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ABSTRACT In this paper, we propose a stereo simultaneous localization and mapping (SLAM) method
based on line segments. For the front-end module of SLAM, we designed a novel method based on the
coplanar junction detection, description, and matching. Then the junctions along with their multi-scale
rotated BRIEF descriptors are used in other SLAM modules, including line tracking, mapping, and loop
closure. The line extraction and matching thread runs at 20 ∼ 40Hz for stereo image sequences on a laptop,
making it a practical front-end for line-based SLAM system. For the back-end module, a cost function is
designed to minimize both of the reprojection error of line segments and alignment error of the vanishing
points. The experimental results demonstrate that the proposed method exhibits more accurate localization
and reconstruction than state-of-the-art line-based SLAM systems in line-rich environments.

INDEX TERMS Simultaneous localization and mapping (SLAM), line detection, vanishing point, visual
odometry, loop closure.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) has drawn
much attention in recent years due to their broad applica-
tions. Currently, there are mainly two mainstreams of visual
SLAM approaches including feature-based methods [1] and
direct methods [2]. Feature-based methods consist of fea-
ture extraction and matching between frames. Then feature
points’ coordinates and camera poses are optimized by min-
imizing re-projection geometric error. Direct methods use
raw pixel intensity for mapping and pose estimation by
minimizing photometric errors. Usually feature methods are
robust to illumination changes and geometric errors. Direct
methods can create semi-densemaps which will benefit many
applications.

Most of the feature-based SLAM methods utilize point
feature for pose estimation and mapping. However, line seg-
ments are important features apart from point features espe-
cially in human-made environments, including both indoor
environment and the so-called Manhattan world outdoors [3].
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For such environments, consistent line segment maps have a
high geometric expressiveness with respect to the underlying
scene geometry. Besides, lines are more robust to illumina-
tion changes and have the potential for building semi-dense
maps and recovering planes. As a result, line features may
be an alternative to point features especially in untextured
environments, when there are insufficient reliable feature
points that can be detected. There are some works that utilize
line segments for visual SLAM and visual odometry, such
as [4]–[10].

Despite the progress of line-based SLAM, it is less mature
compared with point-based SLAM. The potential reasons
lie in several problems when introducing line segments in
SLAM. First, current line segment detectors have many limi-
tations for detection, tracking, and matching. To name a few,
the detected line segments have a low repeatability rate across
different images. Besides, the endpoints of line segments are
unreliable and a long line segmentmay be divided into several
short ones. Second, state-of-the-art line segment detection
and matching methods are time-consuming. For example,
the LSD [11] widely adopted in line-based SLAM takes
40 ∼ 50ms to process a 640 × 480 image, which makes
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FIGURE 1. Typical results of our proposed SLAM method. Top Left and
Top Right: line extraction and matching for a stereo image pair. Lines
with the same color and number indicate a correspondence. Bottom
Right: vanishing point extraction results. Lines with the same color share
a common vanishing point. bottom Left: Line reconstruction and
localization results.

line-based SLAMmethods are difficult to be real-time. Third,
compared to feature points, line segments are more complex
for representation [12]. A 3D line has 4 degrees-of-freedom,
and a line segment additionally has two endpoints for param-
eterization.When involving line segments in SLAM, the non-
linearity and compactness of parameterization affect the
performance.

In this paper, wemake several improvements for line-based
SLAM. For 640 × 480 stereo sequences, the line extraction
and matching in our method is real-time by only one thread
on a laptop. To the best of our knowledge, this is the first
method in the literature that can achieve such efficiency,
which will make the front-end in line-based SLAM towards
practical.We also propose a cost function to exploit vanishing
point (VP) alignment across frames to improve the accuracy
of line-based SLAM. Fig. 1 demonstrates typical results of
our proposed method. In summary, the main contributions
include:
• We propose a novel method for junction and line match-
ing. Specifically, we use multi-scale rotated BRIEF
descriptors to construct line junction descriptors. The
resulted line extraction and matching are much more
efficient and accurate than state-of-the-art methods.
Besides, we make a comprehensive evaluation of line
segment detectors and recommend the Douglas-Peucker
algorithm for line-based SLAM.

• A cost function is proposed for vanishing point align-
ment in back-end optimization. The cost function can
be seamlessly integrated into the optimization frame-
work of line-based SLAM, such as SLSLAM [6] and
PL-VIO [13].

• For line-based SLAM, we propose a novel loop closure
method that is based on junctions of lines. It uses the
bag-of-words representation of junction descriptors to
detect loops. The junction descriptors are byproducts of

the line segment matching method, and it does not take
additional time to extract.

We call ourmethod JunctionSLAM, sincemost of themodules
in our methods rely on coplanar junctions.

In the following text, first we introduce the line detection
and matching method in Section III, which is the most impor-
tant module in front-end of our SLAM method. Section II
introduces the related work. In Section IV, we introduce the
observationmodels and loss functions for line features, which
are used to design the back-end of our SLAM method. Next,
the whole SLAMmethod is briefly summarized in Section V.
Finally, the experimental results are presented in Section VI,
and the conclusions are drawn in Section VII.

II. RELATED WORK
SLAM has been widely applied in computer vision and
robotics [1], [6], [8], [14], [15]. In this section, we briefly
review the background material that our work is based on.

A. LINE SEGMENT BASED SLAM
Line segments have been integrated in filtering framework
of SLAM [4], [16], [17]. Recently, line segments have
been used in the optimization framework with bundle adjust-
ment for stereo cameras [6], [10], [18] and monocular cam-
eras [8]. There are also some works integrate line segments in
point-based SLAM frameworks [7], [8], [10], [19].Moreover,
some works used the structural parallel lines as a constraint
to estimate camera rotation. A group of parallel lines project
to image plane will converge to a vanishing point (VP). For
example, Camposeco et al. [20] deal VP as a measurement
within an EKF-based visual-inertial odometry (VIO) system
to improve the localization accuracy. Reference [21] use
VP as a high-level landmark in a multilayer feature graph to
directly calculate line landmarks direction in 3D space. Line
segments are also used for implementing visual odometry [5],
[22], [23].

Line segments have also been used in loop closure in visual
SLAM. Being similar to loop closure with point features,
typically discriminative line descriptors and bag-of-words
representation [24] were adopted to detect loop closures in
large-scale scenes [25]. Zhang et al. [26] proposed a vanish-
ing point-based loop closure method in a line-based SLAM
system.

B. FEATURE EXTRACTION, DESCRIPTION AND MATCHING
Point and Line segment extraction and matching is a
long-standing problem in computer vision and robotics [27],
[28]. Still, it is far from being solved. The most popular point
feature extraction and description method in the SLAM area
is ORB [29]. Popular line segment detector including Hough
transform, Line Segment Detector (LSD) [11], EDLines [30],
Fast Line Detector (FLD) [25], etc.

A few line descriptors have been proposed to describe
the line segments. Most of them build gradient histograms
around line segments, which are similar to point descriptors.
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Representative line descriptor is Line Band Descrip-
tor (LBD) [31]. Some works build descriptors for the junc-
tion of putative coplanar lines, such as warped regions [32],
line intersection context feature [33] and Line-Junction-Line
structures [34], [35].

Once the descriptors have been achieved, putative matches
can be set up according to the similarity of descriptors. How-
ever, the presence of outliers in correspondence is inevitable
due to ambiguities in the points’ local appearance. There
are many mismatch removal method for point correspon-
dence [36]–[40].

C. GEOMETRY FOR LINE SEGMENTS AND VANISHING
POINTS
The most natural way for line parameterization is using
Plücker coordinates [41]. However, Plücker coordinates take
6 parameters to parameterize a line. Orthonormal represen-
tation allows minimum 4 parameters with an unconstrained
optimization solver [12]. It is the most compact and has been
successfully employed optimization framework [6].

Camera pose estimation from features is the core task
in SLAM. Given line matches, typically 13 line correspon-
dences across 3 frames are used to estimate the relative pose
by trifocal tensor [41]. Minimal solver for recovering camera
motion across two views of a calibrated stereo rig is studied
in [42]. The algorithm can handle any assorted combination
of point and line features across these 4 images.

Vanishing point (VP) is the intersection of several line
segments in the image plane projected by a group of parallel
lines. The geometric properties of VP are useful in many
applications. The camera intrinsic parameters can be esti-
mated by exploiting VPs [43]. Two VPs of different groups
of parallel lines can be used to estimate camera rotation [44].
VP has also been used for relative pose estimation [45] and as
a measurement within an EKF-based visual-inertial odome-
try (VIO) system [20]. In [21], VPs are used as high-level
landmarks in a multilayer feature graph, and the direction of
such landmarks are represented by corresponding VPs.

III. JUNCTION & LINE DETECTION AND MATCHING
Many of current line-based SLAM methods use LSD [11] to
detect line segments, then they use LBD descriptor [31] for
line segment matching [7], [8], [10], [18]. However, in the
front-end of our method, we use different methods for line
detection andmatching. In this section, several improvements
to state-of-the-art junction detection and junction/line match-
ing will be introduced.

A. PUTATIVE COPLANAR JUNCTION DETECTION
A practical line-based SLAM should have an efficient and
effective line segment detector. In section VI-A, we make
a comprehensive evaluation of state-of-the-art line seg-
ment detectors. According to our evaluation, we adopt the
Douglas-Peucker algorithm [46] to detect line segments due
to its superior performance and high efficiency.

FIGURE 2. Heuristics to determine whether two line segments construct a
valid junction. Solid lines are detected line segments, and red dots are
their intersections. (a) a valid junction; (b) invalid since one of the line
segments is too short; (c) invalid since the intersection is far away from
line segments; (d) invalid since the intersection is out of the image plane.

Once the line segments are detected, putative coplanar
junctions can be constructed. Usually, an image contains
dozens to hundreds of line segments. Theoretically, any two
line segments may construct a junction, so the potential
number of junctions is large. To preserve meaningful junc-
tions only, we use certain heuristics and carefully implement
pruning strategies that are similar to those in previous litera-
ture [33], [35], [47].

The heuristics are explained in Fig. 2. Specifically, a puta-
tive coplanar ray-point-ray (RPR) junction should satisfy all
of the following 3 conditions: (i) An RPR junction consists of
two line segments, and their intersection is inside of the image
plane. The two line segments are not necessarily intersected
directly and may intersect in their extension. (ii) The length
of both line segments should be above a threshold. (iii) The
distance between the intersection and its line segments should
be below a threshold [33]. After applying these 3 heuristics,
an image usually contains 100 ∼ 1, 500 junctions.
We use a triplet J (x, θ, ϕ) to represent the image of an

RPR junction. Here, x ∈ R3 is the junction’s homogeneous
coordinates in the normalized image. θ and ϕ are angles of
the rays that construct this junction. For the convenience of
subsequent junctionmatching, θ and ϕ are selected since their
clockwise angle is between (0, π).

B. JUNCTION DESCRIPTION AND MATCHING
A simple and efficientmethod is proposed for junctionmatch-
ing based on a multi-scale rotated BRIEF descriptor [48]. To
build the rotated BRIEF descriptors for junctions, we need to
determine the feature position, orientation, and scale of the
junctions at first. As shown in Fig. 3, the junction position
is the intersection of two line segments in the image plane.
The orientation is set as the angle bisector of the junction
in the image plane. The scale of the junction is difficult to
determine. A simple strategy is using multiple scales. In this
paper, 3 scales are used for each junction, including 10,
15, and 20 pixels. Once the position, orientation and scale
of junctions are given, we extract their multi-scale BRIEF
descriptors [48] as the junction description.

To determine the junction matching between two images,
the efficient Hamming distance for binary strings is adopted.
The matches inevitably have mismatches. A scheme for
building putative matches and rejecting mismatches should
be developed for junction matching.

In this paper, we use stereo rigs for SLAM. For recti-
fied stereo image pairs, all epipolar lines are parallel in the
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FIGURE 3. The junctions and their rotated BRIEF support regions. In this
scene, there are 2 coplanar line segments in 3D space. In two images,
solid lines are detected line segments. Arrows are the angle bisectors of
the detected junctions. Squares are the support regions of rotated BRIEF
descriptors.

FIGURE 4. Flowcharts for line extraction and matching, and
reconstruction. They are building blocks for the front-end of our proposed
SLAM method. Blue blocks are inputs, and green blocks are outputs.

rectified image planes. Given a junction in the left image,
we search its potential matches in the right image along
the epipolar line. If there exist junctions near the corre-
sponded epipolar line, the Hamming distance is used to ver-
ify whether they could construct a match. The procedure is
shown in Fig. 4(a).
For two images that are from different times or from arbi-

trary viewpoints, the epipolar lines are unknown in advance.
We use the Hamming distance to determine putative junc-
tion matching. Given a junction in one image, we find its
closest neighbor and the second-closest neighbor according
to Hamming distance. Taking the ratio of distance from
the closest neighbor to the distance of the second clos-
est, they are accepted as a match if this ratio is below a
threshold.

Due to the ambiguities of local appearance, the junc-
tion matches inevitably have outliers. Denote a pair of
matched junctions from image I1 and I2 as J I1

i (xi, θi, ϕi)
and J I2

i (x′i, θ
′
i , ϕ
′
i). If these two junctions are constructed by

the same two coplanar lines in 3D space, the intersections
can be viewed as feature points and they satisfy the epipolar

geometry

x′>i Exi = 0, (1)

where E is the essential matrix. The standard 5 points with
RANSAC can be used to remove outliers and estimate essen-
tial matrix E. Sampson error [41] is adopted to determine
whether a junction match (J I1

i ,J
I2
i ) is inlier. (J I1

i ,J
I2
i ) is

an inlier

d (i)point =
(x′>i Exi)2

(Exi)21 + (Exi)22 + (E>x′i)
2
1 + (E>x′i)

2
2

. (2)

Once the junction matching has been finished, rotation and
translation between these two images can be extracted from
essential matrix E if they are needed. The procedure is sum-
marized in Fig. 4(b).

C. FROM JUNCTION MATCHING TO LINE MATCHING
After a junction match across two images has been obtained,
we can extract 2 line matches. The following observation can
help us solve the ambiguity for these 2 line matches.

Since θ and ϕ are selected such that their clockwise angle
in image plane is between (0, π), θi always corresponds to θ ′i
and ϕi corresponds to ϕ′i .

IV. OBSERVATION MODELS AND LOSS FUNCTIONS FOR
LINE FEATURES
In our method, line-based bundle adjustment is used to opti-
mize the camera pose and line coordinates in 3D space. We
exploit two types of observations in the image plane for 3D
lines: line segments and vanishing points for parallel lines.
In this section, first we introduce the observation models for
these two observations. Thenwe construct a cost function that
considers the reprojection errors for both line segments and
vanishing points.

A. OBSERVATION MODEL FOR LINE SEGMENTS
A line segment in an image plane can be represented by
two endpoints, xs = (xs, ys, 1)> and xe = (xe, ye, 1)>.
To build up the relationship between 3D line and 2D line
segment in an image plane, we need to transform the 3D
line in the world reference to the camera reference and then
project it to the image plane. We adopt two parameterizations
for a 3D line like that in [6]. Plücker line coordinates are
used for transformation and projection due to its simplicity.
Orthonormal representation is used for optimization due to its
compactness.

A 3D line L in Plücker coordinate is represented by L =
(n,d)> ∈ R6, where d ∈ R3 is the line direction vector,
and n ∈ R3 is the normal vector to the plane determined
by the line and the coordinate origin. A 3D rigid body

motion T ∈ SE(3) is defined by T =
[
R t
0 1

]
, where R ∈

SO(3) is a 3 × 3 rotation matrix and t = (tx , ty, tz)> ∈ R3 is
a translation vector in 3D space.
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Given the transformation matrix

Tcw =
[
Rcw tcw
0 1

]
(3)

from the world frame W to the camera frame C , we can
transform the Plücker representation of a line by [49]

Lc =
[
nc
dc

]
=

[
Rcw [tcw]×Rcw
0 Rcw

]
Lw, (4)

where [·]× is the skew-symmetric matrix of a vector, and
subscripts c and w represent camera and world respectively.
After representing a line in camera frame, we can project it
to the camera image plane by [6]

l =

l1l2
l3

 = Knc =

 fy 0 0
0 fx 0
−fycx −fxcy fx fy

nc, (5)

where K is the projection matrix of line feature. When pro-
jecting a line to the normalized image plane, K is a identity
matrix. From projection equation (5), the coordinate of a line
segment projected by 3D line is only related with the normal
vector n.
For point features, the reprojection error of a 3D point is the

image distance between the projected point and the observed
point. For line features, the reprojection error can be defined
as the distance from two endpoints of a line segment to the
projected line. Formally, the reprojection error for a 3D line
k in camera frame i is defined as

el(i, k) =
[
d(xi,ks , l

k )
d(xi,ke , l

k )

]
(6)

with d(x, l) being the distance from point x to line l

d(x, l) =
x>l√
l21 + l

2
2

, (7)

where xi,ks and xi,ke are the two endpoints for the projected line
segment of lk .

B. OBSERVATION MODEL FOR VANISHING POINTS
A detected vanishing point in an image plane is represented
by v = (vx , vy, 1)>. Given the normal direction dc of cor-
responding parallel lines in camera frame C , the vanishing
point in image plane can be predicted by [41]

vp = Kdc = KRcwdw, (8)

where K is the camera intrinsic matrix, subscripts c and w
represent camera and world respectively, and subscripts p
means prediction.

A straightforward way to compute the reprojection error
of a VP is to calculate the image distance between the
observation v and the prediction vp in the normalized image
plane. However, as shown in Fig. 5, the error for VP in the
normalized image plane is unbound and the error may change
drastically when optimizing the line parameters. To remedy
this problem, we define the error at a unit sphere centered
on the camera’s projection center. Denote vi,k as the VP for

FIGURE 5. Parallel lines L1 and L2 in 3D space are projected to the image
plane I as l1, l2. Point v is the groundtruth VP, and vn is a predicted VP by
L1 and a perturbation of L2. The reprojection error between v and vn in
image plane I is unbound and sensitive. We define the reprojection error
by projecting vanishing points to a unit sphere.

line k in camera frame i, then the reprojection errors for this
VP is defined as

ev(i, k) =
vi,k

||vi,k ||
−

vi,kp
||vi,kp ||

=
vi,k

||vi,k ||
−

KRi
cwd

k
w

||KRi
cwdkw||

. (9)

Since the unit sphere is a bound space, this error function can
balance the reprojection error for all VPs in a fair way.

C. COST FUNCTION FOR BUNDLE ADJUSTMENT
To optimize the camera poses and line coordinates, a cost
function is constructed by jointly consider the observation
models for line segments and vanishing points

C=
∑
i,k

ρ(e>l (i, k)6
−1
l el(i, k))+

∑
i,j

ρ(e>v (i, j)6
−1
v ev(i, j)),

(10)

where ρ(·) is the robust Cauchy cost function, and 6−1l and
6−1v are informationmatrices for line segments and vanishing
points. In this paper, the information matrices are set as
identity matrices. In the first term, k is the index for all lines.
In the second term, j is the index for lines that belongs to a
group of parallel lines.

V. STEREO VISUAL SLAM BASED ON LINE SEGMENTS
AND VANISHING POINTS
A. SYSTEM OVERVIEW
Our proposed JunctionSLAM is based on graph optimization.
Being similar to themainstreams of feature-based SLAMsys-
tems, it has three threads: motion estimation, local mapping,
and loop closing. The system overview is shown in Fig. 6.
The details about each component will be described in the
following text.

B. MOTION ESTIMATION
For each new stereo frame, we use our line detection and
matching method as described in section III to build the line
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FIGURE 6. JunctionSLAM system overview, showing main steps performed by the tracking, local mapping and loop
closing threads.

matches. We also use the VP extraction method in [50] to
cluster lines in the left image and compute the coordinates of
VPs in the image plane. The line segments and VPs of each
frame will be served as observations.

We use the method in [42] to estimate motions by trifocal
tensor geometry. For a stereo rig, the minimal solver for
motion estimation needs 3 line matches between the left
image of the current frame and the latest stereo keyframe.
We use 3 line matches across 3 images: the left image of the
lastest keyframe, and two images of the new stereo frame.
This minimal solver together with the RANSAC framework
is used to estimate relative pose. When the translation or
rotation of relative pose between the new frame and the lastest
keyframe exceeds threshold ηt or ηr , we will select the new
frame as a keyframe.

C. LOCAL MAPPING
Once a new keyframe is inserted into the pose graph, the 3D
coordinates of line segments in this new keyframe will
be reconstructed as that in SLSLAM by intersecting two
planes [6]. Then we will select N latest keyframes along with
the new keyframe as an active frame. Camera poses and line
segments belonging to active frames will be refined by local
bundle adjustment. Finally, after poses are refined, a culling
strategy will be used to remove outliers from line matches
or VP clusters. Specifically, if the reprojection error of a line
segment exceeds a threshold ηl = 5, this line segment will
be removed. Similarly, if the reprojection error between a
VP observation and the predicted VP exceeds a threshold of
ηv = 0.3, this VP observation will be removed.

D. LOOP CLOSURE DETECTION
Our loop closure detection is similar to that in
ORB-SLAM [1]. The difference lies in that we do not use
oriented FAST to detect feature points like that in ORB
feature detector [29]. Instead, we use the extracted junctions
described in section III-A as feature points.

Our method also uses the bag-of-words feature represen-
tation to perform loop closure detection and relocalization.
The visual words are organized by a hierarchical tree called a
vocabulary tree [24]. We use the vocabulary tree provided by
ORB-SLAM, which is built offline by clustering a large num-
ber of BRIEF descriptors extracted from an image dataset.

The loop closure thread compares current images to the
previous keyframes Ki, i = 1, 2, . . . , t . We query the
keyframe dataset and discard all those keyframes whose sim-
ilarity score is lower than a predefined threshold. To accept
a loop candidate we must detect consecutively 3 loop candi-
dates that are consistent. For these loop candidates, we further
perform 5-point method with the RANSAC framework for
geometric verification. If there are sufficient matches passed
the geometric verification, a loop is detected.

VI. EXPERIMENTAL RESULTS
We use the stereo sequence it3f in SLSLAM [6] to test our
method. It contains 5, 442 pairs of stereo images, and each
image has a resolution of 640 × 480. We also captured a
stereo sequence called soho3q by a stereo camera with global
shutters. It contains 1, 640 stereo image pairs, and each image
has a resolution of 752 × 480. The sequence is taken in a
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FIGURE 7. Sample images of the test sequences.

coworking space, as shown in Fig. 7. Comparedwith previous
line SLAM sequences, it contains more line segments on
average. It is challenging for SLAM since it contains image
saturation caused by ceiling lights and reflection caused by
glass walls.1 All of the experiments are performed on a laptop
with Intel i7-5500U CPU @ 2.40 GHz QuadCore.

A. LINE & JUNCTION DETECTION AND MATCHING
There are many line segment detectors in computer
vision and robotics communities. However, there does
not exist any comprehensive evaluation for these meth-
ods. We compare 4 state-of-the-art methods that have
open-sourced implementation, including line segment detec-
tor (LSD) [11], EDLine [30], Fast Line Detector (FLD) [25],
and Douglas-Peucker algorithm (DP) [46]. For LSD and
FLD, the source codes were provided by the authors. These
two methods also have been integrated into openCV. For
EDLine, there is an open-sourced implementation that has
been integrated into LBD [31].2 We do not use the multi-scale
processing to make it as the same as the original paper.
For the Douglas-Peucker algorithm, we use the source code

1https://drive.google.com/open?id = 0B_tUbCEawNQlZThPeW1rNm
ZvbzA

2http://www.mip.informatik.uni-kiel.de/tiki-index.php?page = Lilian+
Zhang

TABLE 1. Performance of line segment detection on it3f.

TABLE 2. Performance of line segment detection on soho3q.

provided by the authors of [5], which is part of the Line
Vision Library.3 All these 4 methods were implemented in
C++ programming language. LSD and EDLine do not need
any parameter tuning. In both FLD and DP, the minimal line
length is set as 12 pixels. When performing the experiments
in this subsection, only one CPU core is used.

For line segment detection, there is no sufficient evaluation
criterion and benchmarks for performance comparison in
literature. In this paper, 3 surrogate criteria are used, including
runtime, line segment number, and the average length of line
segments.

The quantitative results of line segment detection of it3f
and soho3q are shown in Table 1 and Table 2, respectively. For
efficiency consideration, DP is superior to other 3 methods.
From line segment number, it is difficult to say which method
is better, because this number is influenced by many factors,
such as the recall of line segment and whether a long line
segment is divided into short ones. From the average length of
line segments, EDLine is the best and FLD is the second best.
However, we observed that EDLine tends to produce many
near-duplicate line segments. The histograms of runtime are
shown in Fig. 8. It can be seen that the Douglas-Peucker
algorithm has the smallest average runtime and the smallest
standard deviation.

After the line segments are detected, we construct the
junctions and perform junction and line matching by our
method described in section III. Typical results of the line
matching for stereo pairs are shown in Fig. 9. Table 1 and 2
also demonstrate our junction matching and line match-
ing results based on different line segment detectors. Here
three criteria are used, including junction number, matched

3https://bitbucket.org/lvl_dev/lvl
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TABLE 3. Performance comparison for line description and matching on it3f.

FIGURE 8. Runtime histogram for line segment detectors.

junction number, and matched line number in each image.
Among these three criteria, the matched line number is
the most important one. We can see EDLine and DP have
the largest number of matched lines on it3f and soho3q,
respectively.

We also compare our line matching method with the
widely used LBD method [31]. For fairness consideration,
the line detectors used in both methods are LSD pro-
vided by openCV 3.1. The results are shown in Table 3.
Compared with LBD, our method is more efficient and
has more matched lines. The potential reason is that LBD
depends on the endpoints of detected line segments. While
the detected endpoints are unstable, which may make the
line matching inaccurate. In contrast, our method relies on
junctions and does not depend on the endpoints of line
segments.

FIGURE 9. The line matching results for a pair of stereo images. Matched
line segments are characterized by the same color and the numbers in the
middle of line segments (best view the electronic version of this article).

After considering both the efficiency and quality, we rec-
ommend DP method for line segment detection in line-based
SLAM, which is an alternative to popular LSD. If efficiency
is not an issue, LSD would be our second recommendation,
since it does not need parameter tuning and always produce
reasonable results for all kinds of images. Combining the DP
method and our junction& linematchingmethod, we obtain a
much more efficient line matching engine than stat-of-the-art
methods.

B. SLAM RESULTS ON SYNTHETIC DATA
We construct a synthetic scene as shown in Fig. 10. We sam-
pled 100 frames from a camera trajectory in 3D space which
is composed of circular motion in X-Y plane and a sinu-
soidal motion along Z-axis. Each camera frame can observe
a cube with 12 line segments. We have performed 50 times
of experiments. In each experiment, Gaussian noise is added
to the endpoints of observed line segments with zero-mean
and a standard deviation of δpx = 1 pixel. As a result,
the coordinates of 3 vanishing points are also degraded by
this noise. When generating camera poses, the translation of
camera poses is perturbed by a zero-mean Gaussian noise
with standard deviation of δt = 0.1 meter, and the rotation
is perturbed by a zero-mean Gaussian noise with a standard
deviation of δq = 5◦. We compared the line-based bundle
adjustment method with and without VP constraints. After
each run, we measure translation error and rotation error
using the RMSE (root mean square error) of PRE (relative
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TABLE 4. RMSE of relative pose error using different settings.

FIGURE 10. Synthetic scene. An upward-looking camera moves along a
circular trajectory. A synthetic cube that is composed of 12 lines with
three orthogonal directions is above the camera trajectory. A triplet of
red, blue, and green arrows that share a common tail represents a camera
pose.

pose error) [51]. Table 4 shows the mean error of 50 exper-
iments. It can be seen that the rotation error and translation
error are reduced by involving VP alignment in the bundle
adjustment.

C. SLAM RESULTS ON REAL DATA
We compare the proposed JunctionSLAM with StVO [23],
PL-SLAM [10], ORB-SLAM [1] and SLSLAM [6].
StVO and PL-SLAM which are recently proposed VO and
SLAM methods based on line features for stereo sequences.
SLSLAM is the first line-based SLAM method using an
optimization framework. It is open-sourced except for its
line extraction, matching, and tracking modules. We can
reproduce the results for it3f sequence since it provides the
line tracking results, while it can not process any newly cap-
tured sequence. ORB-SLAM is a state-of-the-art point-based
SLAMmethod. In this paper, vanishing points were extracted
by the method in [50]. We find the results are satisfactory and
efficient.

We run JunctionSLAM on sequence it3f which is widely
used in line-based SLAM methods. For fair comparisons,
we use the same parameters like that in SLSLAM (i.e.,
the keyframe selection thresholds are set as ηt = 0.75m
and ηr = 15◦). For other methods, the default parameters
are used. The trajectories generated by our method, StVO,
PL-SLAM,ORB-SLAM, and SLSLAMare shown in Fig. 11.

FIGURE 11. Localization results comparison. Point (0, 0, 0) is the starting
point of a trajectory. (unit: meter). (a) top view of trajectories. (b) front
view of trajectories.

Since the dataset does not provide the ground truth, the gap
between the first pose and the last pose can be a metric for
drift.

From Fig. 11, it can be seen that our proposed
JunctionSLAM performs significantly better than StVO,
PL-SLAM, and ORB-SLAM considering localization errors
both in X-Y plane and Z-axis. Our method is slightly better
than SLSLAM. Note that SLSLAM uses a GPU to make
the line extraction and matching to be real-time. In contrast,
our method can be faster than real-time even using a single
thread of CPU. For ORB-SLAM, the localization error in
Z-axis is as large as 1.65m, which means the point-based
methods do not workwell when there are few point features in
the environment. Besides, we observed that there are signifi-
cantly more keyframes in ORB-SLAM than that in line-based
SLAM methods.

The top views of line reconstruction from the proposed
JunctionSLAM system with or without loop closure are
shown in Fig. 12. It can be seen that the loop closure can
effectively reduce the localization drift. line reconstruction
with loop closure is more consistent with the actual building
structure.
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TABLE 5. Processing time for it3f sequence (unit: millisecond).

FIGURE 12. The line reconstruction of JunctionSLAM on it3f image
sequence. Dotted lines are estimated trajectories, and each dot
corresponds to a keyframe. The red dot and blue dot correspond to
starting and ending points, respectively. (a) with VP alignment and
without loop closure. (b) with VP alignment and loop closure.

JunctionSLAM runs in real-time for usual stereo
sequences. Table 5 summarizes the processing time for
the main components. It is worth to note that the
line extraction and matching run at 20 ∼ 40Hz
for usual stereo sequences on a laptop using a single
thread, making it practical for line-based SLAM systems.
The result for the whole stereo sequence is available
from https://www.dropbox.com/s/4qehqxqkfr5r9qd/junction
SLAM_demo.avi

Despite its successful application to the real-world
datasets, the proposed JunctionSLAM is suitable for line-rich
environments only. For texture-rich environments, there
might be insufficient line segment features, and point-feature-
based SLAM systems are more suitable. Due to the comple-
mentary of point-based SLAM and line-based SLAM, it is
promising that to combine these two features in the future
work.

VII. CONCLUSION
In this paper, we propose a SLAM system based on coplanar
junctions and vanishing points. Our contributions are three-
fold. First, by introducing junction matching and compre-
hensive evaluation of line segment detectors, we design a
real-time line extraction andmatchingmethod. Second, a cost
function is proposed that considers reprojection error of van-
ishing points. Third, a loop closure method based on junction
descriptors is proposed. The effectiveness and efficiency of
our method have been validated by real image sequences.
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