioning that the method of analyzing
oscillatory signals presented in this paper (based on both
DFT and appropriate choice of the parameters dt and T ) is
important when one wants to reconstruct chaotic attractors
based on the time series x(t) and its values x(n · dt · T ).
As shown in [18] for the Lorenz system and Chua’s modified
circuit, for an assumed dt value, an excellent reconstruction
result is obtained with the pair {x(t), x(t+T )}, where T is the
parameter used in this paper. Further work in this direction is
under way.

APPENDIXES
APPENDIXA
ELECTRIC CHAOTIC ARC CIRCUITS
The electric arc circuits from [19] are used in Examples 1 and
2 in this paper. The circuits are described by the three equa-
tions on the left side of (1) below and their equivalent versions
are given on the right side [20]

di
dτ =

1
L (uC −

U (iθ )
iθ

i)
duC
dτ =

1
RC (E − uC − Ri)

di2θ
dτ =

1
θ
(i2 − i2θ )

→

dx
dt =

1
L (y−xz

m)
dy
dt =

1
RC (R+1−y−Rx)

dz
dt = x2 − z

(1)

where i, uC , iθ are the arc current, current through L (induc-
tance) and voltage across C (capacitance), respectively. The
three variables correspond to the variables x, y and z on the
right side of (1). The R, L, C and m are the parameters used
in this paper in the bifurcation analysis of the arc circuits
through the 0-1 test for chaos. Color bifurcation diagrams
obtained for (1) by using a different method are presented
in [20].

APPENDIX B
THE 0-1 TEST FOR CHAOS
The test results have two forms: a single real num-
ber 0 ≤ K ≤ 1, and a two-dimensional graph of variables
(pc(n), qc(n)) [1], [18]. When a chaotic sequence is fed into
the test, the number K should be close to 1, while for regular
sequences the number K is close to 0. There are two methods
to compute K : regression or correlation. For a time-series
{Nk}, k = 0, . . . ,N − 1, with the recommended value N =
5000, the pc and qc are computed by

pc(n)=
n∑
j=0

Njcos[(j+1)c], qc(n)=
n∑
j=0

Njsin[(j+1)c] (2)

with n = 0, . . . ,N − 1 and a randomly chosen real number
c ∈ (0, π). Then, the quantity Mc(n), n = 0, 1, . . . , ncut ,
called the mean square displacement of pc(n) and qc(n),
is computed as follows

Mc(n) = lim
N→∞

1

N − 1

N−1∑
j=0

[pc(j+ n)− pc(j)]2

+ [qc(j+ n)− qc(j)]2 (3)

with the recommended value ncut ≈ (N−1)/10. If the regres-
sion method is applied, then the Kc value, the asymptotic
growth rate of the mean square displacement, is computed
as follows

Kc = lim
n→∞

logMc(n)
log n

. (4)

For the correlationmethod, two vectors ξ = (0, 1, 2, . . . , ncut )
and 1 = (Mc(0),Mc(1),Mc(2), . . . ,Mc(ncut )) are created
and the correlation coefficient Kc is obtained as follows

Kc = corr(ξ,1) ≡
cov(ξ,1)

√
var(ξ )var(1)

(5)

with the cov and var denoting the covariance and variance,
respectively [1].

In both the regression and correlation methods the above
steps are repeated for Nc values of c chosen randomly from
the interval (0, π). For the random selection of Nc values of
c ∈ (0, π) one can use the rand function in Matlab. It is
recommended that Nc = 100. Computing the median of the
Nc values of Kc gives the number K . The K ≈ 1 indicates
a chaotic sequence, while K ≈ 0 indicates regular (non-
chaotic) dynamics. The third columns of Figs. 1 and 2 show
the graphs of Nc = 100 values of Kc, as well as the final
value of K . All sequences tested in this paper have length
of 5000 real values. They were the solutions of the Lorenz,
Rössler and arc circuits in Example 1 (Figs. 1 and 2), and
exclusively the arc circuits in Example 2 (Fig. 3).
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