
SPECIAL SECTION ON INTELLIGENT AND COGNITIVE TECHNIQUES FOR INTERNET OF THINGS

Received September 1, 2019, accepted October 5, 2019, date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953019

Predictive Maintenance of Induction Motors
Using Ultra-Low Power Wireless Sensors and
Compressed Recurrent Neural Networks
MICHAŁ MARKIEWICZ 1,2, MACIEJ WIELGOSZ3, MIKOŁAJ BOCHEŃSKI2,
WALDEMAR TABACZYŃSKI2, TOMASZ KONIECZNY2, AND LILIANA KOWALCZYK2
1Faculty of Mathematics and Computer Science, Jagiellonian University, 30-348 Cracow, Poland
2Centre for Advanced Materials and Technologies CEZAMAT PW Sp. z o.o., 02-822 Warsaw, Poland
3Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059 Cracow, Poland

Corresponding author: Michał Markiewicz (markiewicz@ii.uj.edu.pl)

This work was supported by ECSEL JU (Electronic Component Systems for European Leadership Joint Undertaking) under Grant 692519
– PRIME (Ultra-Low Power Technologies and Memory Architectures for IoT).

ABSTRACT In real-world applications – to minimize the impact of failures – machinery is often monitored
by various sensors. Their role comes down to acquiring data and sending it to a more powerful entity, such
as an embedded computer or cloud server. There have been attempts to reduce the computational effort
related to data processing in order to use edge computing for predictive maintenance. The aim of this paper
is to push the boundaries even further by proposing a novel architecture, in which processing is moved to
the sensors themselves thanks to decrease of computational complexity given by the usage of compressed
recurrent neural networks. A sensor processes data locally, and then wirelessly sends only a single packet
with the probability that the machine is working incorrectly. We show that local processing of the data on
ultra-low power wireless sensors gives comparable outcomes in terms of accuracy but much better results
in terms of energy consumption that transferring of the raw data. The proposed ultra-low power hardware
and firmware architecture makes it possible to use sensors powered by harvested energy while maintaining
high confidentiality levels of the failure prediction previously offered by more powerful mains-powered
computational platforms.

INDEX TERMS IoT, Internet of Things, smart sensors, predictive maintenance, compressed recurrent neural
networks, RNN, edge computing, induction motors, bearing faults, vibration signature, electric motors.

I. INTRODUCTION
Around 50% of all energy generated in the world is consumed
by electric induction motors [1]. This leads to increased inter-
est in the topic of fault prediction and detection [2]. Typically,
automatic monitoring of a motor’s condition starts with the
acquisition of raw data, which is then fed into an artificial
intelligence system comprising of genetic algorithms, fuzzy
logic, artificial neural networks, expert systems or other sig-
nal processing techniques [3]–[9]. As the cost of condition
monitoring systems impedes their implementation, there are
attempts to develop low-cost solutions. One approach is to
decrease the amount of computational power required to
process the data, as well as the bandwidth needed for data

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Jia .

transmission. Such a solution involves using low-energy IoT
devices capable of processing raw data locally, without the
need to transfer said data [10]. In this article we propose a
novel, low-cost system that is capable of detecting selected
types of inductionmotor faults by utilizing compressed recur-
rent neural networks. The energy usage of said system is so
low that it is possible to power the smart sensor using energy
harvested from a small photovoltaic module or thermoelectric
generator. The article is organized as follows:

• In section II, we enumerate different types of faults that
occur in induction motors, then focus on the most com-
mon type of failure: bearing faults, and then discuss the
applicability of vibration analysis to bearing condition
monitoring.

• In section III, we describe artificial intelligence tech-
niques that can be used to predict bearing faults.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 178891

https://orcid.org/0000-0001-7508-4171
https://orcid.org/0000-0003-3551-8654

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

• In section IV, we introduce the dataset on which is used
to train the neural networks designated to work on low
power devices,

• In section V, we describe techniques that can be used to
minimize the power consumption and memory footprint
of said techniques.

• In section VI, we propose ultra-low power architecture
as a computational platform for running proposed artifi-
cial intelligence algorithm,

• Finally, in section VII, we show the results of our exper-
iments including tests of wireless sensor with ultra-low
power consumption used for predictive maintenance of
induction motors,

• In section VIII, we discuss the obtained results.

II. STATE OF THE ART
Research shows that 75% of all induction motor failures
are caused by stator or bearing faults, with about 40% of
those being bearing faults [11] (41% – according to IEEE,
42% – according to Electric Power Research Institute EPRI).
It follows that rolling elements are critical parts of motors.

Bearing faults can be divided into two categories: localized
and distributed [12]. The former group contains cracks, pits
and spalls defects on the rolling surfaces mainly caused by
fatigue cracks below the surface which may happen after
overloading or shock loading the bearings when a small piece
of metal is removed due to this shock, resulting in a small
pit or spall. Defects from the latter group are mainly caused
by a manufacturing error, improper installation or abrasive
wear [13]. A varying contact force between rolling elements
and raceways due to defects results in an increased vibration
level. Despite the fact that vibrations in bearings always
occur (because of a finite number of rolling elements to carry
the load, which – during rotation – change their position
in the load zone, causing a periodical variation of the total
stiffness of the bearing assembly [14]), their measurements
and analysis are very often used in condition monitoring of
bearings [15]. In the next section we describe the techniques
used for that.

A. DIAGNOSIS METHODS
In order to perform automatic fault detection, the raw sig-
nal is often preprocessed in a procedure known as feature
extraction [15]. This aims to reduce the amount of data that
a diagnostic system would otherwise have to deal with, and
instead focus on the relevant aspects thereof, represented by
these features. For example, the Fourier transform of the
signal could be used as a feature. The following paragraphs
provide an overview of methods which can be used with or
without feature extraction.
Artificial neural networks, described in more detail in

section III, are a machine learning method which has
been widely explored with different configurations and fea-
tures [15]. To a significant extent, the neural networks are
not manually engineered, but rely on data gained by auto-
mated learning. While this does give good results, it also

typically leads to a loss in interpretability, i.e. human ability
to understand the network’s reasoning process [16]. Expert
systems are one approach to remediating this issue. In their
simplest form, they are a set of rules in the form of IF this
THEN that. This introduces clear interpretability, but may
come at a loss of accuracy. Fuzzy logic, an extension of
Boolean logic in which truth values can be anywhere between
0 and 1, is also used due to its flexibility [17]. Finally, there
are support vector machines, which – for a given input – map
it to a vector in such a way that vectors corresponding to
inputs belonging to different categories (in this case: fault or
lack thereof) are separated by as wide gap as possible. The
use of support vector machines for bearing fault detection
is extensively described in [15]. In this paper, we focus on
artificial neural network techniques.

III. RECURRENT NEURAL NETWORKS
A. INTRODUCTION TO NEURAL NETWORKS
Neural networks are a popular machine learning approach
to pattern recognition which does not require hand-crafting
of features to analyze, and usually makes creating a model
for data analysis without domain-specific knowledge much
easier. They typically consist of a number of layers, each of
which is fed with an input vector and produces an output
vector, known as the activation. The input vector of each
layer is some combination of the activations of previous
layers and the network’s inputs, with some optional additional
components discussed later. The output of a neural network
is simply the output of its last layer. Each layer performs
some mathematical operations, like multiplication by the
weight matrix followed by addition of the bias vector and the
application of a (typically) point-wise function known as the
activation function. Any differentiable function can be used
as an activation function.

Neural networks can be further categorized by their archi-
tecture, i.e. the way the layers in them are interconnected. The
simplest case is the feed-forward neural network, in which
each of layer operates on the output of the previous one.
The applications of the simples architecture are limited,
in part because of its fixed input and output size, meaning
that it would be unable to process a sequence of arbitrary
length. This is also one of the reasons why we decided
to use recurrent neural network (RNN), which additionally
are specifically suited for the task of time series analysis.
Conceptual comparison of selected neural network types is
shown in Fig. 1.

B. INTRODUCTION TO RECURRENT NEURAL NETWORKS
In contrast to other approaches, recurrent neural net-
works (RRN) operate on the assumption that additional infor-
mation needed to solve the given task can be extracted from
temporal dependencies between observations. They operate
in timesteps, with each timestep t bringing in a new observa-
tion x(t). Crucially, they are also stateful – they have a way
of ‘‘memorizing’’ some information, in the form of a hidden

178892 VOLUME 7, 2019

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 1. Architectures of a standard feed-forward neural network (NN) (top), RNN (recurrent NN) (middle) and mapping
of outputs of RNN (bottom).

state h(t), to utilize later. In timestep t , the network has access
to h(t−1) and produces h(t). In fact, the network operates
recursively on its own output from the precious timestep –
and hence the name. The simplest setup of RNN is formally
described by equations (1) and (2).

h(t) = ψh(Whx × x(t) +Whh × h(t−1) + bh) (1)

y(t) = ψy(Wyh × h(t) + by) (2)

ψh and ψy are activation functions, Whx , Wyh and Whh are
weight matrices of the input-hidden, hidden-output and recur-
rent connections respectively; bh and by are bias vectors. The
symbol ‘×’ denotes matrix multiplication.

C. LONG SHORT-TERM MEMORY
In this paper, we use the long short-term memory (LSTM)
cell [18] as the basic building block of a recurrent neural
network. It is illustrated in Fig. 2. The LSTM proves to be
relatively stable, notably it is not suffering from the vanishing
or exploding gradient problem [19] – a common issue with
recurrent neural networks, that causes the strength of the
looped-back signal to either decay or grow exponentially.
Thanks to that, LSTM cells are highly popular in state-of-
the-art models [20].

The LSTM cell is fitted with gates, which decide which
part of its memory is passed on, and which is overwritten. The
control values of gates are in range between 0 and 1 and they
are multiplied by corresponding parts of the signal. There are
three different gates in each LSTM cell: an input gate (which
control value is denoted as i(t)c), an output gate (o(t)c) and a
forget gate (f (t)c). The internal values g(t)c and the persistent
state s(t)c flow in-between the gates. Input and output gates
control the flow of inputs into the cell and flow of the cell’s
outputs into the rest of the network, respectively. The forget
gate scales the internal cell state before summing it with the
input through the cell’s recurrent connection. Thanks to that,
the cell is able to control what information is stored for further
use.

There are several variants of LSTM architectures, some of
which contain peephole connections [21]. However, they are
not used in this work.

Formally, the operations of LSTM cells is governed by the
following vector equations:

g(t) = tanh(Wgx × x(t) +Wgh × h(t−1) + bg) (3)

i(t) = σ (Wix × x(t) +Wih × h(t−1) + bi) (4)

f (t) = σ (Wfx × x(t) +Wfh × h(t−1) + bf) (5)

o(t) = σ (Wox × x(t) +Woh × h(t−1) + bo) (6)

s(t) = g(t) � i(t) + s(t−1) � f (t) (7)

h(t) = tanh(s(t))� o(t) (8)

where the symbol ‘�’ denotes point-wise multiplication, and
‘×’ denotes matrix multiplication.

The cell’s gates are are used to preserve relevant informa-
tion while discarding everything else. For example, when the
input gate is closed (has value of 0), the cell’s state – and
therefore also its output – is entirely unaffected by the input in
the given timestep. To make it possible for the cell to entirely
discard some information without any leaks, a hard sigmoid
function σ is used, which can output 0 and 1 as given by
equation (9). Thanks to that, it is possible for gates to be fully
opened or fully closed.

σ (x) =


0 for x ≤ t0,
x − t0
t1 − t0

for x ∈ (t0, t1),

1 for x ≥ t1.

(9)

D. CLASSIFICATION WITH LSTMS
In the proposed neural network architecture, multiple LSTM
cells are used as the recurrent part of the neural network,
followed by a single feed-forward layer which is fed with
the outputs of these LSTM cells to produce the final out-
put. This is illustrated in Fig. 1, and formally described by
equation (10). This final layer uses the softmax activation
function (10), which produces a vector whose elements are
non-negative and add up to 1 – each can be interpreted as
the probability that the observed input sequence belongs to

VOLUME 7, 2019 178893

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 2. The architecture of a LSTM cell.

its corresponding class. In our case, we have two classes –
‘normal functioning’ and ‘anomalous functioning’.

y(t) = softmax(Wyhh(t) + by)

softmax(x)i =
exi∑n
j=1 e

xj
(10)

Note that the softmax function is not point-wise, it operates
on an entire vector.

E. TRAINING NEURAL NETWORKS
Neural networks are typically trained using an algorithm
called backpropagation [19]. To used it, a loss function is
required – it is a measure of how well the neural network
is performing, with greater values indicating poorer results.
The derivatives of this function with respect to every trainable
parameter in the network (weight matrix, bias vector) are
calculated, and gradient descent is performed in an attempt
to minimize the loss.

In recurrent neural networks a variation of backpropaga-
tion known as backpropagation through time [20] is used,
and number of timesteps for which the gradient is back
propagated is called lookback [18], [20].

IV. DATASET
Wedemonstrate the capabilities of the proposed artificial neu-
ral network system on the NASA bearing dataset [22]. This
dataset consists of the results of three similar experiments
carried out on electric induction motors, which were driven

for long periods of time until a bearing fault occurred. In each
experiment, there were four bearings, each with one or two
single axis accelerometers attached. With minor exceptions,
measurements were gathered over a period of one second
every 10 minutes, at a sampling frequency of 20kHz. The
duration of these experiments ranges from less than a week
to over a month. In the spectrogram shown in Fig. 3 in
the frequency domain it is clearly visible the moment when
the fault occurred. Similarly, for acceleration measurements
sampled with frequency of 100Hz, as shown in Fig. 4.
We labelled each data sample as coming from a machine

that is normal functioning, anomalous functioning (a bear-
ing fault), or unknown. We labelled the first half of each
experiment as normal functioning and the last few days
(3 in the second experiment, 10% of experiment duration
in the first and the third experiments) as anomalous func-
tioning. The samples in between we labelled as unknown.
We split the dataset into three parts: one used for training the
AI, the second for validating the AI’s progress during train-
ing, and the third one for testing. The training set consists of
about 50%of the data, with the other two having about 25%of
data each.

A. TAILORING THE DATASET TO WSN LIMITATIONS
The dataset was acquired using advanced sensors. Wireless
sensor nodes that have very constrained power budget so it
is not possible to use high sampling frequencies for longer
intervals without a risk of draining the battery. For that reason

178894 VOLUME 7, 2019

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 3. Spectrogram of accelerations from test No. 2 with original
20kHz sampling frequency. It is easy to see the moment the bearing fault
occurred. Acceleration scale is not linear: – 20g, – 2g, – 0.4g, – 0g.

we downsampled the data to create learning datasets for RNN
with sampling frequencies of 100Hz, 200Hz and 400Hz to
explore tradeoffs between computational efficiency of pro-
cessing the data and accuracy of the results.

V. NEURAL NETWORK COMPRESSION FOR WSN
Ultra low power microcontrollers used in wireless sensor
nodes have very limited resources in terms of processing
capabilities, available memory and time they could spent on
computations without the risk of draining the battery. For that
reason, a process known as compressionmay be used to trade
the network’s accuracy for its size, which translates into com-
putational performance. The popular compression techniques
are: pruning, that minimizes the number of parameters in the
model, and quantization, which decreases the bit-length of
said parameters [23].

A. PRUNING
Pruning aims to remove the parameters of the neural network
which contribute the least to overall accuracy. It exploits the
fact that the weights of trained neural networks typically
follow a predictable pattern: most values are close to 0,
with only a few outliers with a significant absolute value.
Broadly speaking, it is these outliers that contribute the most
to accuracy. There are many pruning strategies [24]–[28].
In the simplest one, for every layer, we set to zero all weights
with are close to this value. Given weightsW = [w0, . . . ,wk]
where wi ∈ R, the pruned weights are given by W ′ =
[w′0, . . . ,w

′
k] (11). The accuracy-efficiency tradeoff can be

controlled by adjusting the ratio ∈ [0, 1]:

w′i =

{
0 if |wi| < ratio ·max(|W |),
wi otherwise.

(11)

Pruning gives high compression ratios at a negligible loss in
accuracy [26]. To benefit from it in terms of computational
time it requires support of sparse matrix multiplication.

B. QUANTIZATION
Quantization reduces the bit-length of the parameters, inputs
and activations of a neural network. Moreover, this process

FIGURE 4. Spectrogram of the accelerations from the same experiment as
shown in Fig. 3 sampled with frequency of 100Hz. The increase in
vibration due to bearing faults remains visible despite much lower
sampling frequency.

might include conversion of floating-point weights into inte-
gers, which greatly improves computational time, especially
on ultra-low power devices. In our work we use linear, min-
max, logarithmic and tanh quantizations which are described
below.

The linear quantization utilizes a zero-centered range
which is wide enough for all the original weights to fit into it.
The possible values of the quantized weights are distributed
evenly within that range; each weight is rounded to the
nearest possible value. For a weight matrix W , the original
floating-point value of a single weight w ∈ W , the target
number of bits in fixed-point representation we define linear
quantization as:

linear(w,W) = slin(W) · c(w)

c(w) = clamp
(
r(w),−2bits−1, 2bits−1 − 1

)
r(w) =

⌊
w

slinear
+

1
2

⌋
slin(W) = 21−(bits−bitsint (W))

int_bits(W) =
⌈
log2max(|W |)

⌉
clamp(a,min,max) = min(max(a,min),max) (12)

where slin is a scaling factor (the smallest possible distance
between two quantized values), int_bits is the number of bits
needed to store the integral part, and clamp(a,min,max) is
the clamping function.
Minmax quantization uses an interval which bounds are the

minimal and maximal value ofW :

minmax(w,W) = s(W) ·
⌊
w−min(W)
sminmax

+
1
2

⌋
+ min(W) (13)

s(W) =
max(W)−min(W)

2bits − 1
Hyperbolic tangent quantization preserves precision for

lower absolute values:

thq(w) = arctanh
(
sthq ·

⌊
tanh(w)+ 1

sthq
+

1
2

⌋
− 1

)
sthq =

2
2bits − 1

VOLUME 7, 2019 178895

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 5. The process of compressing neural network parameters using
pruning and quantization techniques to speed up computations on low
power devices such as wireless sensor nodes.

The process described in this section that makes neural
network smaller and less demanding in terms of computa-
tional power is shown in Fig. 5. In the next section we will
present the ultra-low power wireless platform on which the
compressed neural networks will be running.

VI. WIRELESS SENSOR NODES WITH AI
The general hardware architecture of a WSN node can be
divided into four subsystems [29], [30]:
• Communication subsystem for wireless data transmis-
sion, consisting of radio transceiver and antenna,

• Computing subsystem for data processing andmanaging
of the node, consisting of microcontroller unit MCU)
with processor core, memory, timers and input-output
ports,

• Sensing subsystem, for acquiring data about the environ-
ment, consisting of a set of sensors communicating with
MCU,

• Power subsystem, for providing and regulating power
supply voltage, consisting of energy storage, voltage
regulation and optionally an energy harvester.

The most fundamental requirement in design of WSN is
its energy efficiency, because replacement or recharging of
batteries is difficult due to large number of nodes or limited
access to the place where they are deployed [31]. Applicabil-
ity of a WSN is considered adequate if its lifetime is at last
several months [30]. This is one of that reasons why sensors
used in nodes are mostly low-power, small-sized and factory-
calibrated, it helps to unloadMCU and keep its computational
time at minimum.

The current paradigm of wireless sensor nodes is about
gathering raw data and then transmitting it to a more pow-
erful device for further processing. Our approach pushes the
boundaries of this paradigm by performing actual processing
on the sensor itself in an energy-efficient way, and transmit-
ting only a single number reflecting probability of fault. The
firmware and software architecture we used for that purpose
have been developed as a part of PRIME project (Ultra-Low
Power Technologies and Memory Architectures for IoT).

A. WIRELESS COMMUNICATION
There are several short-range wireless communications stan-
dards used in IoT devices including IEEE 802.15.1, IEEE
802.15.3, IEEE 802.15.4 and IEEE 802.11. Each technology
makes trade-offs between bandwidth, power consumption,
latency and range [32]. Multiple wireless sensor networks

FIGURE 6. Measurements of the power consumption of a WSN node
during sensor activity. At first the node wakes up before expected time of
arrival of beacon, and prepares the embedded radio for transmission.
Then it goes a lower power mode for a while, just to make transition to a
run mode, perform radio reception and transmission and then goes back
to a deep sleep mode. Current measured as voltage drop over 5� shunt
resistor. Input voltage: 3V.

use IEEE 802.15.4 protocol for data communication using
low-data-rate, low-power radio transmission which is best
suited for battery-powered devices working in noisy, indus-
trial environment. [33]. One of them is GreenNet, which
has been initially developed by STMicroelectronics and then
by Université de Grenoble and Cezamat [34]. We use it in
our design at 2.4GHz frequency band. To improve energy
efficiency and robustness, it heavily relies on beacon-enabled
mode. This helps in minimization of the activity time of
the sensor node: it only wakes up at regular time intervals
(according to beacons sent by a network coordinator), spend-
ing the remaining time in deep sleep mode. This aggressive
energy conservation scheme helps in achieving an average
energy consumption at a level of tens of µW – despite the
fact that, during normal activity, nodes consume tens of mW.
Power consumption profile during activity period, i.e. node
wakeup, beacon reception, data transmission and transition
to sleep mode is presented in Fig. 8.

Having insight into the power requirements of radio trans-
mission, we might consider when it is more energy efficient
to analyze the data locally and when to transmit them as they
are. Data transmission of a single packet as shown in Fig. 8
consumes about 0.5mJ of energy. Suppose that the sensor
(three-axis accelerometer) is configured to have sampling
frequency of 100Hz. It means that the sensor generates one
hundred triplets describing acceleration alongX, Y and Z axis
(plus one hundred and one if temperature is also registered)
every second. Even if only the 8 most significant bits of each
number are taken, one second of sensing generates almost a
kilobyte of data to be send. Increasing the sampling frequency
to 400Hz gives about 32kB. The IEEE 802.15.4 PHY stan-
dard only supports frames of up to 127 bytes, of which up to
25 bytes (depending on the addressing scheme) is reserved.
This means that transmitting a single sample would require
at least 8 packets (32 for 400Hz). In the simplest scenario,
when one packet is sent (no Guaranteed Time Slots (GTS)
are used, and there is no collision during transmission),

178896 VOLUME 7, 2019

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 7. Hardware architecture of ultra low power wireless sensor
nodes.

it would require 4mJ of energy (or 16mJ for 400Hz sampling
frequency). Before we compare this values with the energy
consumed by the proposed neural network algorithm that runs
locally on a node, we will describe the hardware architecture
of the used wireless sensor node.

B. HARDWARE PLATFORM
Well designed wireless node should spend about 99% of
the time in sleep mode [30]. It means that overall energy
budget is heavily influenced by energy consumed in sleep
mode. For that reason we selected a microcontroller (MCU)
that supports low-leakage deep sleep modes. The MCU of
choice (MKW41Z512) is a system on a Chip (SoC) with a
IEEE 802.15.4 radio transceiver, and 48 MHz ARM Cortex-
M0+ processor core. It has several sleep modes, with some
of them characterised by extremely low power consumption.
In a very-low-power stop mode (VLPS) current drawn by the
MCU is as small as 3.58µA (buck mode operation for 3V
input at 25◦C). In a very-low-leakage stop mode (VLLSx)
current drawn by the MCU goes to 0.46µA (buck mode
operation for 3V input at 25◦C) [35].

The sensor used for gathering data about vibrations –
ADXL363 – is an ultra-low power sensor consisting of a
3-axismicroelectromechanical systems (MEMS): accelerom-
eter and temperature sensor. It consumes less than 2µA at a
100 Hz output data rate. ADXL363 communicates withMCU
via a serial port interface (SPI) and provides 12-bit output
resolution for accelerometer and temperature. Its sampling
frequency could be increased up to 400Hz.

The nodes have two variants of power supply. The first
variant has a power subsystem which contains ultra-low
power boost regulator with MPPT and charge management
which was suitable for photovoltaic (PV) and thermoelec-
tric (TEG) energy harvesting (ADP5090). The second variant
of nodes has a connector which allows attaching battery
or cables from a laboratory power supply. For energy con-
sumption measurements we used the second variant to have
better stability of measurements due to lack of dependency on
the availability of ambient light or variations in temperature
gradient. The hardware architecture is presented on Fig. 7.
The nodes are presented on Fig. 10 and Fig. 11.

C. FIRMWARE
The firmware running on the sensor node is governed by a
real time operating system (RTOS) for resource-constrained

devices in the Internet of Things (IoT) that contains of a
low-power IPv6 communication stack [36]. The main activi-
ties of the sensor could be presented in a form of infinite loop:

• Device wake-up (timer-triggered interrupt),
• Data acquisition from accelerometer,
• LSTM calculations,
• Feedforward layer calculations,
• Waiting for a beacon for network synchronization,
• Sending AI computation’s results,
• Going back into deep sleep mode.

Wireless sensor nodes are not the best devices for execution
of advanced algorithms due to reasons given in the previ-
ous sections. What we would like to show, is that they are
good enough to do the processing of some artificial intelli-
gence algorithms like compressed recurrent neural network
(CRNN), while consuming amount of energy comparable
with energy spent on maintaining wireless radio connectivity.
To prove that, we have to analyze CRNN processing shown
as Algorithm 1.

Algorithm 1 CRNN Data Processing Algorithm
1: sprev← 0
2: hprev← 0
3: a← getMeasurementsFromAccelerometer()
4: for it < MEASUREMENTS_COUNT do
5: x ← ax[i]
6: g← tanh(Wgx × x +Wgh × hprev + bg)
7: i← σ (Wix × x +Wih × hprev + bi)
8: f ← σ (Wfx × x +Wfh × hprev + bf)
9: o← σ (Wox × x +Woh × hprev + bo)

10: s← g� i+ sprev � f
11: h← tanh(s) � o
12: sprev← s
13: hprev← h
14: it ← it + 1
15: end for
16: y← softmax(Wyh × h+ by)
17: enqueueResultForTransmission(y)

The accelerometer is configured to collect the data for
one second periods with sampling frequency of 100Hz.
At first MCU reads 100 triplets from accelerometer’s buffer
containing of the values of acceleration along X, Y and Z
axis (line 3). Then MCU iterates over the readouts (line 4),
taking the value of acceleration along one of its axis (X in
this case) and performing calculations which correspond to
equations (3)-(6) described earlier in Section III-C. Finally,
the result is processed using softmax function and enqueued
for wireless transmission. Time consuming calculations of
hiperbolic tangent has been avoided by using of lookup
table with pre-computed values. The rest of the computations
are mostly adding and multiplications of elements of matri-
ces. And their computational complexity depends on their
dimensions.

VOLUME 7, 2019 178897

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 8. Measurements of the power consumption of a WSN node
during neural network processing. The probe registers current
consumption (voltage drop over 10� shunt resistor). Three consecutive
blocks represent processing of 100 readouts from accelerometer with
three neural networks of size 64, 32 and 16 LSTMs. Sources compiled with
–O3 optmization flag. Input voltage: 3V.

To illustrate the power consumption during CRNN pro-
cessing we performed several experiments for different net-
work sizes (we altered the number of LSTMs while keeping
number of samples at the same level). The measurements of
power consumption for one hundred samples processed by
64, 32 and 16 LSTMs are shown in Fig. 8. Current consump-
tion during processing of 16 LSTMs neural network turned
out to be significantly higher than for networks of size 32 and
64 LSTMs. To investigate this phenomenon we compiled the
same source code without any optimizations. Measurements
of the power consumption shown in Fig. 9 reveal that the
peak power consumption for networks of sizes 64, 32 and
16 LSTMs is the same, and similar to the power consumption
of NN with 16 LSTMs compiled with optimization flag.
Execution of a non-optimized code for 32 and 64 LSTMs NN
shows that there are cycles of short (∼0.5ms for 64 LSTMs)
periods of high power consumption (when functions like tanh
are computed), and long (∼3.5ms for 64 LSTMs) periods of
low energy consumption (when matrix multiplications take
place). Those cycles are repeated multiple times. Different
computational complexity of those two kinds of operations
(tanh computation and matrix multiplication) in connection
with optimizations performed by compiler, manifests in dif-
ferent power consumption profiles for NN of different sizes
as shown in Fig. 8.

TABLE 1. Time, current and energy consumption for neural network
processing on WSN node with different number of LSTM.

Table 1 contains the summary of the energy consumption
for different sizes of CRNN. We see that for 16 LSTMs,
the energy consumption spent on computations is at the same
level as energy spent on maintaining regular network connec-
tivity of within WSN.

FIGURE 9. Measurements of the power consumption of a WSN node
during neural network processing with a non-optimized code (sources
compiled with –O0 flag). The current consumption is measured in the
same way as described in Fig. 8 for three neural networks of size 64,
32 and 16 LSTMs. Without optimization processing time is more than
three times slower.

D. ENERGY BUDGET AND DUTY CYCLE
The rhythm of sleep and activity of a WSN node is strictly
related to its network activity. IEEE 802.15.4 defines two
kind of devices with different connectivity capabilities.
Low-complexity and low-cost Reduced Function Device
(RFD), that connect to a single more advanced Full Function
Device (FFD), which in contrary can establish multiple con-
nections to RFDs and perform network routing. The wireless
network working in a beacon-enabled mode has two param-
eters 0 ≤ SO ≤ BO ≤ 14 that define duration and frequency
of RFD and FFD network activity. The time between beacons
– beacon interval BI is defined as:

BI = Ts × 2BO (14)

for a single radio symbol lasting for ts = 16µs in the 2.4GHz
frequency band, and duration of base super frame equals
to 960 symbols, we obtain Ts = 960 × ts = 15.36ms.
BI determines the periods for which RFD could remain in
a sleep mode. The length of super frame duration – SD is
defined as:

SD = Ts × 2SO (15)

and determines the time when FFD devices have to be active
to handle network activity of RFD devices connected to it.
From our perspective, more important parameter is beacon
interval, because we want our device to be a simple RFD and
to save the energy as much as possible, delegating routing
activities to other elements of the WSN.

Duty cycle, i.e. the fraction of one beacon period in which
the node is active is determined by BI and time spent on data
processing. Assuming for simplicity, that every time the node
performs network activity it also launches neural network
computations, for BO = 7 energy for that two activities is
spent every 27 × 15.36ms = 1.98s for BO = 8 – for every
3.93s, and so on. As BO increases, dominating component
in energy consumption equation is not neural network pro-
cessing and wireless transmission but energy spend during

178898 VOLUME 7, 2019

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

TABLE 2. Energy consumption for different values of BO parameter
of 802.15.4 WSN. Energy spent on transmission is equal to 570µJ, energy
spent on data processing is equal to 520µJ. Power consumption during
sleep time equals to 3.58µA (VLPS at buck mode operation for 3V input
at 25◦C).

sleep time. The summary of energy expenses of a RFD is
presented in Table 2. The given values apply to a normal net-
work activity. Energy expenses for device registration within
the network during installation is not taken in into account
in estimations of average power consumption because it is
performed only once.

E. BATTERY POWER SUPPLY
Power subsystem consisting of at least energy storage and
voltage regulation module is required to give the autonomy
to the node. Non-rechargeable primary batteries like popular
lithium coin cell CR2032 in low pulse drain applications like
the one described in this paper, will have a capacity near to
its average drain [37]. For one-minute activity intervals cor-
responding to BO=12, the averaged current is below 10µA,
which gives more than six months of operations. Using larger
battery like CR2450 battery could extend this period to more
than six years [37]. The nodes with detachable batteries are
presented in Fig. 10.

FIGURE 10. IEEE 802.15.4-compatible wireless sensor nodes with
ultra-low power accelerometer and detachable power supply. On the right
hand side there is a WSN node with a battery attached.

F. ENERGY HARVESTING POWER SUPPLY
Designing the node for unlimited lifetime by powering it
by harvested energy seems to be more environment-friendly
solution and also dramatically decreases the cost of the main-
tenance of WSN node. Thermoelectric generators (TEGs)
seems to be a good choice, due to temperature gradient
created by friction in bearings and induction motor itself. For
more information regarding TEG-powered WSN please refer
to [30], [38].

The other approach is to use photovoltaic modules (PVs) as
a source of energy, which do not require physical contact with

the source of heat as in case of TEG. We decided to use this
approach. The PV of choice was AM-1801 amorphous silicon
solar cell suitable for indoor applications, with typical charac-
teristics 3.0V, 18.5µA at FL-200 lux [39]. In connection with
ADP5090 ultra-low power boost regulator with maximum
power point tracking (MPPT) andVL-2020 vanadium lithium
rechargeable battery they are well suited for work in low-light
conditions. The nodes with photovoltaic energy harvester are
presented in Fig. 11.

FIGURE 11. IEEE 802.15.4-compatible wireless sensor nodes with
ultra-low power accelerometer and photovoltaic cell for energy
harvesting.

VII. EXPERIMENTS & RESULTS
To verify the concept of detection of inductionmotor faults on
ultra-low power wireless sensor, we had to harmonize several
parameters of the system: power consumption of a node dur-
ing algorithm processing with power supply provided either
by battery or energy harvester; processing time – long enough
for performing neural network (NN) computations, but not
too long to preserve good battery condition; size of the NN
– to ensure it fits into device memory, and not too small to
maitain all critical information stored in it.

We will start with explanation of the adjustment of NN
parameters.

A. NEURAL NETWORK ADJUSTMENTS FOR WSN
We started our experiments from defining of metrics that
would help us in measuring accuracy of fault detection.
Thanks to that we were be able to change the number of
LSTM cells and compression parameters that directly impact
computational time onWSN node and observe how it impacts
the accuracy.

We defined the first metric accuracy – as proportion of
correctly classified samples t to the sum of correctly and
incorrectly classified samples t + f :

accuracy =
t

t + f
. (16)

VOLUME 7, 2019 178899

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

TABLE 3. Comparison of accuracy of recurrent neural network with
16 LSTMs, lookback of 32 with other classification methods (one-channel
samples).

TABLE 4. Confusion matrix for uncompressed RNN with 16 LSTMs,
lookback of 32 and one-channel data input, and CRNN with the same
parameters compressed using thq 8-bits quantization.

Then we defined two auxiliary metrics recall and precision:

recall =
tp

tp+ fn
, (17)

precision =
tp

tp+ fp
, (18)

where:
tp – true positive is the number of items correctly classified

as an anomaly,
fp – false positive is the number of items incorrectly clas-

sified as an anomaly,
fn – false negative is the number of items incorrectly clas-

sified as non-anomaly,
and F1-score metric as:

F1 = 2 ·
recall · precision
recall+ precision

. (19)

Initially, we trained the NN with 32 LSTMs, lookback
of 64 and with information from four channels using Ten-
sorFlow [40], Keras [41] and Analysta [42]. We obtained the
accuracy of detection at 96.4%. Then we decreased by half
the number of LSTMs and lookback, and reduced the number
of channels to one to match the power capabilities of the
designed WSN node. We compared the performance of this
neural network with the results given by other classification
methods (presented in Table 3).

With 91.97% of accuracy we found this result acceptable,
but to satisfy our curiosity we also tested several compression
methods of this recurrent neural network.We found the hiper-
bolic tangent 8-bits quantization (thq) the most interesting.
The comparisons of confusion matrices of uncompressed and
thq-quantized NN is presented in Table 4.

The comparison of several compression methods is pre-
sented in Table 5. All accuracy values are reported for the
testing set, which is never presented to the AI during training.
They are reported for a setup in which every channel has been
presented to the NN at some point during training, so the
NN did have the opportunity to learn the specific dynamics
of every bearing setup. However, in a different experiment

TABLE 5. Compression ratio and accuracy of recurrent neural networks
with 32 LSTMs, lookback of 32, single channel input (one axis) and 100Hz
sampling frequency.

TABLE 6. Dependency between sampling frequency, quantization,
accuracy and size of the data. Feeding CRNN with a lot of uncompressed
data does not lead to any significant improvement of accuracy.

in which only data from one induction motor was made
available to the NN during training, we did not observe a
significant drop in accuracy when running the network on
data from another induction motor. It might be surprising that
in some cases compressed models – even those having the
size of about 25% of the original model – give better results
that the uncompressed model. This is possible because the
compression may serve as additional normalization step.

After multiple numerical experiments with different recur-
rent neural network parameters, we decided to use in WSN
node a small and robust 8-bits hyperbolic tangent compressed
neural network with 16 LSTMs and lookback of 32.

The proposed approach leads to the best performance in
a scenario where the computations are preformed locally of
the sensor device with limited need for data transfer outside
the sensing node. Furthermore, the sampling rate should
be the lowest possible in order to meet the energy budget.
On the other hand, it should also model the phenomenon
with expected quality. We tested several versions of com-
pressed models. The tradeoffs between the size of input data
(as a function of sampling frequency and quantization) and
accuracy is presented in Table 6. Computing CRNN with a
large datasets of accelerometer readouts does not lead to any
significant improvement of accuracy.

B. TESTS WITH RUNNING INDUCTION MOTOR
We installed the sensors inmachinery similar to one described
in NASA dataset [22]. Sensors wirelessly transmitted raw
data read from embedded accelerometers and temperature
sensor for further analysis. Fig. 12 presents the test site.

178900 VOLUME 7, 2019

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

FIGURE 12. Machine with a 1.5kW three phase induction motor. The shaft
is installed within a pair of spherical roller bearings (ISO: 22207 CAW33,
basing load rating dynamic C: 66500N, static C0: 76000N, limiting speed
with grease lubrication: 5300 rpm). To speed up bearing fault we set the
rotational speed to maximal allowed (5300 rpm) and did not install the
shaft coaxially, but we slightly misaligned it.

Sensors were powered by a laboratory power supply,
to ensure stable power supply. The test shown that the power
consumption is at designed levels, nodes work stable and
wireless communication is reliable. However, we were not
able to confirm accuracy of the neural network because our
machine has bearings without oil circulation system to force
lubricate them which also regulates the flow and the temper-
atures of the lubricant. Having such a system would allow us
using of a magnetic plug installed in the oil feedback pipe to
collect debris from the oil as evidence of bearing degradation.
Once the accumulated debris adhered to the magnetic plug
exceeds a certain level and causes an electrical switch to
close, we would conclude the machinery broken.

VIII. CONCLUSIONS & FUTURE WORK
In this paper we shown that ultra-low power sensors could
be used as an artificial intelligence platform for running of
compressed recurrent neural networks for conditional mon-
itoring of induction motors. Sensors programmed that way
offer great value for their users, because they could work
without cloud backend that performs actual data analysis.
We also demonstrated that the power consumption of the
sensors could be reduced to the values making it possible
to power them using harvested energy, minimizing a need
of sensor maintenance and eliminating installation of cables.
We also proved that a sensor with recurrent neural network
could process the raw data, taken from the sensor as it is,
without any filtering, preprocessing nor feature extraction.

In the future we would like to investigate possibilities of
learning healthy condition at the beginning of machine’s life

– in a similar way as described in [10]. Moreover, we want
to learn how accuracy of fault prediction changes when addi-
tional data is provided to the neural network like temperature
or current consumption of an induction motor.

REFERENCES
[1] I. Sudhakar, S. AdiNarayana, and M. AnilPrakash, ‘‘Condition

monitoring of a 3-Ø induction motor by vibration spectrum
anaylsis using Fft analyser-a case study,’’ Mater. Today: Proc.,
vol. 4, no. 2, pp. 1099–1105, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214785317301256,
doi: .10.1016/j.matpr.2017.01.125.

[2] D. Goyal, B. S. P. Vanraj, and S. S. Dhami, ‘‘Condition monitoring param-
eters for fault diagnosis of fixed axis gearbox: A review,’’ Arch. Comput.
Methods Eng., vol. 24, no. 3, pp. 543–556, 2017, doi: 10.1007/s11831-016-
9176-1.

[3] W. Zhang, M.-P. Jia, L. Zhu, and X.-A. Yan, ‘‘Comprehensive overview on
computational intelligence techniques for machinery condition monitoring
and fault diagnosis,’’ Chin. J. Mech. Eng., vol. 30, no. 4, pp. 782–795,
Jul. 2017, doi: 10.1007/s10033-017-0150-0.

[4] G. I. S. Palmero, J. J. Santamaria, E. M. de la Torre, and
J. P. González, ‘‘Fault detection and fuzzy rule extraction in AC
motors by a neuro-fuzzy ART-based system,’’ Eng. Appl. Artif.
Intell., vol. 18, no. 7, pp. 867–874, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197605000321,
doi: 10.1016/j.engappai.2005.02.005.

[5] N. Gindy and A. Al-Habaibeh, Condition Monitoring of Cutting Tools
Using Artificial Neural Networks, London, U.K.: Macmillan, 1997.
pp. 299–304, doi: 10.1007/978-1-349-14620-8_47.

[6] Y.-R. Hwang, K.-K. Jen, and Y.-T. Shen, ‘‘Application of cepstrum and
neural network to bearing fault detection,’’ J. Mech. Sci. Technol., vol. 23,
no. 10, p. 2730, Oct. 2009, doi: 10.1007/s12206-009-0802-9.

[7] V. Sugumaran and K. I. Ramachandran, ‘‘Effect of number of fea-
tures on classification of roller bearing faults using SVM and PSVM,’’
Expert Syst. Appl., vol. 38, no. 4, pp. 4088–4096, Apr. 2011,
doi: 10.1016/j.eswa.2010.09.072.

[8] R. Milne, ‘‘Artificial intelligence for online diagnosis,’’ IEE Proc. D,
(Control Theory Appl.), vol. 134, no. 4, pp. 238–244, Jul. 1987. [Online].
Available: https://digital-library.theiet.org/content/journals/10.1049/ip-
d.1987.0040

[9] B. K. N. Rao, P. S. Pai, and T. N. Nagabhushana, ‘‘Failure diagnosis and
prognosis of rolling—Element bearings using artificial neural networks:
A critical overview,’’ in Proc. J. Phys., Conf. Ser., vol. 364, May 2012,
Art. no. 012023, doi: 10.1088/1742-6596/364/1/012023.

[10] S. K. Bose, B. Kar, M. Roy, P. K. Gopalakrishnan, and A. Basu, ‘‘ADE-
POS: Anomaly detection based power saving for predictive maintenance
using edge computing,’’ in Proc. 24th Asia South Pacific Design Automat.
Conf., New York, NY, USA, 2019, pp. 597–602, doi: 10.1145/3287624.
3287716.

[11] A. Choudhary, D. Goyal, S. L. Shimi, and A. Akula, ‘‘Condition
monitoring and fault diagnosis of induction motors: A review,’’ Arch.
Comput. Methods Eng., vol. 26, no. 4, pp. 1221–1238, Sep. 2019,
doi: 10.1007/s11831-018-9286-z.

[12] J. Liu and Y. Shao, ‘‘Overview of dynamic modelling and analysis of
rolling element bearings with localized and distributed faults,’’ Nonlinear
Dyn, vol. 93, no. 4, pp. 1765–1798, Sep. 2018, doi: 10.1007/s11071-018-
4314-y.

[13] C. Sunnersjö, ‘‘Rolling bearing vibrations—The effects of geometrical
imperfections and wear,’’ J. Sound Vib., vol. 98, no. 4, pp. 455–474,
1985. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0022460X85902561, doi: 10.1016/0022-460X(85)90256-1.

[14] N. Tandon and A. Choudhury, ‘‘A review of vibration and acoustic mea-
surement methods for the detection of defects in rolling element bearings,’’
Tribology Int., vol. 32, no. 8, pp. 469–480, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301679X99000778,
doi: 10.1016/S0301-679X(99)00077-8.

[15] I. El-Thalji and E. Jantunen, ‘‘A summary of fault modelling and pre-
dictive health monitoring of rolling element bearings,’’ Mechanical Sys-
tems and Signal Processing, vols. 60–61, pp. 252–272, Aug. 2015,
doi: 10.1016/j.ymssp.2015.02.008.

VOLUME 7, 2019 178901

http://dx.doi.org/10.1016/j.matpr.2017.01.125
http://dx.doi.org/10.1007/s11831-016-9176-1
http://dx.doi.org/10.1007/s11831-016-9176-1
http://dx.doi.org/10.1007/s10033-017-0150-0
http://dx.doi.org/10.1016/j.engappai.2005.02.005
http://dx.doi.org/10.1007/978-1-349-14620-8_47
http://dx.doi.org/10.1007/s12206-009-0802-9
http://dx.doi.org/10.1016/j.eswa.2010.09.072
http://dx.doi.org/10.1088/1742-6596/364/1/012023
http://dx.doi.org/10.1145/3287624.3287716
http://dx.doi.org/10.1145/3287624.3287716
http://dx.doi.org/10.1007/s11831-018-9286-z
http://dx.doi.org/10.1007/s11071-018-4314-y
http://dx.doi.org/10.1007/s11071-018-4314-y
http://dx.doi.org/10.1016/0022-460X(85)90256-1
http://dx.doi.org/10.1016/S0301-679X(99)00077-8
http://dx.doi.org/10.1016/j.ymssp.2015.02.008

M. Markiewicz et al.: Predictive Maintenance of Induction Motors Using Ultra-Low Power Wireless Sensors and CRNNs

[16] Z. C. Lipton, ‘‘The mythos of model interpretability,’’ 2016,
arXiv:1606.03490. [Online]. Available: https://arxiv.org/abs/1606.03490

[17] L. A. Zadeh, ‘‘Fuzzy logic,’’ Computer, vol. 21, no. 4, pp. 83–93,
Apr. 1988.

[18] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997,
doi: 10.1162/neco.1997.9.8.1735.

[19] A. Graves, Neural Networks. Berlin, Germany: Springer, 2012.
[20] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recur-

rent neural networks for sequence learning,’’ 2015, arXiv:1506.00019.
[Online]. Available: https://arxiv.org/abs/1506.00019

[21] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, ‘‘LSTM: A search space odyssey,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[22] A. Djebala, N. Ouelaa, and N. Hamzaoui, ‘‘Detection of rolling bear-
ing defects using discrete wavelet analysis,’’ Meccanica, vol. 43, no. 3,
pp. 339–348, Jun. 2008, doi: 10.1007/s11012-007-9098-y.

[23] M. Wielgosz and M. Karwatowski, ‘‘Mapping neural networks to FPGA-
based IoT devices for ultra-low latency processing,’’ Sensors, vol. 19,
no. 13, p. 2981, 2019. [Online]. Available: https://www.mdpi.com/1424-
8220/19/13/2981, doi: 10.3390/s19132981.

[24] Y. LeCun, J. S. Denker, and S. A. Solla, ‘‘Optimal brain damage,’’ in
Advances in Neural Information Processing Systems, D. S. Touretzky, Eds.
San Mateo, CA, USA: Morgan Kaufmann, 1990, pp. 598–605.

[25] B. Hassibi and D. G. Stork, ‘‘Second order derivatives for network pruning:
Optimal Brain Surgeon,’’ in Proc. Adv. Neural Inf. Process. Syst., 1993,
pp. 164–171.

[26] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ in Proc. 28th Int. Conf. Neural
Inf. Process. Syst., vol. 1. Cambridge, MA, USA, 2015, pp. 1135–1143.

[27] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ inProc. 30th Int. Conf. Neural Inf. Process. Syst.,
New York, NY, USA, 2016, pp. 2082–2090.

[28] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method
for deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[29] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, ‘‘Energy-
aware wireless microsensor networks,’’ IEEE Signal Process. Mag.,
vol. 19, no. 2, pp. 40–50, Mar. 2002.

[30] M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hämäläinen,M. Hännikäinen,
and T. D. Hamalainen, Ultra-Low Energy Wireless Sensor Networks in
Practice: Theory, Realization and Deployment. Hoboken, NJ, USA:Wiley,
2008.

[31] G. Lu, B. Krishnamachari, and C. S. Raghavendra, ‘‘An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor net-
works,’’ in Proc. 18th Int. Parallel Distrib. Process. Symp., Apr. 2004,
p. 224.

[32] P. Mannion. (2017). Comparing Low-Power Wireless Technologies.
[Online]. Available: https://www.digikey.com/en/articles/techzone/
2017/oct/comparing-low-power-wireless-technologies

[33] IEEE Standard for Low-Rate Wireless Networks, IEEE Standard 802.15.4-
2015, 2015. [Online]. Available: https://standards.ieee.org/standard/
802_15_4-2015.html

[34] L.-O. Varga, G. Rom-aniello, M. Vucinic, M. Favre, A. Banciu,
R. Guizzetti, C. Planat, P. Urard, M. Heusse, F. Rousseau, O. Alphand,
E. Duble, and A. Duda, ‘‘Greennet: An energy-harvesting ip-enabled
wireless sensor network,’’ IEEE Internet Things J., vol. 2, no. 5,
pp. 412–426, Oct. 2015.

[35] MKW41Z/31Z/21Z Data Sheet, NXP Semiconductors, 3 2018, Rev. 4.
Accessed: Jul. 6, 2019. [Online]. Available: https://www.nxp.com/
docs/en/data-sheet/MKW41Z512.pdf

[36] A. Dunkels, B. Gronvall, and T. Voigt, ‘‘Contiki—A lightweight and
flexible operating system for tiny networked sensors,’’ in Proc. 29th Annu.
IEEE Int. Conf. Local Comput. Netw., Washington, DC, USA, Nov. 2004,
pp. 455–462, doi: 10.1109/LCN.2004.38.

[37] Energizer Brands, LLC. (2018). Lithium Coin Handbook and Application
Manual Lithium/Manganese Dioxide—Coin (Li/Mno2). [Online]. Avail-
able: http://data.energizer.com/pdfs/lithiumcoin_appman.pdf

[38] P. Dziurdzia, ‘‘Modelling and Simulation of Thermoelectric energy har-
vesting processes,’’ Sustainable Energy Harvesting Technologies: Past,
Present and Future, Kraków, Poland: AGH Univ. Science Technology,
2011, pp. 109–116.

[39] Sanyo. (2007). Amorphous Silicon Solar Cells. [Online]. Available:
https://media.digikey.com/pdf/Data%20Sheets/Sanyo%20Energy/
Amorphous_Br.pdf

[40] Tensorflow. Accessed: Jul. 6, 2019. [Online]. Available: https://www.
tensorflow.org/

[41] F. Chollet. (2015). Keras. Accessed: Jul. 6, 2019. [Online]. Available:
https://keras.io/

[42] M. Wielgosz. Analysta—Data Analysis and Anomaly Detection.
Accessed: Jul. 6, 2019. [Online]. Available: https://bitbucket.org/macie
kwielgosz/anomaly_detection

MICHAŁ MARKIEWICZ received the M.Sc.
degree from Jagiellonian University, Cracow,
Poland, in 2006, and the Dr.-Ing. degree from
Bremen University, Bremen, Germany, in 2015.
He is currently an Assistant Professor with the
Faculty of Mathematics and Computer Science,
Jagiellonian University. His research interests
include sensor networks, traffic management, and
power electronics.

MACIEJ WIELGOSZ received the Ph.D. degree
(Hons.) in high-performance reconfigurable com-
puting from the AGH University of Science
and Technology (AGH-UST), Krakow, Poland,
in 2010. He is currently an Assistant Professor
with the Department of Electronics, AGH-UST,
and works in the Academic Computing Centre
CYFRONET. His research interests include cog-
nitive computing and machine learning.

MIKOŁAJ BOCHEŃSKI, photograph and biography not available at the time
of publication.

WALDEMAR TABACZYŃSKI received the M.Sc.
degree in mechanics and mechanical engineering
from the Faculty of Mechanical Engineering and
Aeronautics, Rzeszów University of Technology,
in 1999. In IT industry, since 2005, he has been as
a Programmer, a Project Manager, and the Head of
support department. His primary research interest
includes artificial intelligence.

TOMASZ KONIECZNY received theM.Sc. degree
in electronics and telecommunications from
the Silesian University of Technology, Gliwice,
Poland, in 1994. Since 1995, he has been a
Designer (Chief Designer or Project Manager) in
research and development departments.

LILIANA KOWALCZYK, photograph and biography not available at the time
of publication.

178902 VOLUME 7, 2019

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/s11012-007-9098-y
http://dx.doi.org/10.3390/s19132981
http://dx.doi.org/10.1109/LCN.2004.38

