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ABSTRACT Liveness is very important for resource allocation systems (RASs) as it means that no deadlock
can arise in the system operation. By applying the approach of allocating resources, this paper focuses
on enforcing the liveness of RASs that allow for the general resource allocation and flexible routs. These
considered RASs can be modeled by a subcalss of systems of sequential systems with shared resources,
named as S4PRs. Deadlocks in S4PR can be characterized by the saturation of a kind of activity-circuits.
Based on these circuits, we study the relationship between the number of initial tokens or marking of
resource place and the non-saturation of some involved activity-circuits. Further, a liveness condition for
S4PR is derived which is associated with the numbers of initial tokens or markings of all resource places.
An algorithm is proposed to allocate the initial number of resources so that the considered S4PR is live.
Finally the proposed method is illustrated by examples.

INDEX TERMS Resource allocation systems (RASs), Petri nets, activity-circuits, liveness-enforcing.

I. INTRODUCTION
Resource allocation systems (RASs) [1] can model well a
majority of contemporary applications such as automated
manufacturing systems, transport systems, and workflow
management systems. All these systems involve a set of
concurrent processes and a finite set of resources, where each
process competes to use limited resources to complete its exe-
cution. Owing to the competition of limited resources, RAS
may enter deadlock states, where a set of process instances
require resources held by another instances in the same set,
i.e., the resource circuit-waiting pattern is created [2]–[5].
In a deadlock state, the whole or part of RAS is permanently
blocked and hence some processes cannot be performed.
Thus, it is imperative to prevent deadlocks from happening
in RASs.

Petri net (PN) is a powerful mathematical tool for RAS
modeling and analysis. Many existing PNs modelling RASs
are process-oriented [6], [7], where i) a type of resources
is modelled by a (resource) place with finite tokens, and
ii) a strongly connected state machine is used to model
the execution plan of a process type. This paper studies
a class of process-oriented PNs, namely system of simple
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sequential process with multiple resources (S4PR) [8], [31].
In fact, S4PRs can model well the disjunctive/conjunctive
(D/C) RASs [9], in which each stage of a process may require
multiple units of multiple types of resources to execute. The
well-known PNs S3PR [10], [30] and WS3PR [11] are both
proper subclasses of S4PRs.
Liveness is an important property of S4PR as it implies

that the operation of being-modelled D/C-RAS is deadlock-
free [10], [12]. To deal with the liveness issue, two structural
objects siphons and perfect activity-circuits (PA-circuits)
are used to characterize deadlocks in S4PR. Generally
speaking, so far there are two approaches dealing with
liveness-enforcement problem in S4PR: supervisory control
and initial marking configuration. The former is to add
‘‘external’’ supervisors to the original system to ensure that
the controlled system is live. Many existing works fall into
this category [2], [10]–[19]. In particular, Ezpeleta et al. [10]
show that the liveness of S3PR, a subclass of S4PR, is related
with the absence of empty siphons, and they further pro-
pose a siphon-based supervisor for S3PRs. Xing et al. [20]
develop an optimal liveness supervisor for a class of
S3PRs. Based on PA-circuits, our previous work [3] pro-
poses the necessary and sufficient condition associated
with the liveness of S4PR, and we also propose an algo-
rithm to compute all saturable PA-circuits. In addition,

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 185811

https://orcid.org/0000-0001-8838-1052
https://orcid.org/0000-0002-2268-2570
https://orcid.org/0000-0001-7888-0587
https://orcid.org/0000-0002-9843-7467
https://orcid.org/0000-0002-8998-0433


Z. Gao et al.: Enforcing the Liveness of S4PR by Using the Approach of Allocating Resources

other robust liveness-enforcing supervisors can be found
in [17], [21], [22].

The study can be traced back to 1990s [16], [23]–[25]
that designing initial marking configuration for enforcing
the liveness of RASs. In particular, Zhou and DiCesare [24]
consider the PN plants whose initial marking of various
resources is fixed. They configure an initial marking for
places that model the number of parts in the manufactur-
ing system so as to enforce the system liveness. Compared
with supervisory control, the initial marking configuration
methods have the major benefit that no supervisors are
added, and hence the control cost is saved. It is well-known
that deadlock in RAS is caused by improper allocation of
resources.

The works [26]–[28] devote to the problem of liveness
enforcement in PN models by allocating resources, i.e., set-
ting up appropriate initial markings for resource places.
Specifically, Liu et al. [26] compute an initial resource mark-
ing to ensure the liveness of WS3PR. The authors in [27]
propose a resource configuration approach for configuring
initial resources to ensure the liveness of S3PRs. Recently,
for WS3PRs modeling RASs in which the number of parts to
be processed is given, You et al. [28] present an algorithm for
working out an initial resource marking that can enforce the
liveness of WS3PRs.

Recapitulating the above discussion, we know that there
is no work in the literation can guarantee the liveness
of S4PR through resource allocation approach. Motivated
by this fact and the PA-circuit-based deadlock character-
ization in S4PR [3], this paper focuses on the liveness
enforcement problem for S4PR by allocating resources.
We summarize the main contributions of this work as
follows.

1) Based on the saturation of PA-circuits that would lead
to deadlock in S4PR [3], the relation between the initial
markings of a resource place and the non-saturation of
involved PA-circuits is established. This is the founda-
tion of this work.

2) By using the proposed relation associated with the
initial markings of some resources, we develop a suffi-
cient liveness condition for S4PR.

3) An algorithm is developed to compute an initial
resource marking to guarantee the liveness of the con-
sidered S4PR with the initial marking of idle places
given only.

The remainder of this work is summarized as fol-
lows. Section II discusses the preliminaries for PNs,
S4PRs, and the PA-circuit-based deadlock characterization of
S4PRs. Section III first shows the relation between the initial
resource marking and the non-saturation of some involved
PA-circuits, and then develops an algorithm to compute initial
resource marking for enforcing the liveness of S4PR. Also,
an example is given for illustrating the proposed method.
Section IV concludes this work.

II. PRELIMINARY
A. PETRI NETS
A generalized PN is a 4-tuple N = (P,T ,F,W ), where T
and P are sets of transitions and places, respectively, F ⊆
(T × P) ∪ (P × T )collects arcs between transitions and
places. W : F → Z assigns the weights to arcs such that
W (x, y) = 0 if (x, y) /∈ F , otherwise W (x, y) > 0, where
Z = {0, 1, 2, . . .}. Moreover, if ∀(x, y) ∈ F , W (x, y) = 1, N
is called an ordinary net.

For node u ∈ T ∪ P, the post set of u is u• = {v ∈ P ∪
T |(u, v) ∈ F}, the preset of u is •u = {v ∈ P ∪ T |(v, u) ∈ F}.
Furthermore, for U ⊆ P ∪ T , we define •U = ∪u∈U •u and
U• = ∪u∈Uu•. An ordinary PN is a state machine if |•t| =
|t•| = 1, ∀t ∈ T .
A state or marking of N is a mapping M : P → Z.

For p ∈ P, M (p) is the token number in p at marking M .
For S ⊆ P, the sum of the token numbers in S at mark-
ing M is M (S) =

∑
p∈SM (p). The incidence matrix of

PN N is a |P| × |T | matrix [N ] where [Nij] = [Nij]+ −
[Nij]−, [Nij]− = W (pi, tj), and [Nij]+ = W (tj, pi). PN N
with initial marking (IM) M0 is called as a marked PN,
denoted by (N ,M0).

A P-vector is a mapping I : P→ Z. If P-vector I ≥ 0 is a
P-semiflow if I ∗[N ] = 0. The support of P-vector I is a place
set ||I || = {s ∈ P|I (s) 6= 0}. AP-semiflow I isminimal if ||I ||
does not contain the support of any other P-semiflow. For the
sake of convenience, notation6s∈PI (s)s(resp.,6s∈PM (s)s) is
used to denote P-semiflow I (resp., marking M ).
For marking M , transition t ∈ T is enabled at M , denoted

by M [t>, if ∀p∈•t , M (p) ≥ W (p, t). If an enabled transition
t at M can fire and results a new making M ′, denoted by
M [t > M ′, where M ′(p) = M (p) − W (p, t), ∀p ∈•t \ t•;
M ′(p) = M (p) + W (t, p), ∀p ∈ t•\•t; M ′(p) = M (p),∀p ∈
P \ (•t \ t•) ∪ (t•\•t). For a positive integer k , let Zk ≡
{1, 2, . . . , k}. A transition sequence δ = t1t2 . . . tk , is enabled
at M if Mj[tj > Mj+1, j ∈ Zk , where M1 = M and Mj is a
marking reachable from M . Let R(N ,M0) denote the set of
markings reachable fromM0. Meanwhile,M0[δ > M implies
that M = M0 + [N ] ∗ Y , where the i-th entry of vector Y is
the occurrence number of ti in δ.

Transition t ∈ T is live if ∀M ∈ R(N ,M0), ∃M ′ ∈ R(N ,M )
such that M ′[t > ., t is dead at M if t is not enabled at any
marking in R(N ,M ). PN (N ,M0) is live if all its transitions
are live.

For a set X ⊆ P∪T , the subnet generated by X is a subnet
N [X ] = (PX ,TX ,FX ,WX ), where PX = X ∩P, TX = X ∩T ,
FX = F ∩ (X × X ), and WX (f ) = W (f ), ∀f ∈ FX . For M ∈
R(N ,M0), letM1 be a marking ofN [X ] which is a restrictions
of M to X , this is denoted by M1 = M |N [X ], where M1(p) =
M (p), ∀p ∈ X ∩ P.

A string $ = x1x2 . . . xk is a path if xi ∈ T ∪ P, and
(xi, xi+1) ∈ F for i ∈ Zk−1. If the nodes of a path are different
from each other, it is called elementary. Path$ = x1x2 . . . xk
is a circuit if x1 = xk .
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B. S4PRs AND ITS LIVENESS CONDITIONS
Definition 1 [4]: An S4PR is a PN (N ,M0) = (P0 ∪ PA ∪

PR,T ,F,W ,M0) such that
1) P0, PR and PA, respectively, collect all idle, resource,

and activity places, where i) P0 = {p0i|i ∈ Zm};
ii) PA = ∪i∈ZmPAi, T = ∪i∈ZmTi, where ∀i ∈
Zm,PAi 6= ∅, Ti 6= ∅, ∀i, j ∈ Zm, i 6= j, PAj ∩ PAi =
∅, Tj ∩ Ti = ∅; iii) PR = {rj|j ∈ Zn}; and iv)
PR ∩ (PA ∪ P0) = ∅.

2) Subnet Nj = N [Tj∪{pj0}∪PAj] is a strongly connected
state machine and pj0 is contained in each circuit of Nj,
where j ∈ Zm.

3) There is a unique minimal P-semiflow, denoted as Ir ,
for each resource place r ∈ PR such that PR ∩ ‖Ir‖ =
{r}, PA ∩ ‖Ir‖ 6= ∅, Ir (r) = 1, and P0 ∩ ‖Ir‖ = ∅.

4) PA = ∪r∈PR (‖Ir‖ \ {r}).
Definition 2 [4]: Let M0 is an initial marking of S4PR N .

M0 is acceptable if M0(s) > 0, ∀s ∈ P0; (2) M0(p) = 0,
∀p ∈ PA; (3)M0(r) ≥ max{Ir (p)|p ∈ ‖Ir‖}, ∀r ∈ <.
An S4PR with an acceptable initial marking is called well-

marked. The state machine Ni in S4PR (N ,M0) represents
the complete machining process of i-th type parts, its initial
marking is M0(pi0), the number of i-th type parts in the
system. While M0(r) is the capacity of type-r resources.
According to the structure of S4PR N , its initial marking

M0 can be denoted byM0 = [M00,M0A,M0R], whereM00 =

M0|P0,M0A = M0|PA, and M0R = M0|PR are the initial idle,
activity, and resource markings P0, PA, and PR, respectively.

The set of input and output resource places of transition t ∈
T is denoted as (R)t and t (R), respectively. The set of output
and input activity places of t is t (A) and (A)t , respectively.
We can apply those notations to a set, e.g., we define K (R)

=

∪t∈K {t (R)} for K ⊆ T .
For r ∈ PR, H (r) = ‖Ir‖\ {r} is the holder of r . We define

the set of resources that p ∈ PA requires as 0(p) ≡ {r ∈
PR|p ∈ H (r)}.
Example 1: Consider an S4PR (N ,M0) shown in Figure. 1,

whereP0 = {p1, p6},PR = {r1−r3},PA = {p2−p5, p7−p11},
and T = {t1 − t11}. The initial marking M0 = 6p1 +
6p6 + 6r1 + r2 + 3r3 + 2r4 is acceptable for N , and thereby
(N ,M0) is well-marked. Apparently, M00 = 6p1 + 6p6,
M0A = 0, and M0R = 2r1 + r2 + 3r3 + 2r4. Note that N
has two types of processes, which are modeled by the state
machines generated by {p1} ∪ {p2 − p5} ∪ {t1 − t5} and
{p6} ∪ {p7 − p11} ∪ {t6 − t11}, respectively. The P-semiflows
related with all resources in PR are: Ir1 = 4p2+6p3+p9+r1,
Ir2 = p10 + p11 + r2, Ir3 = 2p4 + p8 + p9 + r3, and
Ir4 = p2+p7+p8+r4.Moreover, the set of holders of resource
place r1 isH (r1) = {p2, p3, p9} and the set of resource places
that activity place p8 requires is 0(p8) = {r3, r4}.

Following our previous work [3], we know that deadlocks
in S4PR can be characterized by a kind of structure objects,
namely PA-circuits. Based on this, the liveness necessary and
sufficient condition for S4PR can be derived. For the sake of
completeness, we first briefly review some concepts about
PA-circuits in [3].

FIGURE 1. An marked of S4PR (N, M0).

Definition 3 [3]: A single activity-path (SA-path) in S4PR
is a path α = pt where p ∈ PA and t ∈ T . Let r ∈ 0(p), then
we say that SA-path α = pt is with respect to
(w.r.t.) resource r .

Let α1 = p1t1 and α2 = p2t2 be SA-paths w.r.t. r1 and r2,
respectively. If r2 ∈ (R)t1, then α1 is reachable from α2, or α2
can reach α1, this is denoted as α1←α2.
Definition 4 [3]: A sequence of SA-paths θ = α1α2 . . . αn

is called activity-chain if αi = piti is a SA-path w.r.t.
resource ri, ∀i ∈ Zn, and αj ← αj+1, i.e., αj is reachable
from αj+1, ∀j ∈ Zn−1. Let <(θ ) = {ri|αi is w.r.t. ri, i ∈ Zn}.
We call θ as an activity-chain w.r.t. resource set <(θ ). Then
the set of transitions and activity places of θ are denoted by
=(θ ) = {ti|ti is in θ} and ℘(θ ) = {pi ∈ PA|pi is in θ},
respectively.
Definition 5 [3]: Let θ = α1α2 . . . αn be an activity-chain

w.r.t. resource set R. If α1 can reach αn, i.e., αn ← α1, then
θ is a called an activity-circuit w.r.t. R, or A-circuit for short.
Any A-circuit θ is perfect if ((a)=(θ ))• = =(θ ). Let 2 be the
set of all perfect A-circuits (PA-circuits for short) in an S4PR
(N ,M0).
Example 2: Consider S4PR (N ,M0) shown in Figure. 1.

Since r1 ∈ 0(p2) and r1 ∈(R) t2, α1 = p2t2 is a SA-path
w.r.t. r1, and can reach itself, i.e.,α1 ← α1 and θ1 = α1α1
is an activity-chain as well as an A-circuit w.r.t. resource set
{r1}. Moreover, for SA-paths α2 = p3t3 w.r.t. r1 and α3 =
p8t8 w.r.t. r3, since r3∈(R)t3 and r1∈(R)t8, α2 and α3 can reach
each other, i.e., α2 ← α3 and α3 ← α2. Hence, θ2 = α2α3
is an A-circuit w.r.t. resource set {r1, r3}. In addition, since
((a)=(θ1))• = =(θ1) and ((a)=(θ2))• = =(θ2), θ1 and θ2 are
both PA-circuits.
By the definition of P-semiflow Ir of r , Ir (p) is the number

of type-r resources that are used by a token (or a part) in p ∈
H (r). Then for S ⊆ PA,6p∈SIr (p)M (p) is the total number of
type-r resources used by parts or tokens in S at marking M ,
denoted as MIr (S), i.e. MIr (S) ≡ 6p∈S Ir (p)M (p).
Definition 6 [3]: A PA-circuit θ ∈ 4 is saturated at a

state M , if M (p) ≥ 1, ∀p ∈ P(θ ); and min{W (r, t)|t ∈
r• ∩ =(θ )} > M0(r)−MIr (P(θ ) ∩ H (r)), ∀r ∈ <(θ ).
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Example 3: Consider S4PR (N ,M0) in Figure. 1, M =

4p1 + p3 + 4p6 + 2p8 + r2 + r3 + r4 is one of its reachable
markings. For PA-circuit θ2 = α2α3 where α2 = p3t3 w.r.t.
r1 and α3 = p8t8 w.r.t. r3, we have =(θ2) = {t3, t8}, ℘(θ2) =
{p3, p8}, and <(θ2) = {r1, r3}. Since M (p3) = 1 > 0,
M (p8) = 2 > 0, M0(r1) − MIr1

(H (r1) ∩ ℘(θ2)) = 0 <

min{W (r1, t)|t ∈ r•1 ∩=(θ2)} = 1, andM0(r3)−MIr3
(H (r3)∩

℘(θ2)) = 1 < min{W (r3, t)|t ∈ r•3 ∩ =(θ2)} = 2, we know
that θ2 is saturated at M .

The relationship between the deadlock of S4PR and the
PA-circuit saturation is as follows [3].
Theorem 1 [3]: A marked S4PR (N ,M0) is live if and only

if ∀θ ∈ 2 and ∀M ∈ R(N ,M0), θ is not saturated at M .
In order to describe and compute all PA-circuits in an easy

and understandable way, our previous paper [3] defines a
kind of modified S4PRs and some of their special structural
objects.
Definition 7 [3]: For a given S4PR N = (P0 ∪ PR ∪

PA,T ,F,W ), its modified S4PR(MS4PR), N ∗, is defined by
adding an auxiliary arc (t, r) with weight 1 for t ∈ T and
r ∈ PR if (a)t ∈ H (r) and (t, r) /∈ F , shown by dotted arc
in PN graph. Let F∗ be the set of auxiliary arcs. Then the
obtained MS4PR N ∗ = (P0 ∪ PR ∪ PA,T ,F ∪ F∗,W ).
Definition 8 [3]: Let $ = t1r1 . . . tkrk be a circuit in

MS4PR N ∗. $ is a resource-transition circuit (RT-circuit) if
ti ∈ T and ri ∈ PR for i ∈ Zk . Let =($ ) = {ti, i ∈ Zk}
and <($ ) = {ri, i ∈ Zk}. An RT-circuit $ is perfect if
((a)=($ ))• = =($ ). Let 5 collect all perfect RT-circuits
(PRT-circuits) in N ∗.

The following theorem establishes the corresponding rela-
tionship between PA-circuits in S4PR N and PRT-circuits in
MS4PR N ∗ which is w.r.t. N .
Theorem 2 [3]: Let N be an S4PR. There exists a one-

to-one correspondence between PA-circuits in N (i.e.,2) and
PRT-circuits in N ∗(i.e.,5). Further, ∀θ ∈ 2, there is unique
$ ∈ 5 such that =(θ ) = =($ ) and <(θ ) = <($ ).
According to Theorem 2, to obtain all PA-circuit in

S4PR N , we can compute all PRT-circuits in its modified net
N ∗ first. Since a PRT-circuit inN ∗ is relevant only to resource
places and transitions, and its transitions belong to P•R ∩

•PR it
must be contained in N ∗R ≡ N ∗[PR ∪ (P•R ∩

•PR)], which is a
subnet of N ∗.
A PRT-circuit in N ∗ is a union of elementary circuits

inN ∗R . while all elementary circuits inN ∗R can be computed by
algorithm, Find-All-Elementary-Circuits proposed by John-
son et al. [32], which has the complexity O((v+ e)(c+ 1)) if
N ∗ has v vertices e edges, and c elementary circuits. Then an
algorithm for computing 2 is stated as follows.

In Algorithm CP, N ∗R is constructed first. Its vertices
include all resource places of PR and all transitions in P•R∩
•PR. Then all elementary circuits of N ∗R are computed by
using Find-All-Elementary-Circuits. Note that |P•R ∩

•PR| ≤
|T | and there are at most two arcs between a resource place
and a transition, including auxiliary arcs. Thus the com-
plexity of Step 2 is O(2|T ||PR| + (|PR| + |T |))(c + 1) ≤
O(3|T ||PR|)(c + 1). In Step 3, all PRT-circuits in N ∗ are

Algorithm CP (Computing all PA-Circuits in S4PR)

Input: An S4PR N ;
Output: 2;

Step 1. Construct N ∗R from N ;
Step 2. Set 5 = 2 = ∅; Compute the set of elementary
circuits, 4, by using Find-All-Elementary-Circuits(N ∗R ).
Step 3. Obtain 5 from 4 in a recursive manner
(1)
1) Let 5 = 4;
2) For each$ 1 ∈4 and$ 2 ∈5, if<($ 1) ∩ <($ 2) 6=
∅, let $ ≡ $ 1 ∪ $ 2. If $ is perfect and not in 5,
add$ into 5.

Step 4. For each $ ∈ 5, let θ be its corresponding
PA-circuit in N . Add θ into 2. By Theorem 2, we know
that =(θ ) = =($ ), ℘(θ ) =(a)

=($ ), and <(θ ) = <($ ).
Step 5. Output 2.

computed in an iterative manner. Let C denote the number of
all different PRT-circles. The algorithm needs to compare any
two PRT-circles at most, so the maximum number of compar-
isons is C2, and hence, time complexity of step 3 is O(C2).
Each PRT-circuit in5 is converted into a PA-circuit based on
the results of Theorem 2 in Step 4. The time complexity in
Step 4 is O(C). Then the time complexity of Algorithm CP
is O(3|T ||PR|)(c + 1) + O(C2) + O(C) ≤ O(3|T ||PR|C2).
According to [3], we thus have the following conclusion.
Theorem 3 [3]: Algorithm CP can correctly output all

PA-circuits of S4PR (N ,M0) with the time complexity
O(3|T ||PR|C2).

FIGURE 2. The MS4PR (N∗, M0) w.r.t. S4PR (N, M0) in FIGURE 1.

Example 4: Consider S4PR (N ,M0) shown in Figure. 1.
The corresponding MS4PR N ∗ is illustrated in Figure. 2,
where (t2, r1), (t10, r2), (t8, r3), and (t7, r4) are auxiliary arcs.
Correspondingly, N ∗R shown in Figure. 3, contains four
elementary circuits $1 − $4 as described in Figure. 4.
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FIGURE 3. N∗R = N∗[PR ∪ (P•R ∩
• PR )], the subnet of N∗ in FIGURE 2.

FIGURE 4. Four elementary circuits, $1 −$4, of N∗R in FIGURE 3.

According to Algorithm CP, we have5 = {$1−$10},where
$5 = $1 ∪ $2,$6 = $2 ∪ $3,$7 = $3 ∪ $4,$8 =

$1 ∪ $2 ∪ $3,$9 = $2 ∪ $3 ∪ $4,$10 = $1 ∪

$2 ∪$3 ∪ $4. According to the one-to-one correspondence
relation between 2 and 5 in Theorem 2, we can obtain
all PA-circuits in N , i.e., 2 = {θi|θi corresponds to $i,

i ∈ Z10}. Note that θi and$i have the same set of transitions
and resources, respectively. Table 1 shows the details of all
PRT-circuits and PA-circuits.

III. DESIGNING INITIAL MARKING FOR AN S4PR
TO ENSURE ITS LIVENESS
Given an S4PR N with its initial idle markingM00, we intend
to establish an initial resource marking, M0R, such that
the resulting net (N ,M0) is well-marked and live, where
M0 = [M00,M0A,M0R].

Note that all places of PA must be emptied at the initial
marking according to Definition 2, that is, MA0 = 0. Hence,
we just need to consider the initial marking for resource
places, M0R. By Theorem 1, the liveness of marked S4PR is
related to the non-saturation of PA-circuits in2. In this paper,
we use this structural property to design the initial marking,
M0R, for the given initial markings M00 and M0A, so that all
PA-circuits cannot be saturated during the system evolution,
and hence, will not lead to deadlock.

First, we study the relation between the non-saturation
of PA-circuit θ and the initial marking of resource place

TABLE 1. PA-circuits in S4PR in Figure. 1.

r ∈ <(θ ). Further, an algorithm is proposed to design an
initial resource marking, M0R, for S4PR where only M00 and
M0A are given.

A. RELATIONS BETWEEN THE NON-SATURATION OF
PA-CIRCUITS AND THE INITIAL MARKING OF AN
INVOLVED RESOURCE PLACE
For a positive number y, let byc represent the maximal integer
less than y, for instance, b2.3c = 2.
Definition 9: For well-marked S4PR (N ,M0), let θ ∈ 2

and r ∈ <(2). We define

λ(θ, r) = 6p∈H (r)∩℘(θ )Ir (p), and

ω(θ, r) = {k ∈ Zλ(θ,r)−1|minxp∈{0,1,...,bk/Ir (p)c}{k −
6p∈H (r)∩℘(θ )Ir (p)xp ∈Z} ≥ min{W (r, t)|t ∈ =(θ ) ∩ r•}}.
In the above definition, λ(θ, r) represents the sum of Ir (p)

for p ∈ H (r)∩℘(θ ); whileω(θ, r) collects the positive integer
k < λ(θ, r) which satisfies minxp{k−6p∈H (r)∩℘(θ )Ir (p)xp} ≥
min{W (r, t)|t ∈ =(θ )∩ r•} where xp ∈ {0, 1, . . . , bk/Ir (p)c}
for p ∈ H (r) ∩ ℘(θ ). Since the net is finite, µ ≡

max{λ(θ, r)|θ ∈ 2, r ∈ <(θ )} is a finite constant.
By the following Algorithm EE, all elements ofω(θ, r) can

be enumerated.

Algorithm EE(Enumerating all Elements in ω(θ, r))

Input: θ ∈ 2 and r ∈ <(θ );
Output: ω(θ, r);
1: Compute λ(θ, r); set ω(θ, r) = ∅
2: If(λ(θ, r) = 1){ output ω(θ, r); exits;} .
3: for (i ∈ Zλ(θ,r)−1){
4: solve the following ILP, obtain GILP

ILP2: GILP(i) = min{i−6p∈H (r)∩℘(θ )xpIr (p)}
s.t. xp ∈ {0, 1, . . . , bi/Ir (p)c}, ∀p ∈ H (r) ∩ ℘(θ );

i−6p∈H (r)∩℘(θ )xpIr (p) ≥ 0;
5: if (GILP ≥ min{W (r, t)|t ∈ =(θ ) ∩ r•});
6: ω(θ, r) = ω(θ, r) ∪ {i};
7: }
8:Output ω(θ, r).
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Note that in ILP2 of Algorithm EE, for the given θ and r ,
λ(θ, r) ≤ µ, and xp and p have bi/Ir (p)c(≤ i) and |℘(θ ) ∩
H (r)|(≤ |PA|) different values, respectively. Solving ILP2 for
a given i is equivalent to calculate the minimum of up to i ∗
|PA| different values. Hence, the complexity of ILP2 for iwill
not exceed O(i ∗ |PA|), and the computational complexity of
Algorithm EE is O(µ2

∗ |PA|).
Example 5: Reconsider S4PR in Figure. 1 as well as

PA-circuit θ4 ∈ 2. From Table 1 we know that <(θ4) =
{r3, r4}, =(θ4) = {t4, t7}, and ℘(θ4) = {p4, p7}. Then for
r3 ∈ <(θ4), we have ℘(θ4) ∩ H (r3) = {p4}, λ(θ4, r3) =
6p∈H (r3)∩℘(θ4)Ir3 (p) = Ir3 (p4) = 2, and Zλ(θ4,r3)−1 = {1}.
Then the ILP2 is as follows.

GILP(1) = min {1− xp4 Ir (p4)}

s.t. xp4 ∈ {0};

1− xp4 Ir (p4) ≥ 0

The above ILP is simple and has the unique solution
xp4 = 0, and GILP(1) = 1. Thus, ω(θ4, r3) = {1}.
Lemma 1: Let (N ,M0) be a well-marked S4PR, θ ∈ 2,

and r ∈ <(θ ). IfM0(r) < λ(θ, r), then at anyM ∈ R(N ,M0),
θ cannot be saturated.

Proof: We assume that PA-circuit θ is saturated at M .
Then M (p) > 0 for p ∈ ℘(θ ) ∩ H (r). Hence, MIr (℘(θ ) ∩
H (r)) ≥ 6p∈℘(θ )∩H (r)Ir (p) = λ(θ, r). On the other hand,
as all places in ℘(θ ) ∩ H (r) use resource r , we have
MIr (℘(θ ) ∩ H (r)) ≤ M0(r), and hence M0(r) ≥ λ(θ, r).
This contradicts with the condition in this lemma. Therefore,
θ cannot be saturated at M . ♣
Lemma 2: Let (N ,M0) be a well-marked S4PR, θ ∈ 2,

r ∈ <(θ ), and ω(θ, r) 6= ∅. If M0(r) = λ(θ, r) + k , where
k ∈ ω(θ, r), then θ cannot be saturated at anyM ∈ R(N ,M0).

Proof: Assume that θ is saturated at M . Then we have
M0(r) − MIr (H (r) ∩ ℘(θ )) <min{W (r, t)|t ∈ r• ∩ =(θ )}
according to Definition 6. That is,

M0(r)<min{W (r, t)|t ∈=(θ ) ∩ r•}+MIr (H (r) ∩ ℘(θ ))

(1)

Note that M0(r) = λ(θ, r) + k , where k ∈ ω(θ, r).
By combing this equation and (1), we have

λ(θ, r)+k<min{W (r, t)|t ∈=(θ )∩r•}+MIr (H (r)∩℘(θ ))

(2)

However, recall that λ(θ, r) = 6p∈H (r)∩℘(θ )Ir (p), and
according to Definition 6, for place p ∈ ℘(θ ) ∩ H (r),
we have M (p) ≥ 1. Hence, we have MIr (H (r) ∩
℘(θ )) = 6p∈H (r)∩℘(θ )Ir (p)(M (p)−1)+6p∈℘(θ )∩H (r)Ir (p) =
6p∈H (r)∩℘(θ )Ir (p)(M (p)−1)+λ(θ, r). By combing this equa-
tion into (2), we have

k −6p∈℘(θ )∩H (r)Ir (p)(M (p)− 1)

< min{W (r, t)|t ∈ =(θ ) ∩ r•} (3)

For each p ∈ ℘(θ ) ∩ H (r), we know that M (p) ≥ 1, that
means, at least6p∈℘(θ )∩H (r)Ir (p)=λ(θ, r) units of resource r

have been occupied in℘(θ )∩H (r). Thus,M (p)≤1+b(M0(r)−
λ(θ, r))/Ir (p)c = 1+bk/Ir (p)c, and further we obtainM (p)−
1≤bk/Ir (p)c. That is,M (p)− 1 ∈ Zbk/Ir (p)c. However, since
k ∈ ω(θ, r), (3) is impossible by Definition 9. Thus, θ cannot
be saturated at M .♣

Next, we denote the set of PA-circuits associated with
r ∈ PR by 2(r) = {θ ∈ 2|r ∈ <(θ )} and further
define 1(r) = ∪θ∈2(r)(℘(θ ) ∩ H (r)). For example, consider
S4PR in Figure. 1, from Table 1 we know that 2(r1) =
{θ1, θ2, θ5, θ6, θ8, θ9, θ10}, and 1(r1) = ∪θ∈2(r1)(℘(θ ) ∩
H (r1)) = {p2, p3, p9}.
Definition 10:Let (N ,M0) be awell-marked S4PR, r ∈ PR,

and Ni = (PAi ∪ {pi0}, Ti, Fi), i ∈ Zm, denote the i-th state
machine in N . We define

B(N , r) = M0(r)−6i∈Zmmax{Ir (p)|p ∈ 1(r)∩pAi}M0(pi0)

Example 6: Consider S4PR (N ,M0) in Figure. 1. For
r1 ∈ PR, we have 1(r1) = {p2, p3, p9}. Note that there
are two state machines in N where p1 and p6, represent the
corresponding idle places, respectively. We have M0(p1) =
M0(p6) = 6, PA0 = {p2 − p5}, and PA1 = {p7 − p11}.
we have B[N , r1] = 6 − 6i∈Zmmax{Ir (p)|p ∈ 1(r1) ∩
pAi}M0(pi0) = 6 − max{Ir1 (p)|p ∈ {p2, p3}}M0(p1) −
{Ir1 (p)|p ∈ {p9})M0(p6) = 6− 6× 6− 6× 1 = −36.
Lemma 3:Given a well-marked S4PR (N ,M0) and r ∈ PR.

If B[N , r] ≥ min{W (r, t)|t ∈ =(θ ) ∩ r•, θ ∈ 2(r)}, then
each PA-circuits in 2(r) is not saturated at any marking in
R(N ,M0).

Proof: Assume that PA-circuit θ ∈ 2(r) is saturated at
M ∈ R(N ,M0). Since sets PAi, i ∈ Zm, are disjoint and PA =
∪i∈ZmPAi, we can get

MIr (H (r) ∩ ℘(θ )) = 6i∈ZmMIr (H (r) ∩ ℘(θ ) ∩ PAi) (4)

For p ∈ ℘(θ )∩H (r)∩PAi, we have Ir (p) ≤ max{Ir (p)|p ∈
1(r) ∩ pAi} since ℘(θ ) ∩ H (r) ∩ PAi ⊆ 1(r) ∩ pAi. Thus,
we further obtain

MIr (H (r) ∩ ℘(θ ) ∩ PAi)

≤ 6p∈℘(θ )∩H (r)∩PAiM (p)max{Ir (p)|p ∈ 1(r) ∩ pAi} (5)

Also, we have ℘(θ )∩H (r)∩ PAi ⊆ PAi. Hence (5) can be
rewritten as

MIr (H (r) ∩ ℘(θ ) ∩ PAi)

≤ max{Ir (p)|p ∈ 1(r) ∩ pAi}6p∈PAiM (p) (6)

On the other hand, since Ni is strongly connected and all
places in PAi∪{pi0} constitute a P-semiflow support, we have
6p∈PAiM (p)+M (pi0) = M0(pi0). That means,6p∈PAiM (p) ≤
M0(pi0). By combing this and (6), we know that

MIr (H (r) ∩ ℘(θ ) ∩ PAi)

≤ max{Ir (p)|p ∈ 1(r) ∩ pAi}M0(pi0) (7)

After combing (7) and (4), we have

MIr (H (r) ∩ ℘(θ ))

≤ 6i∈Zmmax{Ir (p)|p ∈ 1(r) ∩ pAi}M0(pi0) (8)
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It is assumed that θ is saturated at M . Hence, M0(r) −
MIr (H (r) ∩ ℘(θ )) < min{W (r, t)|t ∈ =(θ ) ∩ r•}. Note that
min{W (r, t)|t ∈ =(θ ) ∩ r•} ≤ min{W (r, t)|t ∈ r• ∩ =(θ1),
θ1 ∈ 2(r)}. Thus, we have

M0(r)−MIr (H (r) ∩ ℘(θ ))

< min{W (r, t)|t ∈ =(θ1) ∩ r•, θ1 ∈ 2(r)} (9)

In addition, from (8) we know that

B[N , r] = M0(r)−6i∈Zmmax{Ir (p)|p ∈ 1(r)

∩ pAi}M0(pi0) ≤ M0(r)−MIr (H (r) ∩ ℘(θ )) (10)

By combing (10) and (9), we have

B[N , r] < min{W (r, t)|t ∈ =(θ1) ∩ r•, θ1 ∈ 2(r)} (11)

This is impossible and hence Lemma 3 is proved. ♣
By combining Lemmas 1−3 and Theorem 1, we have a

new conclusion.
Theorem 4: Given a well-marked S4PR (N ,M0). Then

(N ,M0) is live if θ ∈ 2, ∃r ∈ <(θ ), such that one of the
following is met
(1) λ(θ , r) > M0(r);
(2) M0(r) = λ(θ , r)+ k , where k ∈ ω(θ, r); and
(3) B[N , r]≥min{W (r, t)|t ∈ =(θ1) ∩ r•, θ1∈2(r)}

B. COMPUTING INITIAL MARKING FOR S4PR
Recall that 2(r) = {θ ∈ 2|r ∈ <(θ )} for resource r . Then
for a given subset 9 ⊆ 2(r), the following algorithm is
developed to compute an initial marking for r such that all
PA-circuits in 9 will never be saturated.

Algorithm CAR (Computing an Initial Marking for A
Resource Place
Input: r ∈ PR and 9 ⊆ 2(r);
Output: M0R(r), an initial marking
of r ;

1: By using Algorithm EE; compute ω(θ, r), θ ∈ 9;
2: K := max{λ(θ, r)+ n|θ ∈ 9, n ∈ ω(θ, r) 6= ∅};
3: M0R(r) = 0
4: for (i = 1,. . .,K ){
5: Flag = 0;
6: if (i ≥max{Ir (p)|p ∈ H (r)}){
7: for (θ ∈ 9){
8: if(λ(θ, r))≤i and @k∈ω(θ, r) s.t. i = k + λ(θ, r)){
9: Flag = 1;
10: break;}
11: }
12: if(Flag= 0){
13: M0R(r) = i;
14: break;}
15: }}
16: output M0R(r);

Essentially, Algorithm CAR tries to compute an initial
marking for resource r based on the conclusions of Lem-
mas 1 and 2. In particular, Lemma 2 implies that a PA-circuit

θ ∈ 9 will never be saturated if M0R(r) = λ(θ, r) + n,
n ∈ ω(θ, r). Thus, in Algorithm CAR we only check that
weather an integer in ZK could be the sought initial marking
of r . At the beginning, we compute ω(θ, r), θ ∈ 9 and
set M0R(r) = 0. Due to the requirement of M0R to be an
acceptable initial marking, we are only considering integer
i ∈ ZK and i ≥ max{Ir (p)|p ∈ H (r)}. There are two steps in
the loop process for i:
Step 1 (Line 6−11): If ∃θ ∈ 9 s.t. λ(θ, r) ≤ i and @k ∈

ω(θ, r) s.t. i = λ(θ, r)+k , then apparently, the initial marking
of r cannot be i because the conditions in Lemmas 1 and 2
are not met. That is, θ may be saturated if M0R(r) is set to
be i. Thus, i is not the sought initial marking of r . We need to
continue looping i + 1.
Step 2 (Line 12−16): If the value of Flag is not changed

and still 0, then for each PA-circuit θ ∈ 9, there are two
sub-cases: i) λ(θ, r) > i, or ii) i = λ(θ, r) + k where
k ∈ ω(θ, r). Apparently, the sub-case i) [resp. case ii)]
equates to the condition in Lemma 1 [resp. Lemma 2]. Hence,
we set M0R(r) = i and then θ will never be saturated
according to the conclusion in Lemmas 1 and 2.

Note that to compute ω(θ, r) for θ ∈ 9, Algorithm EE
is called |9| times, and the computational complexity is
O(µ2
|PA|9|); while in Algorithm CAR, the loop for i ∈ ZK

and θ ∈ 9 is repeated up to K |9| times, and K < 2λ
(θ , r) ≤ 2µ since the maximum element in ω(θ , r) is
λ(θ , r)− 1(≤ µ− 1). So the complexity of Algorithm CAR
is O(µ2

|PA|9|)+ O(2µ|9|) = O(µ2
|PA|9|).

From the above analysis, we can draw the following result.
Lemma 4: Let N be an S4PR, r ∈ PR, and 9 ⊆ 2(r).

If M0R(r) ≥ 1 output by using Algorithm CAR for inputs r
and 9, then all PA-circuits in 9 will never be saturated.

Given an S4PR N with initial idle and activity markings
M00 andM0A, Algorithm CIR is proposed to computeM0R so
that all PA-circuits in 2 will never be saturated.

Algorithm CIR (Computing an Initial Resource marking)

Input: S4PR N=(P0∪PR∪PA,T ,F ,W ) with M00,M0A=0;
Output: M0R, an initial resource marking
of N ;

1: By using Algorithm CP, compute 2;
2: set � = 2;
3: for (r ∈ PR){
4: if (2(r) ∩� = ∅)
5: let M0R(r) =max{Ir (p)|p ∈ H (r)}
6: else{
7: M0R(r) = Algorithm CAR(r , 2(r) ∩�);
8: if (M0R(r) = 0);
9: M0R(r)=6i∈Zmmax{Ir (p)|1(r)∩pAi}M0(pi0)

+min{W (r, t)|t∈=(θ )∩r•, θ∈2(r)};
10: let � = � \2(r);
11: }

12: }
13: output M0R;
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FIGURE 5. An example of S4PRs.

In Algorithm CIR, let � represent the set of PA-circuits
that might be saturated. Initially, we set � = 2. For
r ∈ PR, if 2(r) ∩ � = ∅, then the initial marking of r
will not affect the saturation of any PA-circuit in �. Hence
we directly set M0R(r) = max{Ir (p)|p ∈ H (r)} so as to save
resources. On the contrary, if 2(r) 6= ∅, we let M0R(r) be
the output of Algorithm CAR with r and 2(r) ∩ � being
its input, i.e., M0R(r) = Algorithm CAR(r , 2(r) ∩ �).
If M0R(r) > 0, we know that all PA-circuits in 2(r) will
never be saturated according to Lemma 4; otherwise, we set
M0R(r) = min{W (r, t)|t ∈ =(θ ) ∩ r•, θ ∈ 2(r)} +
6i∈Zmmax{Ir (p)|1(r) ∩ pAi}M0(pi0), and the corresponding
B[N , r] = min{W (r , t)|t ∈ r• ∩ =(θ ), θ ∈ 2(r)} by
Definition 10, and further all PA-circuits in2(r) will never be
saturated according to Lemma 3. Therefore, M0R, the output
of Algorithm CIR can ensures that all PA-circuits in � will
never be saturated.

To compute 2, Algorithm CP is called. For each r in PR,
the algorithm loops once, in which Algorithm CAR is called.
So the complexity of the loop process is O(µ2

|PA||2|) +
O(2µ|2|) = O(µ2

|PA|C)+O(2µC) ≤ O(µ2
|PA|C) whereC

is the number of all different PRT-circles in2. Then the com-
plexity of Algorithm CIR is O(3|T ||PR|C2)+ O(µ2

|PA|C).
Thus, we obtain the following conclusion.
Theorem 5: Let N be an S4PR with M00 and

M0A = 0. M0R is an initial resource marking computed by
Algorithm CIR. Then (N ,M0) is well-marked and live, where
M0 = [M00,M0A,M0R].
Example 7: Consider S4PR N in Figure. 1 with M00 =

6p1 + 6p6 and M0A = 0. Firstly, by using Algorithm CP,
we obtain 2 = {θ1 − θ10} as shown in Table 1. Then set
� = 2. We will execute the loop process for each resource
place in PR = {r1 − r4}.
For r2, we have 2(r2) ∩ � = {θ3, θ6 − θ10}. Note that

λ(θi, r2) = 1, ω(θi, r2) = ∅, ∀i ∈ {3, 6, . . ., 9}. By Algo-
rithm CIR, we can setM0R(r2) = min{W (r, t)|t ∈ =(θ )∩ r•,
θ ∈ 2(r)} + 6i∈Zmmax{Ir (p)|1(r) ∩ pAi}M0(pi0) = 1 +
6 = 7. Then, set � := � \2(r2) = {θ1, θ2, θ4, θ5}.

For r1, we have2(r1)∩� = {θ1, θ2, θ5}. Then λ(θ1, r1) =
4, ω(θ1, r1) = {2, 3}; λ(θ2, r1) = 6, ω(θ2, r1) =
{1, 2, 3, 4, 5}; λ(θ5, r1) = 10, ω(θ5, r1) = {1, 3, 5, 7, 9}.

According to Algorithm CAR, we haveM0R(r1) = 7. In fact,
since 7 − λ(θ1, r1) = 3 ∈ ω(θ1, r1), 7 − λ(θ2, r1) =
1 ∈ ω(θ2, r1), θ1 and θ2 cannot be saturated by Lemma 2.
Meanwhile, since M0R(r1) = 7 < λ(θ5, r1) = 10, θ5 cannot
be saturated either by Lemma 1. Set � := � \2(r1) = {θ4}.
For r3, we have 2(r3) ∩ � = {θ4}, λ(θ4, r3) = 2 and

ω(θ3, r2) = {1}. By using Algorithm CAR, we setM0R(r2) =
λ(θ4, r3)+ 1 = 3. Then, Set � := � \2(r3)=∅.
For r4, we have2(r4)∩� = ∅, then directly letM0R(r4) =

max{Ir4 (p)|p ∈ H (r4)} = 1.
Therefore, Algorithm CIR outputs M0R = 7r1 + 7r2 +

3r3 + r4. By combing M0R, we establish an initial marking
M0 = [M00,M0A,M0R] for S4PR N in Figure. 1, where
M00 = 6p1 + 6p6, MA0 = 0. We can check that (N ,M0)
is well-marked S4PR and live.
Example 8: Let us consider S4PR N shown

in Figure. 5 whose initial marking for idle places and oper-
ation places are M00 = 4p1 + 8p5 + 7p11 and M0A = 0,
respectively. By using CIR, we will design an initial marking
for resource places to enforce the liveness of this S4PR. First,
according to Algorithm CP, we obtain2 = {θ1− θ12} shown
in Table 2. Set � = 2.

TABLE 2. All PA-circuits of S4PR in Figure. 5.

For r1, we have 2(r1) ∩ � = {θ4 − θ7, θ9 − θ12}. Then
λ(θi, r1) = 1, ω(θi, r1) = ∅, ∀i ∈ {4, 5, 6, 7, 9, 10, 11, 12}.
By Algorithm CIR, we can set M0R(r1) = min{W (r, t)|t ∈
=(θ )∩r•, θ ∈ 2(r)}+6i∈Zmmax{Ir (p)|1(r)∩pAi}M0(pi0) =
1+ 8× 1 = 9. Set � := � \2(r1) = {θ1, θ2, θ3, θ8}.
For r4, we have 2(r4) ∩� = {θ2, θ8}. Then λ(θi, r4) = 2,

ω(θi, r4) = {1}, ∀i ∈ {2, 8}. According to Algorithm CAR,
we have M0R(r4) = 3. Set � := �\2(r4) = {θ1, θ2}.
For r5, we have 2(r5) ∩ � = {θ2}, and λ(θ2, r5) = 3,

and ω(θ2, r5) = {1, 2}. By using Algorithm CAR, we set
M0R(r5) = λ(θ2, r5)+ 1 = 4. Set � := � \2(r5) = {θ1}.
For r2, we have 2(r2) ∩ � = {θ1}, λ(θ1, r2) = 3,

and ω(θ1, r2) = {1, 2}. By using Algorithm CAR, we set
M0R(r2) = λ(θ1, r2)+ 1 = 4. Set � := � \2(r2) = ∅.
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For r3 and r6, we have 2(r3) ∩ � = ∅, 2(r6) ∩ � = ∅,
then directly let M0R(r3) = max{Ir3 (p)|p ∈ H (r3)} = 1 and
M0R(r6) = max{Ir6 (p)|p ∈ H (r6)} = 1.
Therefore, M0R = 9r1 + 4r2 + r3 + 3r4 + 4r5 + r6 is the

output of Algorithm CIR. Further, we can establish an initial
marking M0 = [M00,M0A,M0R] for S4PR N in Figure. 5,
where M00 = 4p1 + 8p5 + 7p11, MA0 = 0. It is checked
that(N ,M0) is a well-marked S4PR and live.

IV. CONCLUSION
This paper addresses the liveness enforcement problem for
a class of PN, S4PRs, which are able to model complex
RASs with the most general resource acquisition and flexible
routings. Our previous paper [3] points out that deadlocks in
S4PR are caused by saturated PA-circuit. Based on that struc-
tural property, first we investigate the relation between the
initial resource marking and the non-saturation of involved
PA-circuits. In other words, we try to establish some con-
dition for the initial marking of a resource place; if it is
hold some PA-circuits containing this resource will never be
saturated. Second, for a given S4PR, we develop its liveness
condition associated with the initial markings of all resource
places. Finally, for an S4PR where only the initial idle and
activity markings are given, an algorithm is proposed to
compute an initial resource marking so that S4PR with the
obtained initial marking is live.

So far, only the works [7], [22], [28] propose liveness-
enforcing approaches for PN models by configuring the ini-
tial resource marking. But their PN models are S3PR and
WS3PR, which are proper subclass of S4PR. Hence, their
method cannot be applied to S4PR but, on the contrary, ours
can enforce the liveness of S3PR and WS3PR.
In future, we intend to study the problem of liveness-

enforcing for S4PR by designing initial resource marking
with multiple objectives such as save resources and improve
permissiveness.
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