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ABSTRACT Due to the ever-changing and complex market environment, companies frequently face highly
uncertain demand where data are so insufficient that the use of random or fuzzy variables, which are
typically assumed in the literature, is impractical. Furthermore, companies are often risk-averse when
making decisions. To address these two challenges, in this paper, we present the first study on a risk-averse
newsvendor problem using the framework of uncertainty theory. To measure risk aversion, we adopt the
measure of tail value-at-risk redefined based on uncertainty theory. We are able to analytically derive the
optimal order quantity that maximizes the newsvendor’s expected utility. We find that the optimal order
quantity of a risk-averse newsvendor is less than that of a risk-neutral newsvendor. Furthermore, as the
degree of risk aversion increases, the optimal order quantity decreases. Also, we show that the optimal
order quantity may be independent of the risk confidence level when the degree of risk aversion is below a
threshold. Moreover, we use numerical examples to illustrate how various parameters, such as the degree of
risk aversion, salvage value, and unit ordering cost, affect the optimal order quantity.

INDEX TERMS Newsvendor problem, uncertainty theory, uncertain variable, risk aversion.

I. INTRODUCTION
Due to fierce market competition and rapid product upgrades,
the selling season of many products (such as fashion, elec-
tronic products, and toys) has become increasingly shorter.
In addition, the demand uncertainty faced by retailers when
making inventory decisions is increasing due to various fac-
tors, such as uncertain market sizes and consumers’ ever-
changing appetites (e.g., consumers’ low-carbon preference).
The newsvendor model is commonly used as a basic model
for ordering under uncertainties because it provides an effec-
tive analytical framework [1]. Several researchers have also
extended the classical newsvendor model in different direc-
tions (see Khouja [2] and Qin et al. [3] for two excellent
reviews).

Most researchers treat uncertain market demand as a ran-
dom variable based on probability theory. For example,
one method to address uncertain demand is to assume that
demand is subject to a specific distribution. Arcelus et al. [4]
explored the bicriteria decision newsvendor problem under
the assumption that demand follows a uniform distribution.
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Dominey and Hill [5] studied the effectiveness of several
approaches for approximating a compound Poisson distribu-
tion in a single-period setting. Similarly, Kitaeva et al. [6]
considered demand a compound Poisson process with price-
dependent intensity and a continuous batch size distribution;
equations for retail price maximization of an expected profit
with the optimal order quantity are obtained, and an approx-
imate solution is proposed. Yu and Zhu [7] proved that when
the market demand obeys a uniform distribution, a capital-
constrained retailer could gradually increase his order quan-
tity when he possesses more collateral assets. Furthermore,
some researchers assume that insufficient information is
available to obtain the specific distribution of the demand
except for its mean and variance. Kamburowski [8] studied
a distribution-free newsvendor problem under the worst-case
and best-case demand scenarios. He et al. [9] studied the
impact of the intelligence level of decision-makers on their
expected profit using a distribution-free newsvendor model.
Godfrey and Powell [10] directly estimated the value function
using the Concave, Adaptive Value Estimation (CAVE) algo-
rithm to solve the newsvendor problem rather than estimate
the demand distribution. Helena [11] used a hybrid of
Hurwicz and Bayes decision rules to design a novel approach
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for the sale of new, innovative products under complete uncer-
tainty. Sarkar et al. [12] considered no specific probabil-
ity distribution for customers’ demand, except for a known
mean and standard deviation, in a single-period newsvendor
problem with a consignment policy. Some researchers regard
uncertain demand as a fuzzy variable. Chen and Yo [13]
investigated the optimal order quantity of newsvendors when
quantity discounts are available in a fuzzy environment.
Xu and Hu [14] focused on the newsvendor problem by
assuming that the uncertain market demand is a random
fuzzy variable and presented a hybrid algorithm to obtain the
optimal order quantity. Yu et al. [15] modeled the uncertain
demand as a fuzzy variable because probability theory is
not applicable in some cases; the optimal pricing and inven-
tory decisions that could maximize the expected profit were
obtained.

However, due to various issues, it can be difficult to col-
lect sufficient data of some products or the available his-
torical data may be too noisy and have limited reference
value. These problems can occur for innovative products
with no historical data or green products that face unknown
market preference. Consequently, the specific distribution,
even summary measures such as the mean and variance, or
the membership function of market demand can be diffi-
cult to estimate. Consequently, probability theory and fuzzy
theory are not applicable in these increasingly common situ-
ations. Therefore, we must consider these variables as uncer-
tain variables and address them by inviting domain experts
to give their corresponding belief degrees [16]. However,
the variance of belief degree is often larger than the actual
frequency, and the belief degree cannot be calculated via
probability theory or fuzzy set theory. Liu [17] formally
established uncertainty theory to rationally address personal
belief degrees. Subsequently, uncertainty theory has been
applied in various fields. For example, Zhang and Chen [18]
studied the project scheduling problem using an uncertain
programming model. Gao [19] applied uncertainty theory to
address facility location problems. Qin et al. [20] proposed
uncertain mean-semi-absolute deviation adjusting models for
portfolio optimization problems. Uncertainty theory has also
been applied to study the single-period inventory problem.
Qin and Kar [21] first introduced uncertainty theory to the
newsvendor problem by assuming demand to be an uncer-
tain variable. They obtained the optimal order quantity that
could maximize the newsvendor’s expected profit. Ding [22]
analyzed the multi-item newsvendor problem with uncertain
demand and uncertain storage space under a warehousing
chance constraint. Ding and Gao [23] derived an optimal
replenishment policy of an uncertain multi-item newsven-
dor problem using uncertain programming. Ding [24] also
explored how to make optimal order when uncertain market
demand and random demand coexist based on uncertainty
theory and chance theory. Wang et al. [25] developed both
single-item and multi-item single-period inventory models
with a budget constraint when market demands are assumed
to be uncertain random variables.

However, the above papers using uncertainty theory to
study newsvendor models assume that the newsvendor is
risk-neutral, implying that the objective is to maximize the
expected profit or minimize the expected cost. However, due
to the complex market environment and uncertain demand,
a newsvendor is more likely to be risk averse, and the objec-
tives are no longer consistent with profit maximization or cost
minimization [26]. Researchers have increasingly realized
the significant impact of risk preference on newsvendors’
decision making. Wang et al. [28] showed that a risk-averse
newsvendor will order less than an arbitrarily small quantity
as the selling price increases if the price is higher than a
threshold value. Wu et al. [29] studied the effect of capacity
uncertainty on inventory decisions in both risk-neutral and
risk-averse scenarios; they discovered that the result obtained
in the former scenario becomes invalid in the latter scenario.
Murarka et al. [30] incorporated coherent risk measures into
the classical newsvendor problem to capture risk when the
order quantity decision is made.

Next, we review the different measurements of risk aver-
sion. Expected utility, mean-variance, and value-at-risk (VaR)
are the three traditional methods used to model risk aver-
sion in inventory problems. However, these three methods
may be unable to accurately describe the risk character-
istics of decision makers [31]. Many scholars (e.g., see
[32], [33]) have used conditional value-at-risk (CVaR) tomea-
sure risk attitude since it was first proposed by Rockafller and
Uryasev [34]. CVaR is a coherent risk measure exhibiting
subadditivity that can address the shortcomings of VaR by
accounting for both expected profit and risk. However, a dis-
advantage of CVaRα is that it measures the average income
below the α-quantile and ignores the portion of income above
the α-quantile. This limitation can lead to overly conservative
decisions [35]. To overcome this disadvantage, scholars have
adopted the mean − CVaR, which maximizes the expected
profit while minimizing the downside risk of the profit to
balance expected profit and risk. Xie et al. [36] considered
a single-period supply chain with a newsvendor retailer by
applying the mean − CVaR criterion; they investigated three
contracts to coordinate the supply chain in the case of risk
neutrality and risk aversion. Xu and Li [37] studied the
optimal ordering problem of the newsvendor model based on
mean−CVaR in the presence of a shortage cost. Gao et al. [38]
explored a joint decision problem using the mean − CVaR
criterion when the newsvendor not only decides the order
quantity but also adopts a weather hedging strategy. Simi-
lar to the approaches of measuring risk attitude mentioned
above, we consider not only the expected profit but also the
risk of loss. The difference is that we use tail value-at-risk
(TVaR) to replace CVaR. TVaR is redefined by Peng [39]
based on uncertainty theory as one of the risk metrics in
uncertain risk analysis. TVaR is a good risk measurement that
not only measures the extent of the loss suffered but also
the probability of loss. As explained by Peng [39], CVaR
is based on the probability theory framework and, there-
fore, is not applicable to the uncertainty theory framework.

VOLUME 7, 2019 182633



S. Zhang et al.: Risk-Averse Newsvendor Model Under the Framework of Uncertainty Theory

Therefore, we adopt the risk aversion measure mean− TVaR
in this paper.

Briefly, we aim to investigate the optimal order strategy for
the single-period risk-averse newsvendor model with uncer-
tain demand. We apply uncertain statistics to estimate the
empirical distribution of the demand to solve the newsvendor
model with an uncertain variable. Furthermore, we analyze
how various parameters, such as the degree of risk aversion,
affect the optimal order policy.

Our study represents amajor extension ofQin andKar [21],
who applied uncertainty theory to address the newsvendor
problem but assuming risk neutrality. Specifically, in this
research, we make the following major contributions. First,
we are the first to analyze a risk-averse newsvendor using the
framework of uncertainty theory. To measure risk aversion,
we adopt the measure of tail value-at-risk redefined based on
uncertainty theory. Second, we are able to analytically derive
the optimal order quantity. We show that as the degree of
risk aversion increases, the optimal order quantity decreases.
Also, the optimal order quantity may be independent of the
risk confidence level when the degree of risk aversion is
below a threshold. Third, we conduct numerical examples
to further investigate how product characteristics, such as the
salvage value, can impact the optimal order quantity. In short,
this research contributes to the academic literature as well
as industry practice by solving the risk-averse newsvendor
model under uncertain theory.

The remainder of this paper is organized as follows.
Section II provides some preliminaries regarding uncertainty
theory. In Section III, a risk-averse newsvendor model is
formulated under uncertain demand using the risk metric of
mean− TVaR. In Section IV, the optimal order policy is ana-
lytically derived. Moreover, how various parameters affect
the optimal policy is investigated. In Section V, numerical
examples are given to verify the analytical results and present
sensitivity analysis of the parameters. Section VI presents the
conclusions and possible research directions.

II. PRELIMINARIES
Probability theory and uncertainty theory are two mathemati-
cal systems that rationally address indeterminacy. The former
is used for modeling frequencies and is suitable when there
are sufficient data. The latter is used for modeling belief
degrees that are given by domain experts when there are
no samples to estimate the probability distribution. Some
fundamental concepts and properties of uncertainty theory
that are used throughout this paper are as follows.

If nonempty collection L is a σ− algebra over 0, the ele-
ment 3 of L is called an event. M is a set function
from L to interval (0, 1) if M satisfies the following four
axioms:
Axiom 1 (Normality Axiom): M {0} = 1 for the universal

set 0.
Axiom 2 (Duality Axiom): M {3} + M {3c} = 1 for any

event.

Axiom 3 (Subadditivity Axiom): For each countable
sequence of events 31,32, . . ., we have

M

{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M {3i} (1)

Then, we callM an uncertain measure, and (0,L,M) is an
uncertain space [17].
Axiom 4 [17]: Let (0k ,Lk ,Mk) be the uncertainty spaces

for k = 1, 2, . . .. The product uncertain measure M is an
uncertain measure satisfying

M

{
∞∏
k=1

3k

}
=
∞

∧
k=1

Mk {3k} (2)

where 3k are arbitrarily chosen events from Lk for
k = 1, 2, . . ..
Definition 1 [40]: An uncertain variable ξ is a measur-

able function from the uncertain space (0,L,M) to the real
number set; thus, for any Borel set over the real number set,
the collection {ξ ∈ B} = {γ ∈ 0 |ξ (γ ) ∈ B } is an event. The
belief degree represents the strength with which we believe
that an event will occur. The uncertainty distribution 8 of an
uncertain variable ξ is defined by8(x) = M {ξ ≤ x} for any
real number x.
Definition 2 [40]:A function8−1 is an inverse uncertainty

distribution of an uncertain variable ξ if and only if

M
{
ξ ≤ 8−1 (α)

}
= α (3)

for all α ∈ (0, 1).
Definition 3 [40]: Let ξ1, ξ2, . . . , ξn be independent

uncertain variables with regular uncertainty distributions
81,82, . . . , 8n, respectively. If f (ξ1, ξ2, . . . , ξn) is strictly
increasing with respect to ξ1, ξ2, . . . , ξm and strictly decreas-
ing with respect to ξm+1, ξm+2, . . . , ξn, the variable ξ =
f (ξ1, ξ2, . . . , ξn) has an inverse uncertainty distribution as
follows:

ψ−1 (α) = f
(
8−11 (α) , . . . , 8−1m (α) ,

8−1m+1 (1− α) , . . . , 8
−1
n (1− α)

)
(4)

Definition 4 [40]: An uncertain variable ξ is normal if it
has a normal uncertainty distribution

8(x) =
(
1+ exp

(
π (e− x)
√
3σ

))−1
x, ∈ R (5)

denoted by ξ ∼ N (e, σ ), where e, σ ∈ R, σ > 0.
The inverse uncertainty distribution of the normal uncer-

tain variable ξ ∼ N (e, σ ) is

8−1 (α) = e+
σ
√
3

π
ln

α

1− α
(6)

Definition 5 [40]: Let ξ be an uncertain variable. Provided
that at least one of the two integrals are finite, the expected
value of ξ is defined as

E [ξ ] =
∫
∞

0
M {ξ ≥ r}dr −

∫ 0

−∞

M {ξ ≤ r}dr (7)
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TABLE 1. Notations of the parameters and variables.

Theorem 1 [41]: Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
81,82, . . . , 8n, respectively. If f (ξ1, ξ2, . . . , ξn) is strictly
increasing with respect to ξ1, ξ2, . . . , ξm and strictly decreas-
ing with respect to ξm+1, ξm+2, . . . , ξn, ξ = f (ξ1, ξ2, . . . , ξn)
has an expected value

E [ξ ] =
∫ 1

0
f
(
8−11 (α) , . . . , 8−1m (α) ,

8−1m+1 (1− α) , . . . 8
−1
n (1− α)

)
dα (8)

Definition 6 [39]:Assume that a system contains uncertain
factors ξ1, ξ2, . . . , ξn and a loss function f . Let α ∈ (0, 1] be
the risk confidence level. Then, the VaR of loss function f is
the function fVaR : (0, 1]→ R such that

fVaR (α) = inf {x |M {f (ξ1, ξ2, . . . , ξn) ≥ x} < 1− α } (9)

The TVaR of the loss function f is the function fVaR :
(0, 1]→ R such that

fTVaR (α) =
1
α

∫ α

0
fVaR (β)dβ (10)

Theorem 2 [39]: Assume that a system contains uncer-
tain factors ξ1, ξ2, . . . , ξn and has a loss function f .
If ξ1, ξ2, . . . , ξn are independent uncertain variables with
uncertainty distributions 81,82, . . . , 8n, respectively, and
if the function f (x1, x2, . . . xn) is strictly increasing with
respect to x1, x2, . . . xm and strictly decreasing with respect
to xm+1, xm+2, . . . xn, we have

fTVaR (α) =
1
α
f
(
8−11 (1− β) , . . . , 8−1m (1− β) ,

8−1m+1 (β) , . . . , 8
−1
n (β)

)
dβ (11)

III. MODEL
In our model, we consider a risk-averse newsvendor with
uncertain demand based on uncertainty theory. Faced with a
continuous and uncertain market demand ξ , the newsvendor
orders y unit products from a supplier at unit ordering cost
q before the selling season begins and sells the products at
unit selling price p. At the end of the regular selling season,
the excess is disposed at unit salvage value h. Without loss of
generality, we set p > q > h > 0. For clarity, the relevant
notations used in our model are summarized in Table 1.

On the basis of the above model setup, the profit function
can be written as

f (ξ, y) =

{
(p− q) y y < ξ

(h− q) y+ (p− h) ξ y ≥ ξ
(12)

Figure 1 plots f (ξ, y) as a function of ξ .
Since market demand ξ is an uncertain variable, the profit

function f (ξ, y) is also an uncertain variable. Under risk-
neutral conditions, the newsvendor’s objective is to maximize
the expected profit; thus, the optimal order quantity can
be stated as y∗ = argmax {E [f (ξ, y)]}, where E [·] is the
expected operator. However, the objective of a risk-averse
newsvendor is to maximize the expected utility, which can
be expressed as F(y) = λTVaRα(f (ξ, y))+ (1− λ)E [f (ξ, y)]
at a given level of risk confidence α(α ∈ (0, 1]) under the
criterion of mean − TVaR, where λ(λ ∈ [0, 1]) is the degree
of risk aversion. A larger λ indicates a higher degree of risk
aversion for the newsvendor. α is the risk confidence level,
which represents the newsvendor’s preference for downside
risk. When α equals 1, TVaRα is equal to the expected profit.
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FIGURE 1. Profit as a function of uncertain variable ξ .

The objective is to find the optimal order quantity y∗ to
maximize F (y); thus, F(y∗) = max

y
F(y). We obtain the

following results.
Theorem 3: Let 8(ξ ) and 81(ξ ) be the uncertainty distri-

bution and corresponding inverse uncertainty distribution of
ξ , where 8(ξ ) is continuous and invertible. At a given level
of risk confidence α(α ∈ (0, 1]), we have

TVaRα(f (ξ, y))

=



1
α

α∫
0

[
(p− h)8−1(β)+ (h− q)y

]
dβ α<8(y)

1
α

8(y)∫
0

[
(p− h)8−1(β)+ (h− q)y

]
dβ

+

α∫
8(y)

(p− q)ydβ

 α ≥ 8(y)

(13)

Theorem 4: Let E [f (ξ, y)] be the expected profit of
the newsvendor. Given a certain level of risk confidence
α(α ∈ (0, 1]), we have

E [f (ξ, y)] = (p−h)


y∫

(q−h)y
p−h

(1−8(x))dx −

(q−h)y
p−h∫
0

8(x)dx]


(14)

Hence, TVaRα(f (ξ, y)) and E [f (ξ, y)] can be derived based
on Theorem 3 and Theorem 4, respectively. Then, we can
obtain the computational formula of F(y) according to its

FIGURE 2. Belief degree distribution function of f (ξ, y ).

definition as follows: F(y) = λTVaRα(f (ξ, y)) + (1 −
λ)E [f (ξ, y)]. Then, we can derive the optimal order quantity
y∗. The result is given below.
Theorem 5: At a given level of risk confidence α(α ∈

(0, 1]), the optimal order quantity y∗ is (15), as shown at the
bottom of this page.

Based on Theorem 5, we can conclude that the optimal
order quantity varies according to the relationship between
the degree of risk aversion λ of the newsvendor and the
critical value λ∗, which is determined by the selling price,
unit ordering cost, salvage value and risk confidence level.

IV. SENSITIVITY ANALYSIS
By further analyzing the mathematical expression of the opti-
mal order quantity obtained in the above section, we can
obtain the following sensitivity analysis of the influence of
the parameters on the optimal ordering decision.
Corollary 1: Compared with a risk-neutral newsvendor,

a risk-averse newsvendor has a lower optimal order quan-
tity. Furthermore, the optimal order quantity decreases in the
degree of risk aversion.

We can also obtain the following results from Corollary 1.
A degree of risk aversion less than λ∗ indicates that the
newsvendor is more optimistic. In this case, the optimal order
quantity y∗ is independent of the selected risk confidence
level α. Therefore, newsvendors with the same risk aversion
attitude can have the same optimal ordering decision despite
having different risk confidence levels. When the degree of
risk aversion is greater than λ∗, the newsvendor is more
pessimistic. Here, different risk confidence levels lead to
different optimal order decisions, even though the degrees of
risk aversion are identical. When the risk confidence level is

y∗ =


8−1(

(p− q)α
(p− h) [(1− α)λ+ α]

) λ ≥ λ∗

8−1(
λ

1− λ
∗
h− q
p− h

+
p− q
p− h

) λ < λ∗
(λ∗ =

α(p− h)+ (q− p)
(α − 1)(p− h)

) (15)

182636 VOLUME 7, 2019



S. Zhang et al.: Risk-Averse Newsvendor Model Under the Framework of Uncertainty Theory

FIGURE 3. The optimal order quantities with different values of λ and α.

higher, i.e., the tolerance for risk is higher, the newsvendor is
more optimistic and orders a greater quantity of product.

The reasons of Corollary 1 are as follows. When a
newsvendor is risk averse, different degrees of risk aversion
will lead to different ordering decisions. Both the expected
profits and the downside risk of the profit are considered
when the newsvendor makes ordering decisions. When the
order quantity is small, the probability of overstocking is low;
thus, all products can be sold with profit. In contrast, when
the order quantity is large, a significant portion of the order
quantity may be unsold and has to be salvaged at a lower
price, resulting in a direct financial loss to the newsvendor.
Hence, when a risk-averse newsvendor makes an ordering
decision, s/he must predict the market demand and pay more
attention to the direct losses caused by over-ordering. A risk-
averse newsvendor tends to order fewer products to maximize
the expected utility. In addition, the higher the degree of risk
aversion, the lower the newsvendor’s expectation of market
demand, and the more negative impact of overstocking. As a
result, the newsvendor will order less.
Corollary 2: At given levels of risk confidence and risk

aversion, the optimal order quantity increases in the unit
selling price and unit salvage value but decreases in the unit
ordering cost.

Corollary 2 can help us decide the optimal order quantities
of different products. When a newsvendor is risk averse,
the ordering decision will be affected by the expected profit
and risk simultaneously. The characteristics of the product
can greatly influence the ordering decision. For example,
a product with a high salvage value and low cost will result in
greater profit and reduce the potential economic loss caused
by inventory leftover.

V. NUMERICAL EXAMPLES
In this section, we conduct numerical examples to illustrate
Corollary 1 and Corollary 2. We mainly discuss how the
risk aversion coefficient, risk confidence level, unit selling
price, unit ordering cost, and salvage value affect the ordering
decision of the newsvendor. Suppose the market demand is
ξ ∼ N (120, 40) and the uncertainty distribution and inverse
uncertainty distribution are

8(x) =
(
1+ exp

(
π (120− x)

5
√
3

))−1
,

8−1(x) = 120+
5
√
3

π
ln

x
1− x

(16)

VI. IMPACTS OF RISK AVERSION AND THE RISK
CONFIDENCE LEVEL
By employing MATLAB2014a, we can obtain the value of
the optimal order quantity y∗ under different degrees of risk
aversion λ and risk confidence levels α. The parameters we
employ are p = 23, q = 11.5, and h = 7.6. The results by
varying the values of λ and α are plotted in Figure 3.

The followings can be observed from Figure 3. First,
the optimal order quantity decreases as λ increases, which is
reasonable because as risk aversion increases, the newsven-
dor will be more concerned with to the downside risk of profit
rather than the expected profit and choose to order less. The
sensitivity of the optimal order quantity to the degree of risk
aversion also varies as the risk confidence level changes. The
higher the risk confidence level, the less risk aversion will
affect the optimal order quantity. However, changes in λ do
not always affect the newsvendor’s optimal order quantity.
When α ≥ 0.99, the optimal order quantity is rarely affected
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FIGURE 4. The optimal order quantities with different values of q and h.

by λ because as the risk confidence level approaches 1, TVaRα
approaches the expected profit. In this case, the impact of λ on
the ordering decision is negligible. Second, the optimal order
quantity will increase as α increases. The higher the risk con-
fidence level is, indicating a higher newsvendor’s acceptance
of risk, the higher the expected profit. Thus, the newsven-
dor tends to order more. The degree of risk aversion also
affects the sensitivity of the optimal order quantity to the
risk confidence level. With a higher degree of risk aversion,
the risk confidence level will have a stronger effect on the
optimal order quantity. Stated differently, with a higher λ,
α will have a stronger impact on the optimal order quantity.
However, α does not always affect the newsvendor’s optimal
order quantity. When λ < 0.3, the risk confidence level
has a limited impact on the optimal order quantity because
when λ is low, the newsvendor pays more attention to the
expected profit. Therefore, TVaRα has minimal influence on
decision making. When λ = 0, i.e., the newsvendor is risk-
neutral, as shown in Figure 3, the optimal order quantity of a
risk-averse newsvendor is always smaller than that of a risk-
neutral newsvendor.

VII. IMPACTS OF THE UNIT ORDERING COST, UNIT
SELLING PRICE, AND UNIT SALVAGE VALUE
In this subsection, we focus on how unit ordering cost q,
unit selling price p, and unit salvage value h affect the opti-
mal order quantity. Since the selling price affects the order
quantity by influencing the profit margin of a risk-averse
newsvendor as does the ordering cost, we focus only on the
impact of q and h on the optimal order quantity here.
We assume that λ = 0.55, α = 0.99 , and p = 23.

Figure 4 shows the changes in the optimal order quantity
with different values of q and h. We can make the following
observations from Figure 4. First, the optimal order quantity

increases as h increases. This is because the higher the unit
salvage value, the less the economic loss caused by overstock-
ing the same amount of product. Therefore, the newsven-
dor will tend to order more items with a higher salvage
value. Second, the optimal order quantity will decrease as q
increases because the cost increase will reduce profit prof-
itability; therefore, the expected profit from the sales of the
same quantity of products will also decrease. In this case,
the newsvendor will reduce the optimal order quantity in light
of inventory risk concerns. Third, the change caused by q is
greater than that caused by h, implying that the newsvendor is
more sensitive to the unit ordering cost than the salvage value.
This result holds because newsvendors are more concerned
with the loss of product margins due to higher unit ordering
cost than less overstock loss due to higher salvage values.
In short, the lower the unit ordering cost and the higher the
salvage value of the product, the higher the optimal order
quantity.

VIII. DISCUSSION AND CONCLUSION
In this paper, we study a risk-averse newsvendor model
based on uncertainty theory. Stated differently, we incor-
porate a newsvendor’s risk aversion under the assumption
that demand is an uncertain variable and analyze its optimal
ordering decision.We formulate a utility function considering
both risk and expected profit. We then obtain the optimal
order quantity by maximizing the utility function. Numerical
examples are further provided to verify our analytic results
and illustrate the impacts of various parameters on the optimal
order quantity.

In our study, we treat demand as an uncertain variable,
which is a main contribution because existing studies usu-
ally assume that demand is a random or fuzzy variable.
We are able to solve the newsvendor model in an uncertain
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environment, further broadening the applicability of this
model in business practice where insufficient data is avail-
able. In our model, the estimation of the uncertain variable
is given by experts with knowledge of uncertain statistics
because insufficient observational data or historical data are
available. In contrast, the use of random or fuzzy variables,
which are typically assumed in the literature, is more appro-
priate for addressing uncertainty when related data are acces-
sible. In short, our main contribution is that our model and
results are more practical for inventory management with
insufficient data.

Our main research results are as follows. First, compared
with a risk-neutral newsvendor, a risk-averse newsvendor has
a lower optimal order quantity. Furthermore, as the degree of
risk aversion increases, the optimal order quantity decreases.
Second, the sensitivity of the optimal order quantity to the
degree of risk aversion depends on the risk confidence level.
In particular, the optimal order quantity may be independent
of the risk confidence level when the degree of risk aversion is
below a threshold. Third, the optimal order quantity decreases
in the unit ordering cost but increases in the salvage value and
unit selling price.

In future research, this paper can be extended in the fol-
lowing directions. First, we could expand the single-item
risk-averse newsvendor problem in the framework of uncer-
tainty theory to scenarios involving multi-item newsvendors.
Second, we could extend our research to study supply chain
coordination with contracts, such as buy back contracts
and revenue sharing contracts, in an uncertain environment.
Finally, a multi-period dynamic inventory problem in an
uncertain environment could be investigated.

APPENDIX
PROOF OF THEOREM 3
The profit function shows that when ξ ≤ y, f (ξ, y) = (h −
q)y + (p − h)ξ ≤ (p − q)y, and ξ > y, we have f (ξ, y) =
(p− q) y. Therefore, for any ξ , we have f (ξ, y) ≤ (p − q)y;
thus, the belief degree of f (ξ, y) ≤ (p − q)y is equal to 1
(i.e., M {f (ξ, y) ≤ (p− q)y} = 1). In addition, we have the
following:

M {f (ξ, y)= (p− q)y}=M {ξ > y}=1−M {ξ≤y}=1−8(y)

The belief degree distribution function 9(x) of the profit
function f (ξ, y) is a step function and is continuous at the
break point. Figure 2 plots 9(x).

According to (9) and Figure 2, given a certain level of risk
confidence β(β ∈ (0, 1]), we have

VaRβ = inf {x|M {f (ξ, y) ≥ x} < 1− β}

= inf {x|M {f (ξ, y) ≤ x} > β}

= Sup {x|M {{ξ ≤ y, (h− q)y+ (p− h)ξ ≤ x}

∪ {ξ > y, (p− q)y ≤ x} } ≤ β }

(I) When β < 8(y) (such as β1 in Figure 2), the VaR corre-
sponding to β is always less than (p−q)y, which corresponds

to 8(y), and VaRβ can be calculated as

VaRβ = inf
{
x|M

{{
ξ ≤ y, ξ ≤

x + (q− h)y
p− h

}
∪{∅}

}
> β

}
= inf

{
x|M

{
ξ ≤

x + (q− h)y
p− h

}
> β

}
As81(ξ ) is the inverse uncertainty distribution function of

ξ , the equation above is equivalent to VaRβ+(q−h)y
p−h = 81(β).

Hence, VaRβ = (p− h)8−1(β)+ (h− q)y.
(II)When 1 ≥ β ≥ 8(y) (such as β2 in Figure 2), we obtain

VaRβ = (p− q)y.
We substitute VaRβ into (10), yielding TVaRα(f (ξ, y)).

Because VaRβ is a piecewise function, TVaRα(f (ξ, y)) is also
a piecewise function that can be expressed as

TVaRα(f (ξ, y)) =



1
α

α∫
0

[
(p− h)8−1(β)+ (h− q)y

]
dβ

α < 8(y)

1
α

 8(y)∫
0

[
(p−h)8−1(β)+ (h− q)y

]
dβ

+

α∫
8(y)

(p− q)ydβ

 α ≥ 8(y)

Theorem 3 is proved. �

PROOF OF THEOREM 4
According to Qin and Kar [21], we have

E [f (ξ, y)]

= (p− h)


y∫

(q−h)y
p−h

M {ξ ≥ x} dx −

(q−h)y
p−h∫
0

M {ξ ≤ x} dx


Considering that 8(x) is a continuous function that satisfies
8(x) = M {ξ ≤ x} andM {ξ > x} = 1−8(x), we can obtain

E [f (ξ, y)] = (p− h)


y∫

(q−h)y
p−h

(1−8(x))dx −

(q−h)y
p−h∫
0

8(x)dx]


Theorem 4 is proved. �

PROOF OF THEOREM 5
Proof:We first take the derivative of F(y) as follows:

dF(y)
dy
= λ

dCVaR
dy

+ (1− λ)
d(E [f (ξ, y)])

dy
.

Because F(y) is a piecewise function, it must be dis-
cussed in segments. In addition, notably, lim

y→8−1(α)
F(y) =

F(8−1(α)); thus, F(y) is continuous at its breakpoints.
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Next, we discuss different situations according to the rela-
tionship between α and 8(y).
Case 1: α < 8(y); in this case, y > 8−1(α), and we have

dF(y)
dy
= λ(h− q)+ (1− λ) [(p− q)− (p− h)8(y)] ,

d2F(y)
dy2

= (1− λ)(h− p)
d8(y)
dy

Since8(y) is a continuously andmonotonically increasing
function, we can infer that d8(y)dy ≥ 0. By combining p > h

and λ ∈ [0, 1], it can be verified that d2F(y)
dy2
≤ 0, implying

that F(y) has a maximum value.

Letting dF(y)
dy = 0, we obtain y1, which satisfies

8(y1) =
λ

1− λ
∗
h− q
p− h

+
p− q
p− h

,

y1 = 8−1(
λ

1− λ
∗
h− q
p− h

+
p− q
p− h

)

Because the domain of F(y) is y > 8−1(α) in Case 1,
we must consider the values of F(y) at the boundaries of the
domain to determine its maximum. Let

λ1 =
α(p− h)+ (q− p)
(α − 1)(p− h)

.

(I) When y1 > 8−1(α), λ < λ1. Thus, the domain of F(y)
contains y1. F(y) has a maximum at y1; therefore, y∗1 = y1 is
the optimal solution.

(II) Conversely, when λ ≥ λ1, because
d8(y)
dy <0 and F(y)

is continuous at point y = 81(α), the maximum of F(y) is at
the left boundary of the domain. Hence, the optimal solution
is y∗1 = 8

1(α).
Case 2: α ≥ 8(y); in this case, y ≤ 8−1(α), and we have

dF(y)
dy
=
λ

α
(h− p)8(y)+ λ(p− q)

+(1− λ) [(p− q)− (p− h)8(y)] ,
d2F(y)
dy2

=

[
h− p
α
∗ (λ+ α − αλ)

]
d8(y)
dy

Similarly, since d2F(y)
dy2

≤ 0, F(y) has a maximum in its

domain. Letting dF(y)
dy = 0, we obtain y2, which satisfies

8(y2) =
(p− q)α

(p− h)(α + λ− αλ)
,

y2 = 8−1(
(p− q)α

(p− h)(α + λ− αλ)
)

Similar to Case 1, we consider the boundaries of the domain
to determine the maximum of F(y).

The domain of F(y) is y ≤ 8−1(α) in Case 2. Let

λ2 =
p− q

(p− h)(1− α)
−

α

1− α
.

(I) When y2 ≤ 8−1(α), λ ≥ λ2. Thus, the domain of F(y)
contains y2, and F(y) has its maximum at y2. Thus, y∗2 = y2.

(II) When λ < λ2, we have dF(y)
dy > 0. In this case,

the maximum of F(y) occurs at the right boundary of the
domain. Thus, the optimal solution is y∗2 = 8

1(α). Notably,
λ1 = λ2 in this situation.

To obtain the optimal solution that satisfies F(y∗) =
max
y
F(y), we compare F(y∗1) and F(y

∗

2), which are derived

from Cases 1 and 2.
(I) When λ < λ1, we have F(y∗1) = F(y1) and F(y∗2) =

F(8−1(α)). Since F(y) is continuous at y = 81(α), F(y∗
1
) =

F(y1) > F(8−1(α)) = F(y∗
2
) is true.

Thus, the optimal order quantity is y∗ = y∗1 = y1.
(II) When λ ≥ λ1, we obtain F(y∗2) = F(y2) >

F(8−1(α)) = F(y∗1), indicating that the optimal order quan-
tity is y∗ = y∗2 = y2.
Theorem 5 is proved. �

PROOF OF COROLLARY 1
Proof: Based on Theorem 5, the optimal order quantity y∗

can be described as

y∗ =


8−1(

(p− q)α
(p− h) [(1− α)λ+ α]

) λ ≥ λ∗

8−1(
λ

1− λ
∗
h− q
p− h

+
p− q
p− h

) λ < λ∗

where λ∗ = α(p−h)+(q−p)
(α−1)(p−h) . Setting λ = 0 and α = 1,

we can obtain the expected profit function of a risk-neutral
newsvendor as follows:

E [f (ξ, y)] = (p− h)


y∫

(q−h)y
p−h

(1−8(x))dx −

(q−h)y
p−h∫
0

8(x)dx]


Considering the derivative of the equation above, we obtain

the corresponding optimal order quantity y′ = 8−1(p − q/
p − h). Since we have λ ∈ [0, 1], α ∈ (0, 1],
and p > q > h > 0, we can infer that λ(h−q)

(1−λ)(p−h) ≤ 0.
As α

/
[(1− α)λ+ α] ≤ 1, we can obtain

λ

1− λ
×
h− q
p− h

+
p− q
p− h

≤
p− q
p− h

,

(p− q)α
(p− h)[(1− α)λ+ α]

≤
p− q
p− h

Since 8(x) and its inverse function 81(x) are both mono-
tonically increasing, we can obtain y∗ ≤ y′ for any λ ∈ [0, 1];
thus, the optimal order quantity of a risk-averse newsvendor is
less than that of a risk-neutral newsvendor. Next, we further
analyze the impact of the degree of risk aversion λ on the
optimal order quantity y∗.

(I) When λ < λ∗, we can obtain

y∗ = 8−1
(

λ

1− λ
∗
h− q
p− h

+
p− q
p− h

)
.

As λ
1−λ ∗

h−q
p−h+

p−q
p−h is a decreasing function of λ and8

1(x)
is an increasing function, y∗ is decreasing with respect to λ;
Therefore, an increase in λ will lead to a decrease in y∗.
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(II) When λ ≥ λ∗,

y∗ = 8−1
(

(p− q) α
(p− h) [(1− α) λ+ α]

)
.

As (p−q)α
(p−h)[(1−α)λ+α] is a decreasing function of λ, 81(x) is

an increasing function; thus, y∗ is decreasing with respect
to λ. Hence, y∗ decreases as λ increases.
In summary, a risk-averse newsvendor has a smaller opti-

mal order quantity, and the optimal order quantity decreases
as the degree of newsvendor risk aversion increases.

Corollary 1 is proved. �

PROOF OF COROLLARY 2
λ

1−λ ∗
h−q
p−h +

p−q
p−h is an increasing function of p and h but

a decreasing function of q as is (p−q)α
(p−h)[(1−α)λ+α] . Addition-

ally, 81(x) is an increasing function. Therefore, y∗ is always
increasing with respect to p and h but is decreasing with
respect to q.

Corollary 2 is proved. �
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