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ABSTRACT Accurate and rapid measuring methods for displacement of nano-scale is necessary for manip-
ulation. Self-sensing and time-digit-conversion(TDC) are two applicable measuring methods especially
suitable for room-limited workspaces and vacuum-compliance required applications, thanks to their space-
saving advantage and slight thermal impact on system. The self-sensing method gives measurements in high
resolution at high sampling rate but its accuracy suffers from nonlinearity, while TDC has better linearity
which causes less deviation to results but has a much lower sampling rate. A Kalman filter based fusion
approach with dual estimation modes and self-adaptive parameters is designed to fuse the two measurements
with different sampling rates at a higher frequency. Modifications to error covariance parameters are applied
to traditional Kalman filter so that sensors’ generalized errors rather than their Gaussian noises are taken
into consideration, and corresponding derivation is given. A series of experiments are conducted to evaluate
the performance of the fused measurement.

INDEX TERMS Nano-scale measurement, multi-rate fusion, self-sensing, TDC.

I. INTRODUCTION
Nanomanipulation plays an important role in nanotech which
observes and controls matter in nano scale, enabling novel
applications which depend on unique characteristics appear-
ing in such small dimension. In a nanomanipulation system,
accurate and rapid displacement sensing is a key technology
for precise motion control.

Acquiring position information from vision feedbacks pro-
vided by high-resolution imaging devices such as scanning
electron microscope (SEM) is a promising way used in auto-
matical manipulation applications [1]–[4]. However, some
applications also demand depth information in Z direction
vertical to the visual field [3], which is hard to acquire
from image. And for manipulators consisting of several
actuators [5]–[7], it is necessary to build a closed loop for
every degree-of-freedom(DOF), which demands displace-
ment feedbacks of each actuator. But the highly magnified
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images are usually too distorted to provide accurate feed-
backs, so other methods are necessary for each DOF’s mea-
surement as supplement.

Solutions based on different principles are proposed for
displacement measurement. A widely-used strategy is to
measure the distance between targets and a benchmark.
Approaches in this form include laser interferometers, eddy-
current sensors and capacitive sensors. Laser interferome-
ters combined with mirror systems or fiber-optic [8]–[10],
can provide extremely accurate measurement, in a resolution
under 100 picometers [1]. However, it is a challenge to build
a complex auxiliary optic system and fit it into the workspace
of nano manipulator which is usually space-limited. Fur-
thermore, if used inside an electronic microscope’s vacuum
chamber, the heat produced by laser will be hard to be dissi-
pated thus will cause thermal drifts [11]. As a result, Laser-
based methods are more suitable for sensor calibration rather
than directly providing feedbacks in applications. Eddy-
current sensors [12] operates on principle of electromag-
netic induction, demanding the bulky probes staying close
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to targets one-on-one, limiting its use in many occasions.
Capacitive sensors [12], [13] acquire displacement by mea-
suring the capacitance changing along with the distance
between the object and a nearby benchmark surface where
the electrode plates should be accurately fixed, which is
hard to be satisfied in many applications. Optical encoder-
based sensors [14] have similar difficulty in assembly, and
also generate heat that can cause thermal impact in vacuum
workspace [1]. As the roles of nano actuators in most occa-
sions are served by piezoelectric actuators(PEA) that deforms
on principle of converse piezoelectric effect [15], measuring
the strain when the PEA stretches and retracts is also a feasi-
ble way to acquire displacement. Corresponding approaches
include strain gauge based methods [16], [17] and self-
sensing methods [18]–[21]. With resistance changing along
with deformation, strain gauges are low-cost, small-volume
and easy to be mounted without strict requirement of assem-
bly precision. The accuracy of this method is decided by
the measurements for resistance of strain gauges. However,
in traditional methods, the current flowing through strain
gauges should be large enough to be sampled in high reso-
lution, which also produces too much heat to cause thermal
drift [11]. The newly reported PVDF method [22] utilizing
piezoelectric polymer to sense the strain, overcoming the heat
problem but has poor long stability. Another method, namely
self-sensing, based on the unique property of piezoelectric
materials, utilizes the inner relationship among strain and
other physical variables to measure displacement. The strain
can be sensed by outer circuits sampling on the driving circuit
of actuator, making piezoelectric material both the actuator
and the sensor in same time. Thus no additional probes or
detectors are needed and little extra heat will be produced
inside workspaces of nanomanipulator. As the sensor is actu-
ator itself, the sensor-actuator pair is truly collocated [18],
which means the mechanical errors introduced from assem-
bly and external disturbance is eliminated.

This paper proposed a joint measurement combining
a strain gauge based method named Time-Digit-Conversion
(TDC) [11] and a self-sensing method. TDC indirectly mea-
sures the resistance of strain gauge by converting currentmea-
suring into time measuring. Compared to traditional strain
gauge based methods, TDC produces much less heat thus
is vacuum-compatible. Though TDC has better accuracy in
general than the self-sensing, its sampling rate is too low for
rapid motion applications. Compared to TDC, self-sensing
has a much higher sampling rate and smaller noises, but
suffers more from nonlinearity which affects its accuracy.
Though observers with priori models can be used to improve
accuracy [23], complex modeling is not necessary because of
the participation of TDC. This paper designed a self-sensing
method based on simultaneous measurement on both charge
and voltage, with compensations for nonlinearity.

To combine the advantages and compensate the weakness
of these two complementary measurements, a fusing method
is needed to get a reliable estimation of displacement. Kalman
filters are widely used for data fusion. However, as mentioned

above, the twomeasurements are asynchronous with different
sampling rates, while applications usually demand feedback
as rapid as possible, which is a challenge for traditional
Kalman filter. To solve the problem, variants of Kalman filter
with special filter-designs [24]–[28] are proposed. Filters
should be modified according to the traits of different data
sources. However, few designs are aiming for fusing nano
measurements like TDC and self-sensing, while measure-
ments in nano scale can be very different. For example,
Kalman filtering assumes that errors of raw data mainly
caused by zero-mean Gaussian noises, that is not very true
in nano scale measurement, which calls for more modifica-
tion. Mixed methods combining Kalman filter with neural
network [29] are also developed, utilizing the fitting ability
of neural networks to fuse raw data into expected result, but
the robustness of this kind of method highly depends on the
completeness of training, and neural networks also require
more computing resources.

In this paper, a dual-mode Kalman filter is proposed,
of which the models are specially designed for each data
source, and the generalized errors of original measurements
rather than their noises are taken into consideration when
calculating sensors’ error covariance, which will be presented
by a derivation. A self-adaptive modification is also used
to secure the stability of the fusion. The fusion effectively
combines the advantages of self-sensing and TDC, improving
performance in displacement measurement.

II. MEASURING METHODS
A. SELF-SENSING METHOD
1) PRINCIPLE
As previously mentioned, self-sensing method adds no
probes or detectors to actuator’s workspace but only connects
a sensing circuit to the driver of actuator, which can be
deployed outside the workspace, emitting nearly no extra heat
into it. The ability is achieved by taking advantage of inverse
piezoelectric effect itself. The inner relationship among strain
and other variables makes this method stable against external
noises.

Self-sensingmethod can be educed from piezoelectric con-
stitutive equations [30], [31], which present the relationships
among strain S, electric displacementD, stress T , and electric
field intensity E :

Sm =
∑
i

simTi +
∑
j

djmEj

Dn =
∑
i

dniTi +
∑
j

εnjEj
(1)

Here sim is elastic compliance constant, εnj is dielectric
constant, djm and dnj are piezoelectric coefficient. The sub-
scripts m, n, i, j = 1, 2, 3, indicate the normal directions
of a cuboid piezoelectric stack’s surfaces. They are direc-
tions where deformation happens, also the directions external
forces and electric field act on. As all these electrical and
mechanical factors are mainly applied in same directions
in our case, most terms in (1) can be ignored [32], so the
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FIGURE 1. Schematic diagram of self-sensing method, parts inside the
dashed box is the model of piezoelectric actuator (PEA).

equations are simplified as:{
S1 = s11T1 + d11E1
D1 = d11T1 + ε11E1

(2)

Substitute T1 in (2), we have:

S1 =
s11
d11
· D1 + (d11 −

s11ε11
d11

) · E1 (3)

D1 is in proportion to the quantity of free charges Qe on
electrodes of piezoelectric ceramics, according to Maxwell’s
equations:

Qe =
∫
©

∫
s
D1ds = Ap · D1 (4)

whereAp is the surface area of an electrode plate of piezoelec-
tric stack. As the scale of deformation 1l is far smaller than
the distance l between electrodes, 1l can be ignored and the
electric field intensity E1 can be regarded as linearly related
to external driving voltage V :

E1 =
V

l +1l
≈
V
l

(5)

Substitute (4)(5) in (3), the relationship among strain S1, free
charge Qe and voltage V can be written as:

S1 =
s11
d11Ap

· Qe + (
d11
l
−
s11ε11
d11l

) · V (6)

Because s11
d11Ap

and ( d11l −
s11ε11
d11l

) are constants, the strain S1 is a
linear polynomial consistingQe andV . Design an approach to
simultaneously measure the driving voltage and the quantity
of free charges on one of the electrodes of PEA, then the
increment of strain can be acquired as the displacement when
the PEA stretches or retracts.

2) CIRCUIT DESIGN
A circuit shown in Fig.1 is designed for self-sensingmeasure-
ment. A charge amplifier is used tomeasure the free charge on
electrode of PEA. Theoretically, the PEA can be modeled as
a capacitor Cp parallel connected with a charge source which
appliesQe on the polar plane of Cp. The charge induces equal

quantity of charge on feedback capacitor Cf . According to
Qe = Cp · Vdriver = Cf · (−Vout ), the output voltage Vout can
be used to denote the quantity of charge on an electrode of
PEA.

However, piezoelectric ceramic in practice is not an ideal
capacitor, but with a tiny current leaking through it when volt-
age is applied on. So the model is modified as the part inside
dashed box in Fig.1. An equivalent resistor Rp with large
resistance connects voltage source to the negative electrode
of PEA and produces a current. Although the current leakage
is small, it continuously charges the feedback capacitor Cf ,
causing drifting and aggravating the nonlinearity, which adds
errors to measuring result. To relieve this problem, a leaking
passage for current from Rp to get through without charg-
ing into Cf is established by parallel connecting a resistor
Rl toCf . The drift will be effectively slowed down if the resis-
tance value of Rl is properly set. A high-precision operation
amplifier with extremely low bias current is also selected for
better linear performance. The quality of feedback capacitor
also greatly influences the performance of charge amplifier,
so precise capacitor with stable linearity under variable volt-
age should be selected as Cf .
A voltage follower circuit is used to transmit the actual

driving voltage on PEA and prevent it being affected by
sampling process. Besides being used as V in (6), the driving
voltage also influences the rate of leakage through Rp. So it
is also utilized to softly balance the drifting which can not be
totally eliminated by hardware.

The output voltage Vout and the driving voltage Vdriver are
separately sampled by 18-bit A/D converters and then are
transmitted to a MCU as original measurements, respectively
denoting the Qe and V in (6). Although the two voltages are
theoretically unipolar, the A/D converters are set to bipolar
mode to secure that voltages with tiny biases are also cov-
ered. That means only half of the sampling range is used,
and effective A/D resolution is 17 bits. So the quantifica-
tion error from A/D for a 0-3500nm measuring range is
1
2 × (3500nm/217) ≈ 0.013nm, which is far less than the
error of the method itself and can be dismissed. Sampling and
transmission period determines the frequency of self-sensing
method, which is now locked as 10 times the sampling rate of
TDC, about 250 Hz. Higher output rate can be achieved with
more frequent data transmission.

3) COMPENSATION FOR LEAKAGE UTILIZING VOLTAGE
Beside hardware compensation for current leakage, a soft
compensation utilizing the measuring result of actual driving
voltage is adopted for better linearity. The current charging
into Cp equals to:

I (t) =
Vdriver (t)

Rp
−

(−Vout (t))
Rl

(7)

So the actual output Vout contains two part of voltage, one
caused by Qe and the other caused by I(t):

−Vout (t) = (Qe(t)+
∫
I (t)dt)/Cf (8)
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FIGURE 2. Principle of TDC. The difference of discharging time between
two strain gauges indicates the displacement of PEA.

So the real Qe in discrete form can be written as:

Qe(i) = Cf · (−Vout (i))−
∑
i

(
Vdriver (i)

Rp
−
(−Vout (i))

Rl
) ·

1
f

(9)

where f is the sampling frequency of self-sensing. In this
way the nonlinearity caused by current leakage can be further
relieved.

B. TDC METHOD
As mentioned before, TDC is actually a strain gauge based
method that measures displacement through measuring resis-
tance of a deforming strain gauge. Different from other
strain gauge based methods, TDC measures the resistance of
strain gauge by measuring the time in which a capacitor is
charged and discharged by current flowing through the strain
gauge [11]. The strain gauge mounted on PEA changes its
resistance when the PEA deforms, therefore changes the cur-
rent flowing through it. Thus the time, in which this current
charge or discharge a capacitor, can describe the displacement
of PEA’s deformation.

A half-bridge structure shown as Fig.2 is adopted to pro-
vide measurement with better accuracy and less affected
by mechanical disturbance and temperature changing. Two
strain gauges are used, one on objective PEA, the other on
a fixed reference surface. The charging-discharging process
are controlled by 3 switch transistors, the control signals of
each are also shown in Fig.2. One period of measurement
is composed of four steps: (1) the switch G1 is turned on
while switches G2 and G3 are off, and the supply voltage
V (V ≥ Vcc) begins to charge the capacitor. When the voltage
over the capacitor reaches Vcc, G1 is off and stops charging.
(2) Then G2 switches on and the capacitor is discharged with
current flowing through strain gauge on PEA until the voltage
reaches bottom threshold Vth. The time step 2 takes is t1.
(3) Repeats step 1. (4) G3 switches on while G1 and G2 is
off and the capacitor is discharged through strain gauge in
reference surface. The time this step takes is t2. Assume the
resistances of strain gauges are Rp and Rref , respectively for
the one mounted on objective PEA and the one on reference

FIGURE 3. Sampling sequence of the two original measurements.
Self-sensing is much faster than TDC.

surface, and the capacitance of the capacitor isCcap, we have:

t1 = Rp · Ccap · ln(
Vcc
Vth

) (10)

t2 = Rref · Ccap · ln(
Vcc
Vth

) (11)

The threshold voltages Vcc and Vth are fixed when the
4 steps are repeated for several periods to get an average
result for one sample, and the same capacitor is used in two
discharging stages, thus Ccap, Vcc and Vth can be considered
as constants. Assume that the resistances of both strain gauges
are influenced by a common environmental disturbance δ and
that the resistance of the gauge on PEA changes1Rp because
of the objective displacement, then there is:

1t = t1 − t2

= ((Rp +1Rp + δ)− (Rref + δ)) · Ccap · ln(
Vcc
Vth

)

=1Rp · Ccap · ln(
Vcc
Vth

)+(Rp−Rref )· Ccap · ln(
Vcc
Vth

) (12)

All parameters on the right of equation (12) except 1Rp
are constants. As1Rp is proportional to displacement, the1t
is linear with displacement of PEA. Time-to-digit-converter
with resolution as high as 15ps can precisely measure 1t
to calculate displacement. As the time-counting device has
no definite range, we directly use the true range of our
measurements and its TDC readings’ range to estimate quan-
tification error from device, which is 0.044nm, also far less
than the error of TDC itself and can be dismissed. Using
the charging-discharging time measuring strategy, the current
flowing through strain gauges can be very small, which is
difficult to be precisely measured by other methods using
A/D converters. As a result, the power dissipation of TDC is
much lower than other strain gauge based methods. A calcu-
lation in [11] indicated that TDC dissipated nearly 90% less
power than a traditional Wheatstone bridge taking the same
parameters.

III. MULTI-RATE SENSOR FUSION
A fusion algorithm based on Kalman filter is used to fuse
two measurements into one final measuring result, with the
drawbacks of each minimized and their good characteristics
maintained as possible. A main difficulty in our case is that
the twomeasurements are asynchronous and TDC’s sampling
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FIGURE 4. Diagram of fusion algorithm.

rate is significantly lower than self-sensing’s, as Fig.3 shows,
whereas we demand the frequency of fusion results not lower
than the higher one. To solve this problem, a dual-modes
mixed structure algorithm is used, as Fig.4 shows. Another
problem is that measuring error is not only introduced by
zero-mean Gaussian noises, which is the premise hypothesis
of traditional Kalman filter, but also by deviation, which
is caused by nonlinearity of measurements. This means,
the mean square error(MSE) of sensors are not equal to
the noise variance of measurements, so generalized errors
are taken into consideration when determining parameters of
Kalman filter.

A. STRUCTURE OF FUSION ALGORITHM
Fig.4 shows the structure of proposed fusion algorithm,which
is built with two Kalman filters for different data sources, one
working in mode I when measuring results of TDC come in,
another working in mode II when self-sensing sends data.
Combining data from measurements and from prediction
model in each mode, displacement will be estimated accord-
ing to a least-MSE oriented rule.

1) FUSION MODE I
When receiving measuring results from TDC in kth step,
fusion algorithm processes the data in mode I, prediction is
updated as:

x̂−k = F (I )x̂k−1 + uk (13)

where model gain F (I )
= 1, x̂−k is a prediction based on

the result of previous fusion step x̂k−1. As self-sensing’s
sampling rate is 10 times of TDC’s, the x̂k−1 in mode I is
usually a fusion output of mode II. The uk is a predictive
input, set equal to increment of self-sensing’s measurement:

uk = SSk−1 − SSk−2 (14)

Here SSi indicates the measuring result of self-sensing in step
i (i = k, k− 1...), and TDCi will be used as indicator of TDC
outputs in following equations. The superscript (I ) indicates
the parameters only work in mode I. The measurement z(I )k is
composed of fresh TDC measurement and the last input from
self-sensing as

z(I )k = H (I )xk + vk = [TDCk SSk−1]T (15)

where H (I )
= [1 1]T is the observation model gain, relating

real state xk to measurements z(I )k .
The updates of Kalman gain and error covariance are simi-

lar to classic Kalman filters, but slightly modified because vk
is no longer limited to zero-mean noises. The Kalman gain
K (I )
k and error covariance P(I )k are updated as below:

P(I )k
−

= F (I )Pk−1F (I )T
+ Q(I ) (16)

K (I )
k = (P(I )k

−

H (I )T
+ U (I ))(H (I )P(I )k

−

H (I )T

+R(I ) + H (I )U (I )
+ U (I )TH (I )T )−1 (17)

P(I )k = (1− K (I )
k H (I ))P(I )k

−

− K (I )
k U (I )T (18)

Q(I ) and R(I ) respectively describe the accuracy of prediction
model and of measurement, and U (I )

k is a new added param-
eter that does not exist in classic Kalman filter. All these
parameters will be explained and educed in later section.

Finally the fusion result of current step x̂k is calculated as
a weighted mean of x̂−k and z(I )k :

x̂k = x̂−k + K
(I )
k (z(I )k − H

(I )x̂−k ) (19)

2) FUSION MODE II
When measuring results come from self-sensing, fusion pro-
cess will be run in mode II. The prediction updates as:

x̂−k = F (II )x̂k−1 (20)

Here F (II )
= 1 but there is no need for a predictive input

uk this time. As same as in mode I, x̂k−1 is the fusion result
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outputted by previous fusion step, which can come from
mode I as well mode II. A major difference from mode I
is that z(II )k is not a direct measurement of either methods,
but an accumulated result by increments of self-sensing mea-
surement, starting from a base value. The base value will
be renewed every time when mode changes from I to II,
equal to previous estimation of mode I, with accumulation
of increments cleared. That means, when mode I is switched
to mode II, z(II )k equals x̂k−1 + uk , otherwise if previous step
is also in mode II, z(II )k is added by uk :

z(II )k =

{
x̂k−1 + uk , previous step in mode I

z(II )k−1 + uk , previous step in mode II
(21)

The updates of Kalman gain K (II )
k and error covariance P(II )k

in mode II are same as mode I, that is

P(II )k
−

= F (II )Pk−1F (II )T
+ Q(II ) (22)

K (II )
k = (P(II )k

−

H (II )T
+ U (II ))(H (II )P(II )k

−

H (II )T

+R(II ) + H (II )U (II )
+ U (II )TH (II )T )−1 (23)

P(II )k = (1− K (II )
k H (II ))P(II )k

−

− K (II )
k U (II )T (24)

Finally the fusion result of current step x̂k is calculated as:

x̂k = x̂−k + K
(II )
k (z(II )k − H

(II )x̂−k ) (25)

B. DETERMINATION OF FUSION PARAMETERS
The main settable parameters in classic Kalman filter are
measurement noise covariance R and process noise covari-
anceQ respectively of sensors and prediction model. R can be
acquired by sensor testing, butQ for prediction model is hard
to exactly know, therefore it is usually a parameter adjusted
until getting best fusion performance. In classic Kalman
filtering, the error of a sensor is assumed to be introduced
totally by zero-meanGaussian noises, so the variance of noise
is used as R. But in nano-scale, deviation of measuring is
unavoidable, which usually causes bigger errors than noise
does, so only considering noises when calculating R is not
enough. It is necessary to start from the origin of Kalman
filtering with the participation of generalized errors.

1) DERIVATION
The original purpose of Kalman filtering is to minimize the
mean square error(MSE) of fusion result:

Pk = E[(xk − x̂k )(xk − x̂k )T ] (26)

The sum of diagonal elements of Pk , also the trace of the
matrix, is the MSE of fusion result to be minimized. Accord-
ing to fusion formula x̂k = x̂−k +Kk (zk −Hx̂

−

k ) and measure-
ment model zk = Hxk + vk , Pk can be expanded as

Pk = E[((I − KkH )(xk − x̂
−

k )− Kkvk )((I − KkH )(xk
− x̂−k )− Kkvk )

T ]

= KkHP
−

k H
TKT

k − KkHP
−

k − P
−

k H
TKT

k + P
−

k

−KkUT
+ KkUTHTKT

k − UK
T
k + KkHkUK

T
k

+KkRKT
k (27)

HereP−k is covariancematrix of prediction,R actually reflects
MSE of sensor,U is the mathematical expectation for product
of the errors from prediction model and from sensor, but not
the covariance:

P−k = E[(xk − x̂
−

k )(xk − x̂
−

k )
T ] (28)

R = E[vkvTk ] (29)

U = E[(xk − x̂
−

k )v
T
k ] (30)

vk is the generalized error between measurements and true
values, including errors caused by noises, deviations or other
factors. Because model error and sensor error are indepen-
dent, so (30) can be further expand asU = E[xk−x̂

−

k ]·E[v
T
k ].

Therefore if vk is a zero-mean noise, then U = 0, R equals
to noise’s covariance and the expression of Pk will be turned
into form of classic Kalman filter. To minimize the MSE of
fusion result, take the derivative of the trace of Pk :

d Tr(Pk )
d Kk

=2Kk (HP
−

k H
T
+R+HU+UTHT )−2P−K

T
HT
−2U

(31)

Set (31) to 0 then

Kk = (P−k H
T
+ U )(HP−k H

T
+ R+ HU + UTHT )−1 (32)

Substitute Kk with (32) in (27), we have:

Pk = (I − KkH )P−k − KkU
T (33)

The prediction model error can be described with help of
recurrence model:

xk − x̂
−

k = Fkxk−1 + Buk + wk − (Fk x̂k−1 + Buk )

= Fk (xk−1 − x̂k−1)+ wk (34)

Then the expression for P−k is rewrote as:

P−k = E[(xk − x̂
−

k )(xk − x̂
−

k )
T ]

= FkE[(xk−1 − x̂k−1)(xk−1 − x̂k−1)T ]FTk
+FkE[(xk−1 − x̂k−1)wTk ]+ E[wk (xk−1
− x̂k−1)T ]FTk + E(wkw

T
k ) (35)

wk is the model error, then E(wkwTk ) is the Q in Kalman
filtering. And (xk−1− x̂k−1) happens to be the fusion error of
the previous step, then the MSE in first term of (35) is Pk−1.
(xk−1 − x̂k−1) is independent from wk and its mathematical
expectation is zero because the fusion result should not devi-
ates from true value. Then (35) can be further simplified and
we get the recursive formula forP−k as same as classic Kalman
filter:

P−k = FkPk−1FTk + 0 · E[wTk ]+ E[wk ] · 0+ Q

= FkPk−1FTk + Q (36)

Now (36)(32)(27) constitute the parameter updates of
mode I. Among settable parameters, R and U both can be
calculated with sensor testing data. Actually the U in real
cases is very small and may be ignored, which turns the
updating formulas into traditional form, but with different
meaning of R. So the main difference this derivation made,
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is replacing the sensor noises with sensor errors when calcu-
lating R, which are regarded as equal in most cases but can
result in big difference in nano-scale measurement.

In mode I, R(I ) is a matrix consisting of MSE of
self-sensing and TDC, while in mode II geometric mean of
self-sensing’s and formerly tested fusion result’s MSE is used
as R(II ), because the ‘measurement’ in mode II is based on
both self-sensing measurement and previous fusion result.

2) SELF-ADAPTIVE PARAMETER Q
Q can be set as a constant that makes the fusion error as
small as possible. Fixed value forQ(I ) may cause fusion result
distorted in some certain condition, where the the algorithm
depends on prediction to a considerable extent, which may
cause fusion result hard to keep pace with the changes of
object, if it is very rapid. So Q(I ) is modified with a punish-
ment function, adaptively securing the algorithm from fatal
deviation:

Q(I )
= Q0 + C · e2(1+

e− 1
|e| + 1

) (37)

HereQ0 andC are constants, e = (TDCk−x̂
−

k )·(SSk−1−x̂
−

k ).
If fusion result deviates from the two measurements in same
side,Q(I ) will increase rapidly when the errors get larger, then
the algorithm will depend more on measurements rather than
prediction and vice versa. The distortion will be prevented in
this way, improving stability in dynamic situations.

IV. EXPERIMENTS
A. EXPERIMENTS SETUP
1) SYSTEM SETUP
The experimental system are configured as Fig.5: a stack PEA
is fixed on a metal base with an end free for movement. It is
driven by a voltage varying in range of 0 ∼ 60V with peak-
to-peak ripples less than 10 mV. The voltage can be manually
adjusted or controlled by waveform signal from PC.

The self-sensing circuit is directly embedded in supply
loop of the PEA and the TDC processing circuit is connected
to a half-bridge consisting of 2 strain gauges that are sep-
arately mounted on the surface of PEA and on a reference
surface as mentioned in previous section. The original data
is transmitted through SPI bus to MCU where the data is
processed into measurements and then is sent to PC for
further fusion and evaluation.

A laser interferometer (SIOS SP2000 TR)with a resolution
of 0.1nm is used to provide standardmeasurement as contrast.
As auxiliary, a mirror is secured to the free end of PEA,
perpendicular to the direction of measured displacement,
reflecting the laser back into the laser receiver.

All the components of the system except the PC are placed
on a vibration isolation table inside a chamber to minimize
external disturbance.

2) SENSOR CALIBRATION
The TDC outputs a digit y denoting the 1t in (12), and the
Self-sensing provides measurements in form of two voltage

FIGURE 5. Experiment setup.

readings x = [v1, v2]′, denoting Qe and Vdriver , separately.
According to (6) and (12), the original measurements should
be calibrated into the scale of true displacement in following
linear relationships:

z1 = A1 · x + b1 (38)

z2 = a2 · y+ b2 (39)

With TDC, self-sensing and interferometer, simultaneous
measurements are conducted in which the PEA is driven
by a varying voltage covering full range of output. With
sufficient raw data of the three measurements, the param-
eter in (38)(39) can be estimated by least square method.
Assume in sampling test self-sensing outputted n data
pairs xs = [v11, v12, . . . , v1n; v21, v22, . . . , v2n] and TDC
outputs m readings yt = [y1, y2, . . . , ym], with corre-
sponding interferometer readings z1 = [z11, . . . , z1n] and
z2 = [z21, . . . , z2m], we have:

A1 = (
1
n
z1xTs − z1xTs )(

1
n
xsxTs − xsxTs )

−1 (40)

b1 = z1 − A1xs (41)

a2 =
yt · zT2 − yt · z2

ytyTt − yt
2

(42)

b2 = z2 − a2yt (43)

where xs = [v1, v2]T . With measurements calibrated, fol-
lowing experiments can be conducted with online fusion,
to evaluate the proposed methods.

B. PERFORMANCE EVALUATION
1) LINEARITY
Linearity indicates the extent to which the measured curve
deviate from ideal curve over measuring range [33]. To eval-
uate the methods in a relative general situation, the PEA is
driven by a 0 ∼ 60V voltage in a casually adjusted irregular
waveform.

The measurements against time are compared in Fig.6.
As Fig.6 shows, the curves of proposed methods are highly
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FIGURE 6. Comparison among measurements of interferometer and proposed methods on randomly adjusted displacement, in 60s’
full-range experiment. (a)(b) and (c) shows some typical situation where one of the original measurements greatly deviates from true
value, the fusion result still stays close to it. (d) presents errors of the methods along time.

close to the curve of true value which is provided by laser
interferometer. Subplots (a)(b) and (c) present zoomed views
of some typical parts where one of original measurements
deviates far from true values. Because of heavier nonlinearity,
self-sensing method deviates more than TDC does, which is
clearly shown by the error curves in (d). However, the fusion
successfully relieves the influence of nonlinearity, making
the result close to true value as possible. It also can be
noticed that when a sharp change of displacement happens,
there are corresponding pulses occurring in error curves.
And the directions of pulses are basically converse for TDC
and self-sensing. The phenomenon is mostly ascribed to the
time lags among the samplings of TDC, self-sensing and
interferometer. As the sampling rate of TDC is very low, its
measurement is usually delayed when displacement changes

too rapidly, so there will be error pulses occurring in converse
direction of displacement’s upheavals. On the contrary, error
pulses of self-sensing indicate that its measurement is ahead
of interferometer’s. One reason is that interferometer updates
its measurement more slowly than self-sensing, but system
requests measurement in same rate of self-sensing, so it has to
output outdated data in buffers, making the errors bigger than
it actually be. Another potential reason is that self-sensing
may predictively sense the displacement which does not yet
mechanically occurs. The fusion effectively reduces errors of
original measurements in general, though in some cases the
fusion result is slightly worse than one of the measurements.
This mostly happens where TDC and Self-sensing deviate
toward same direction, as the fusion in substance is a balance
between two data sources after all. Anyway, the fusion result
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FIGURE 7. The distribution of measurements of proposed methods,
plotted against the measurements of laser interferometer.

TABLE 1. Performances comparison.

achieves an average absolute error of 9.0nm and a root mean
square error(RMSE) of 10.9nm, better than both self-sensing
and TDC.

Fig.7 plots the measurements of proposed methods against
true value provided by interferometer. The more the plotted
points close to standard straight line, the better the linearity is.
Linear coefficient of determination R2 is also adopted as an
indicator of linearity. In Fig.7, the two original measurements
as well as the fusion result have deviation to some extent, and
the self-sensing has worst linearity with R2 = 0.9993 while
TDC’s R2 = 0.9998. The fusion improves the linearity of
self-sensing greatly and even gets better linearity than TDC
as its R2 = 0.9999. The comparison of linear performance
are presented in TABLE 1.

Displacement changing in regular waveform with higher
changing frequency is also measured for tests. Fig.8 displays
the situation where modulated sinusoidal wave is applied on
PEA.

FIGURE 8. Measurements for displacement in modulated sinusoidal
waveform.

TABLE 2. Results comparison when objective actuator deformed in high
frequency.

As displacement changes in higher frequency, the errors of
all the measurements are greatly aggravated, mainly by time
lags between samplings of each method and interferometer,
although the curves of these measurements still keep close to
the curve of true value. The results are listed in TABLE 2,
where the fusion result still achieves relatively better perfor-
mance in general.

2) RESOLUTION
Resolution is the minimum distance between adjacent but
unique locations, so it must be larger than noise to avoid
mistaking one point for the other [34]. The noise, which
is the determinant of resolution, can be estimated through
time-domain information. The voltage is increased to and
fixed at about half of the maximal voltage, nearly 30V. Then
noises of proposed methods can be acquired by subtracting
sliding-filtered signals from raw data, as Fig.9 shows. It is
obvious that self-sensing has smallest noise, thus its reso-
lution is best among the three. Noise can be introduced by
electrical disturbances through some components and circuit
structure, but self-sensing data is sampled in an electrode of
feedback capacitor which filters some noises already; while
TDC also suffers from mechanical disturbances in contact
surface between strain gauge and PEA, so the resolution of
self-sensing is far better than TDC. The result after fusion,
though suffers some aggravation compared to self-sensing,
still obviously excels TDC in resolution.
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FIGURE 9. Comparison of noises.

To quantify the performance, 6σ -form is adopted to
describe resolution, where σ is the root mean square (RMS)
value of noise. As the sampling rates are fixed, all the RMS
value are acquired in sensors’ effective bandwidth which is
half of the sampling rate of each. The 6σ resolution is about
6.1nm at 12Hz for TDC, 0.6nm at 122Hz for self-sensing and
3.2nm at 134Hz for fusion result.

V. CONCLUSION
In this paper, a measurement for piezoelectric displacement
is proposed, combining the TDC and self-sensing methods.
A dual-mode Kalman filter considering generalized errors is
designed for the two sensing methods with different sam-
pling rates to be fused. Several experiments are conducted
to test the effectiveness of the fused measurement, which
achieves a sampling rates of 268Hz with resolution of 3.2nm.
And a linearity up to 0.9999 is achieved throughout 3500nm
range. As the dual-mode fusion gives estimation whenever
and wherever a raw measurement is acquired, it will still
work effectively when changes happen to inputing frequency.
So the sampling rate of final measurement can be further
increased just by improving self-sensing’s transmission. The
results demonstrate that the method is capable of providing
displacement feedbacks for positioning applications.
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