
Received November 9, 2019, accepted December 14, 2019, date of publication December 17, 2019,
date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2960449

A Survey of Exploitation and Detection Methods
of XSS Vulnerabilities
MIAO LIU , BOYU ZHANG , WENBIN CHEN , AND XUNLAI ZHANG
School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

Corresponding author: Miao Liu (liumiao@gzhu.edu.cn)

This work was supported by the Guangzhou Municipal Universities under Project 1201620342.

ABSTRACT As web applications become more prevalent, web security becomes more and more important.
Cross-site scripting vulnerability abbreviated as XSS is a kind of common injection web vulnerability. The
exploitation of XSS vulnerabilities can hijack users’ sessions, modify, read and delete business data of web
applications, place malicious codes in web applications, and control victims to attack other targeted servers.
This paper discusses classification of XSS, and designs a demo website to demonstrate attack processes
of common XSS exploitation scenarios. The paper also compares and analyzes recent research results on
XSS detection, divides them into three categories according to different mechanisms. The three categories
are static analysis methods, dynamic analysis methods and hybrid analysis methods. The paper classifies
30 detection methods into above three categories, makes overall comparative analysis among them, lists
their strengths and weaknesses and detected XSS vulnerability types. In the end, the paper explores some
ways to prevent XSS vulnerabilities from being exploited.

INDEX TERMS Vulnerability detection, vulnerability exploitation, web security, XSS.

I. INTRODUCTION
Cross-site scripting vulnerability is a kind of vulnerabilities
that can endanger web applications by injecting malicious
code, which is abbreviated as XSS to distinguish cascading
style sheets(CSS). XSS can be traced back to the 1990s and
Microsoft security engineers introduced the term "Cross-site
scripting" in January 2000. XSS ranked 4th, 4th, 1st, 3rd, 7th

in OWASP top 10 project in 2004, 2007, 2010, 2013 and
2017 respectively [1]. As the Internet security threat report
in 2019 shows [2], fishing attacks and form hijacking caused
by exploiting XSS vulnerabilities bring huge losses to enter-
prises. Symantec intercepted more than 3.7 million forms
hijacking attacks in 2018.

XSS vulnerability is a very common and prevalent vulner-
ability in web vulnerabilities. Exploiting XSS vulnerabilities
can causemany serious problems. In 2006, Bantown, a hacker
organization, exploited the discovered XSS vulnerabilities
to invade LiveJournal which is an online community with
2 million active users [3]. The attacker created a large num-
ber of URLs containing malicious code and lured users to
click. When victims clicked these URLs, the attacker could
get cookies from users and used these cookies to login the
victims’ accounts. In 2013, Baidu Post Bar was attacked by
XSS worms [4]. XSS worms were automatically forwarded

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Gawanmeh.

when users clicked on some promotion information in the
website.

II. THE CLASSIFICATION OF XSS VULNERABILITIES
According to untrusted user supplied data is included in an
HTTP response generated by the server or is somewhere
in the DOM of HTML pages, XSS vulnerabilities could be
divided into server-side vulnerabilities and client-side vulner-
abilities. The server-side XSS vulnerability mainly includes
reflected XSS and stored XSS. The client-side vulnerability
refers to DOM Based XSS.

A. DOM BASED XSS
DOMBasedXSS is also known as type-0 XSS. It is caused by
unsafe client-side code rather than server-side code. This sort
of vulnerability may occur on pages containing JavaScript
code such as document.write() or eval(). The attacker creates
a link with malicious JS code and sends it to the victim.
When the victim clicks on the link, he will get a response
without malicious code. The malicious code executes at the
client side and the attacker can obtain sensitive information
from the victim. The detailed process is as follows and shown
in Figure 1.

B. STORED XSS
Stored XSS is also known as type-1 XSS. This kind of vulner-
ability is likely to occur in websites such as forums or blogs.

182004 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-2259-9782
https://orcid.org/0000-0003-1604-0552
https://orcid.org/0000-0001-7642-7279
https://orcid.org/0000-0003-1302-440X

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

FIGURE 1. The process of DOM-based XSS attack.

FIGURE 2. The process of stored XSS attack.

The attacker puts the malicious code in his submissions to
websites, and websites store these submissions in databases
directly. When the victim browses these contents, the XSS
attack will be triggered. The detailed process is as follows
and shown in Figure 2.

C. REFLECTED XSS
Reflected XSS is also known as type-2 XSS. The process of
reflectedXSS attack is similar with DOMBasedXSS, and the
difference is that malicious code is included in the response
of websites. Attackers usually insert malicious scripts into a
URL and lure users to click on it. When the victim clicks on
the link, he will get the response with malicious code from
the website.

The attacker will get sensitive data through malicious
code execution. Unlike DOM Based XSS vulnerabilities,
reflected XSS is a server-side vulnerability. Malicious
code is parsed at the server-side rather than at the
client-side. The detailed process is as follows and shown
in Figure 3.

III. RISKS CAUSED BY EXPLOITING XSS
VULNERABILITIES
In this section, we created a demo website to illustrate how
to exploit XSS vulnerabilities. The demo website is deployed
locally and the domain name is www. phpbegin.local.

FIGURE 3. The process of reflected XSS attack.

FIGURE 4. The code of redirecting to normal website.

FIGURE 5. The process of phishing attack.

A. PHISHING ATTACK
We created amalicious website (http://www. phpbegim.local)
with the same login display effect with our demon-
strated website (http://www.phpbegin.local). It’s worth
noting that URLs are the same except for one let-
ter. We forged a malicious link (http://www.phpbegin.
local /login.php?userName=<script>window.location.
href=’’www. phpbegim.local/login.php’’;</script>&
password=&submit=), sent it to a user via email and lured
the user to click on it. When the user clicked the malicious
link, the user entered his username and password and clicked
the login button. We used the following code (see Figure 4)
to redirect the user to the normal website, and stored his
username and password in the database. The user logged in
the website normally without being aware that his username
and password had been stolen. The process of phishing is
shown in Figure 5.

In 2016, a hacker named MLT discovered a reflected XSS
vulnerability in eBay and stole users’ accounts and passwords
using the method described above [5].

VOLUME 7, 2019 182005

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

FIGURE 6. The cookie of the user.

FIGURE 7. Replace cookie with burp suite.

FIGURE 8. The homepage of the website.

FIGURE 9. The process of stealing cookie.

B. STEAL COOKIE
The attacker stores a file cookis.js including some
malicious code in the directory myjs of the malicious web-
site and then posts some submission including <script
src="http://www.phpbegim.local/myjs/cookis.js"></script>
to the demonstrated website. When users access the pages
containing the above submission, the demonstrated web-
site will send responses to users. The malicious code will
be executed and the attacker will receive users’ cookies
(see Figure 6). In the end, the attacker can use some pene-
tration test tool to replace his cookie value with the stolen
cookie value (see Figure 7), and then he can login in the
demonstrated website(see Figure 8) by counterfeiting users.
The process of stealing cookie is shown in Figure 9.

In 2017, Tavis Ormandy, a researcher of Google Project
Zero, discovered a DOM Based XSS vulnerability when
an Adobe Chrome extension was installed by default [6].
This vulnerability allowed browsers to execute privileged
JavaScript code and steal users’ cookies and other sensitive
data. In 2015, Tavis Ormandy discovered XSS vulnerabilities
in AVG Web TuneUp, a Chrome extension of AVG which
is an anti-virus software [7]. Due to the complex installation

FIGURE 10. The website returns 404 error.

FIGURE 11. The process of DoS attack.

process of the extensive, Some of themeasures used to protect
against malware in Chrome have failed. These vulnerabilities
may be used for remote code execution and to expose users’
browsing records and cookies. In 2016, Sucuri, a network
security service provider, discovered a storedXSS vulnerabil-
ity inMagento platformwhich is an E-commerce website [8].
The attacker could exploit this vulnerability to steal informa-
tion of users such as browsing and purchasing history and get
administrative privileges and do whatever administrators can
do.

C. DOS ATTACK
The attacker stores a file dos.js in the directory myjs of the
malicious website, and then posts some submission includ-
ing <script src="http://www.phpbegim.local/myjs/dos.js">
</script> to the demonstrated website. The dos.js code will
insert large invalid data to cookies. When users access the
pages containing the attacker’s submission, the malicious
code is executed, and a lot of invalid data is injected into
users’ cookies. When users browse the demonstrated website
again, they will get 400 errors (Figure 10), because the web-
site cannot parse cookies which have a large amount invalid
data. The process of DoS attack is shown in Figure 11.

D. DDOS ATTACK
In 2014, Incapsula, the Japan’s cloud security service
provider, reported a Stored XSS in one of the world’s largest
videowebsites [9]. The attacker insertedmalicious JavaScript
code into tag of a user’s custom avatar and published

182006 VOLUME 7, 2019

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

FIGURE 12. The process of DDoS attack.

FIGURE 13. Some part of the screenshot which is encoded in base64.

a lot of comments on many videos with the custom avatar.
When legitimate users browsed these videos, the malicious
code was executed and added a hidden <iframe> tag with a
tool based Ajax script that can send a request to the targeted
server per second. The more users watched these videos,
the more requests were sent to the targeted server, which in
turn caused the targeted server to exhaust all resources and
not respond to normal user requests any more. The process of
DDoS is shown in Figure 12.

E. STEALING BROWSER SCREENSHOTS
The attacker stores a file shot.js in the directory myjs of the
malicious website, and then posts some submission includ-
ing<script src="http://www.phpbegim.local/myjs/shot.js">
</script> to the demonstrated website. The shot.js code will
copy and send victim’s screenshots to the malicious web-
site. When users access the pages containing the attacker’s
submission, the script takes a screenshot of the browser,
sends it back to the malicious website(see Figure 13). The
attacker can then decode the received data to view the image
(see Figure 14). The process of stealing browser screenshots
is shown in Figure 15.

F. XSS WORMS
In 2011, Sina Weibo, a similar website with Twitter in China,
received an attack from a XSS worm [10]. Once the user
was attacked by the worm, the user would automatically send
some microblogs to their fans to entice them to click. Once
fans clicked on this Weibo to view the details, they would be
infected and repeated the above steps, which would cause the

FIGURE 14. The restored image based on received data.

FIGURE 15. The process of stealing browser screenshots.

FIGURE 16. The process of a XSS worm attack.

worm to spread quickly. The process of Sina worm attack is
shown in Figure 16.

In 2014, a XSS vulnerability was discovered in
TweetDeck [11]. The attacker injected malicious code into
their tweets. When users logged in TweetDeck, the mali-
cious code was executed. This attack could be automatically
forwarded, causing all people who login TweetDeck to be
attacked. In 2010, Twitter received an attack from the XSS
worm [12]. When users logged in to Twitter, they would find
some tweets with colored text. These tweets are automatically
retweeted by the web version of Twitter when the mouse
moves over these tweets. In 2005, Samy created the first XSS
worm called "Samy Worm" to attack MySpace website [13].
Samy created a malicious script that not only forced anyone
who had visited his personal page to add him as a friend,
but also added a sentence to his "My Hero" category on his
personal page: "But Samy is my biggest hero". Finally this
script would be copied to the visitors’ profile.

IV. DETECTION METHODS OF XSS VULNERABILITIES
In this section, we investigate recent studies on detect-
ing XSS vulnerabilities. Different detection methods have
different analysis mechanisms. According to difference of

VOLUME 7, 2019 182007

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

analysis mechanisms, we divide these methods into static
analysis, dynamic analysis and hybrid analysis. Static analy-
sis methodsmainly find potential vulnerabilities by analyzing
codes of the web application, but these methods may have
a high false positive rate and sometimes the source code is
unavailable. Dynamic analysis methods detect vulnerabilities
by injecting data into the website to observe whether an attack
is triggered, but these methods always have a high false neg-
ative rate due to inability to cover all cases. Hybrid analysis
methods combine characteristics of above two mechanisms
to detect vulnerabilities.

A. STATIC ANALYSIS
Doupé et al. (2013) presented an approach that can rewrite
applications to protect legacy web applications and sepa-
rate the code from data automatically [14]. The method is
implemented as a tool called deDacota that can be applied
to ASP.NET web applications. The approach includes three
steps. First of all, it needs to statically estimate the approx-
imate output of each page. To implement this step, it has to
determine what need to be written at each TextWriter.Write
location and the order of calling TextWriter.write function.
Secondly, it uses the approximation map to extract all pos-
sible inline JS scripts and output a collection containing all
the inline JS scripts which might appear in pages. At last,
it rewrites the application to identify inline JS scripts, deletes
them in HTML pages and saves them in external JS files.

Steinhauser and Gauthier (2016) put forward an approach
called JSPChecker that can detect context-sensitive XSS
flaws [15]. Using JSPChecker requires no changes to the
application or runtime environment. Firstly, it analyses the
data flow of J2EE applications utilizing the SOOT which is
a Java optimization framework. SOOT converts the result of
an analytic application into Jimple middleware form which
offers an API for constructing static analyses. It uses static
analysis implemented by SOOT to record sanitizers in the
data flow. Then it creates approximations of HTML pages
utilizing the Java String Analyzer. At last, it utilizes a set
of parser to parse the created HTML pages and to estimate
the sanitized output context. When a parser comes across a
cleaned value, it compares the output context with the order
of sanitizers related to the value to check if they match. The
result of the comparison determines whether there exists one
XSS vulnerability.

Gupta and Gupta (2016) proposed a framework called
CSSXC which could be deployed in the cloud environment
to detect XSS vulnerabilities based on context-sensitive san-
itation [16]. When a cloud user requests a source, the web
application server accepts the request, extracts information
such as parameters and links to detect the presence of code
injection points and send them to Malicious JavaScript (JS)
Detection Server. To speed up the process of detecting mali-
cious code, the detection server uses a free XSS attack vector
library. If there is a malicious script at the injection point,
the detection server handles these untrusted values by utiliz-
ing sanitizers. The results of the sanitation are returned to the

web application server and the web application server sends
them to the cloud user.

Wang and Zhou (2016) proposed a detection mechanism
integrated with HTML5 and CORS properties [17]. The
mechanism is implemented as an extension of Firefox. When
the browser submits a request to the server, the interceptor
intercepts the request and forwards it to the action process
module. This module contains two parts, a normal rules set
for XSS detection and CORS detection. The XSS detection
module utilizes static analysis combined with the detection
of the sequence behavior to find vulnerabilities and con-
structs the attack reference based on rule patterns. In addi-
tion, the CORS detection module processes requests from
JS scripts according to the Same-Origin policy. Only when
the client has the corresponding privileges, it can be allowed
to access resources. Finally, the reaction processor module
handles results of detection to prevent malicious attacks.

Mohammadi et al. (2017) proposed a method using unit
testing to detect XSS vulnerabilities caused by incorrectly
applying encoding functions [18]. Firstly, in order to cover
all test paths, it builds a group of unit tests according to
each page that are utilized to detect XSS vulnerabilities. The
principle of this step is that if the web page has a XSS
vulnerability, a similar vulnerability will be contained in unit
tests. The unit test tool takes source code, untrusted sources
and sinks as inputs. Secondly, the method carries out attack
evaluation. The purpose of this phase is to check whether
each unit test can resist attacks from XSS attack strings.
It uses JWebUnit to achieve the purpose. At last, in the attack
generation phase, attack grammar is utilized to simulate the
process of browser parsing JavaScript payloads and then to
generate attack strings.

Gupta and Gupta (2018) proposed a novel framework
called XSS-secure to detect XSS worms in social websites,
which was deployed in a cloud environment [19]. There are
two operational modes in XSS-Secure, training mode and
detection mode. Training mode sanitizes untrusted variables
which are extracted from the JavaScript code. In order to
further process untrusted variables in the detection mode,
they are stored in the sanitization snapshot repository and
OSN Web server. Detection mode detects if there is a devi-
ation between the sanitized HTTP response that is generated
at the OSN web server and the response which is stored in
the sanitization snapshot repository. If there exists deviation,
the framework proves that hacker injects an XSS worm in the
OSN web server. XSS-secure will determine and sanitize the
context affected by XSS worm, and send the sanitized HTTP
response to the user. The advantage of the method is that it
can accurately determine the context affected by XSS worms
and then sanitize it.

Kronjee et al. (2018) implemented a tool called WIRE-
CAML to detect SQL injection and XSS vulnerability in PHP
web applications [20]. The tool combines data flow anal-
ysis with machine learning algorithms. Firstly, they collect
enough data from theNational Vulnerability Database and the
SAMPLE dataset to create dataset which contains a number

182008 VOLUME 7, 2019

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

of PHP source code files. Secondly, the tool parses files in
the dataset utilizing the Phply to build an abstract syntax trees
(ASTs). Then, it generates control flow graphs (CFGs) based
on ASTs and extracts features from CFGs using data flow
analysis techniques. Finally, extracted features are applied
to train a variety of different classifiers and test the result.
In term of XSS vulnerabilities detection, the approach gets
the precision rate of 79% and the recall rate of 71%. The result
is not much satisfactory.

Alam and Rasheed (2018) presented an approach called
NMPREDICTOR to detect web vulnerability [21]. The
method utilizes machine learning algorithms and combines
different prediction models. The dataset used in their exper-
iment comes from Walden et al. [22], which is named PHP
security vulnerability dataset. The approach is mainly divided
into two tiers. In the first tier, NMPREDICTOR created six
different model from training set to predict whether a file is
vulnerable. The data in the training set is labeled as vulner-
able or not by applying supervised learning method. These
six models take the PHP source files as input and output
a probability that represents the probability of a file being
attacked. In the second tier, the method utilizes results from
the six models to create another model called meta classifier.
The best result is the precision rate of 84.9% and the recall
rate of 85.1%.

The static analysis method can effectively detect all paths
in the source code, which effectively reduces the rate of
false negative rate. However, static analysis methods also
have many limitations. In many cases, applications will not
expose source code for security reasons. Some applications
even apply code confusion technique to prevent decompiling,
which makes them harder for static analysis. Due to the need
to check source code, some tools are deployed on the server-
side and cannot detect DOMBasedXSS, because it is a client-
side vulnerability and malicious code needn’t to go through
the server. At the same time, some websites contain a lot of
dynamic code that is loaded during execution time, and so
static methods can’t analyze these dynamic code.

We summarize the above static methods in Table 1.

B. DYNAMIC ANALYSIS
Lekies et al. (2013) presented a fully automated system to
detect and validate DOM-based XSS vulnerabilities [23]. The
system consists of two main components: a modified brows-
ing engine and a fully automated vulnerability validation
mechanism. The modified engine is used for vulnerability
detection which can support dynamic byte-level taint tracking
of suspicious flows. To implement it, authors directly modify
the engine’s string type implementation.

Firstly, it encodes the given character’s source information
with only one byte and use specific number to markup
source and encoding information. Secondly, it patches the
V8 JavaScript engine to store whether bytes are tainted or not.
Then it alters the DOM implementation to allow the spread
of taint information. At last, it modifies the DOM Based
XSS sinks to detect a tainted flow and notifies users.

The vulnerability validation mechanism receives three types
of information from engine: data flow information, tainted
value and byte tainted information, and uses them to validate
vulnerabilities.

Duchene et al. (2013) presented a black box detection
called LigRE to detect XSS vulnerabilities [24]. LigRE con-
sists of two parts, each of which contains two components.
The first part is the reverse engineering model, which consists
of control flow inference and data flow annotation. Control
flow inference uses crawlers to learn control flow information
of applications, maximize coverage and pass information
to data flow annotations. Data flow annotation receives the
inferred model, annotates sources and potential sinks and
generates a model that contains control flow and data flow.
The second part is constrained fuzzing, which consists of
slicing and fuzzing. For each annotation, it generates a slice
which is a trimmed model and uses these slices to guide the
fuzzing.

Duchene et al. (2014) proposed KameleonFuzz, a black
box Cross Site Scripting (XSS) fuzzer for web
applications [25]. It is the extension of LigRE.KameleonFuzz
has five main components: control flow inference, approxi-
mate taint flow inference, chopping, malicious input genera-
tion and precise taint inference. The first three components
are the same as LigRE. Malicious input is generated by
genetic algorithm, and attack grammar is used as parameter
of the algorithm. Attack grammar can reduce the search
space and simulate human aggressive behavior by limiting
crossover andmutation operations. The original stringmatch-
ing method may not be able to infer the taint accurately, so it
uses a double taint inference to get precise results.

Stock et al. (2014) proposed an alternative filter design
for DOM-Based XSS [26]. The method stops parsing the
malicious code injected by the attacker using run time taint
tracking and taint parser. It contains two main components,
a JavaScript engine that can track the data flow of the attacker
and a taint-aware HTML JavaScript parser which can detect
malicious code generated from tainted value. In order to
implement this method, it needs to do the following things.
Firstly, it needs to alter the JavaScript engine. When the
JavaScript engine encounters JavaScript code, it can mark up
the code to execute it later. Secondly, it modifies the parser
on how to handle the inclusion of external script content
to ensure that the loaded content comes from the trusted
web application. DOM binding also needs to be patched to
implement the same strategy as the parser. Then it provides
an API to ensure applications can choose whether or not to
use the protection mechanism. At last, it needs to implement
a policy to handle tainted JSON.

Panja et al. (2015) proposed a method called Buffer Based
CacheCheckwhich needs tomodify both the server and client
side code [27]. When a user requests a page from a browser,
the server checks whether there is a corresponding cache.
If one is found, the server compares the requested page with
the cache, marks the node that does not match as untrusted
and stores it in a single node. Two new functions X and Z

VOLUME 7, 2019 182009

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

TABLE 1. Summary of static detection methods.

are added in order to modify codes. The browser receives
the page and use function X to parse the content. When a
function is called, it checkswhether there are untrusted nodes.
If untrusted nodes are found, the function checks whether
they exist in the white list. If these nodes are not in the
white list, they will be treated as malicious nodes. Function
X reports information about malicious nodes to the server,
such as the location in the DOM, and the server removes them
from the page. Function Z returns a Boolean value indicating
whether there exists malicious code.

Gupta and Gupta (2015) proposed a defense prototype
called PHP-sensor [28]. The principle of this method is
to extract HTTP requests and responses. Firstly, it uses
parameter value selector to extract all of parameters from
web request. Based on these parameter values, it can infer
malicious external script links (if exist), and find malicious
scripts further. Parameter values and malicious scripts build
a collection P. Secondly, it uses script and file extractor to
extract scripts from the DOM tree and JavaScript content
from the collected HTTP responses. These two parts make
up the set D. Next, it decodes the code from set P and D by
using a decoder recursively. When there is no encoded script,
the process ends. At last, it compares the code between set P

and D by using HTTP Response Variation Detector module
to find inconsistent codes. The similarity of codes determines
whether to send a warning message to users or redirect the
request.

Fazzini et al. (2015) proposed AutoCSP, an automated
technique for retrofitting CSP to web applications [29].
It consists of four main stages: dynamic tainting, web page
analysis, CSP analysis and source code transformation. First
of all, AutoCSP receives a web application and a collection
of test data, marks hard-coded values in the server-side code
as trusted data and runs the web application when perform-
ing dynamic taint analysis. This phase outputs a group of
dynamic HTML pages. Secondly, it decides which part of
page could be treated as trusted elements by analyzing the
page and the relevant taint information. Next, according to the
results of web page analysis, it generates a strategy to block
untrusted elements and allows to load trusted elements at the
same time. At last, it transforms the server-side source code
of web application to generate web pages using appropriate
CSP.

Pan et al. (2016) proposed a prototype called
CSPAtuoGen [30]. It can deploy Content Security Policy
(CSP) automatically. Comparedwith deDacota andAutoCSP,

182010 VOLUME 7, 2019

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

it does not need to modify the server. Compared with
AutoCSP alone, it can handle the inline scripts contained
dynamic scripts and run time information. CSPAutoGen has
three main phases, and they are training, rewriting and run
time. In the training phase, CSPAutoGen inputs a group of
web pages and generates templates by training them. Next,
in the second phase, it parses the input pages, creates corre-
sponding CSPs according to templates and modifies pages
to deploy CSPs. At last, the browser executes the deployed
CSPs to prevent malicious scripts from being executed and
loads scripts that needed at run time.

Kerschbaumer et al. (2016) proposed a system that
prevents XSS vulnerabilities from being exploited by using
CSP [31]. The system generates a CSP strategy by allowing
only scripts in the white list to exist in the website. Firstly,
it needs to use the rendering engine of Firefox to listen the
invocation of function onload. The purpose of the modifi-
cation is to collect hash values of inline scripts generated
when the user accesses the page and sends them to a third
party. Secondly, it generates a CSP header for the website that
has collected enough reports. For web pages that don’t use
CSP, the browser finds the most suitable CSP header in the
CSP database. For web pages using unsafe-inline JS codes,
the system removes them and they will be substituted for the
script hashes existed in the CSP database. For web pages that
don’t use unsafe-inline JS codes, no changes will be made to
the system.

Parameshwaran et al. (2016) designed a test platform
to detect DOM-Based XSS called DexterJS [32]. It uses
dynamic taint analysis and verifies vulnerabilities automat-
ically. The platform has two main components, instrumenta-
tion engine and exploit generator. The function of DexterJS
is similar to a proxy server. Firstly, it intercepts requests of
browser and obtains URLs of the website, find scripts existing
in responses andmodifies them to execute byte-level dynamic
taint analysis. Secondly, when DexterJS receives a URL,
it utilizes a crawler to detect the source code of the application
and analyses data flows to find out potentially tainted flows.
Results are sent to the exploit generator. Next, based on these
results, the exploit generator determines the location where
the tainted value can be injected. At last, it creates a malicious
link to validate the original website.

Rathore et al. (2017) proposed a method to detect XSS
vulnerabilities on social networking services(SNSs) based
on machine learning algorithms [33]. Firstly, it identifies
XSS features and divides them into three categories: URL
features, HTML tag features and SNSs features. Secondly,
it collects 1000 SNSs web pages to build data set and extracts
features from them, which are 400 benign web pages and
600 malicious web pages. Finally, it uses machine algorithms
to train the data and get classified results. Authors use ten
machine learning algorithms to perform experiments. The
best experimental result is the precision rate 97.2% and the
false positive rate 0.87%. But the data set is too small.

Fang et al. (2018) proposed an approach called DeepXSS
using deep learning to detect XSS [34]. First of all, it utilizes a

crawler to collect malicious and normal data from the XSSed
library and the DMOZ library. Secondly, it decodes the input
data to restore the original form of the data recursively, nor-
malizes the data to eliminate useless information and tags
the data using regular expressions designed by themselves.
Then it utilizes word2vec, a tool released byGoogle, to obtain
the characteristic of XSS payloads and to build a mapping
between each payload and each feature vector. Next, it inputs
results of previous step into a neural network containing
a Long Short Term Memory layer, a dropout layer and a
softmax layer. At last, this method outputs the result whether
there is an XSS vulnerability through the classifier.

Wang et al. (2018) proposed a framework called TT-XSS
using dynamic taint analysis to detect DOM-Based XSS [35].
The framework has three main modules. The first module
is used to collect URLs and stores them in a queue. The
collection module applies static and dynamic methods to
parse these URLs, deletes repetitive URLs and sends them to
the taint tracking analysis module. In order to enable the taint
tracking module to analyze the data flow from the source to
the sink, it rewrites WebKit engine and DOM API to mark
the input data and propagates tags in the data flow. Based on
these tags, it gets taint tracks and sends them to automatic
vulnerability verification module. The verification module
uses taint tracks to generate attack vectors and employs attack
vectors to validate vulnerabilities.

Liu and Wang (2018) [36] proposed a method which can
detect stored XSS vulnerabilities through two crawl scans.
First, it crawls the entire website URLs and injects special
strings into them. Secondly, it crawls URLs containing spe-
cial strings and detects whether there are vulnerabilities in
them. The system is mainly composed of four parts: manage-
ment engine, crawler module, detection module and report
module. Themanagement engine controls the crawlermodule
and the detection module. The detection module stores test
results in the database. Report module generates vulnerability
report based on information stored in database.

Dynamic analysis methods focus on information acquired
at run time. They detect whether there is an XSS vulnerability
according to HTTP responses by sending requests to servers.
The advantage of dynamic analysis method is that they don’t
need to get the source code of the web page and the false
positive rate is low. But there are also some limitations of
them. As the number of XSS payloads increases, they will
take more time to detect XSS vulnerabilities. High time
overhead may make these methods impossible to apply in
practice. At the same time, dynamic analysis methods may
get high false negative rate because test cases may not cover
all possible situations.

We summarize these dynamic methods discussed above
in Table 2.

C. HYBRID ANALYSIS
Patil and Patil (2015) proposed a sanitizer with detecting
XSS vulnerabilities [37]. There are plenty of modules in the
system architecture. First of all, the DOM module processes

VOLUME 7, 2019 182011

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

TABLE 2. Summary of dynamic detection methods.

the DOM of the current page and the Input Field Capture
module accepts the user input from link and text. Secondly,
the Input Analyzer parses the user input from the previous
module, divides content into link or text and passes results to
the Links module and the Text Areas module respectively.

Then the Links module maintains a queue to store the
received links and enters them into the XSS Sanitizer
for detecting vulnerabilities. The job of the Text Areas is
similar with the Links module. Next, the XSS Sanitizer
passes the processed results to the XSS Notification module.

182012 VOLUME 7, 2019

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

Finally, this module determines whether to generate a
notification to warn users based on the previous processing
results.

Shar et al. (2015) implemented a tool called PhpMiner
usingmachine learningmethods to predict XSS vulnerabilities
in web applications [38]. It can detect XSS, SQL injection,
remote code execution and file inclusion vulnerabilities. The
method combines static analysis with dynamic analysis. The
main idea of the method is that the code used for validation
and sanitization has attributes which can be used for pre-
dicting vulnerabilities. These code attributes are called input
validation and sanitization (IVS) attributes. A sink is a node
in the CFG which indicates a statement that interacts with
other components such as databases. It uses hybrid analysis
to extract information from sinks. Static analysis is used to
compute slices for the sink. Dynamic analysis is only applied
for inferring the type of sanitization functions and validation
functions. All these information from hybrid analysis are
classified based on IVS attributes and put these classifications
into a set of attributes. Finally, it builds a supervised predictor
and a semi-supervised predictor to predict web vulnerabil-
ities. In term of predicting XSS vulnerabilities, the method
gets the false rate of 9%, which is a little high.

Hydara et al. (2015) proposed an approach to detect XSS
vulnerabilities for web applications based on genetic algo-
rithm (GA) [39]. The method is mainly composed of two
parts, the CFG and the enhanced genetic algorithm. Firstly,
it uses the PMD, which is a static analysis tool, to convert
source codes of the tested web application to CFG. Secondly,
it uses the enhanced GA to detect XSS vulnerabilities. The
genetic algorithm mainly consists of two parts, encoding and
genetic manipulation. Genetic manipulation is divided into
three categories: selection, crossover and mutation. Encoding
translates XSS vulnerability detection problems into a form
that genetic algorithms can handle. By using genetic algo-
rithms, fewer test cases can generate multiple different test
cases to cover as many situations as possible. But for some
web applications, the method gets a high false positive rate.
Ahmed et al. (2016) did similar work with Hydra’s work [40].
It uses Pixy, a taint static analysis tool to find the vulnerable
paths in PHP applications and verify these paths using XSS
vector generated by GA. Marashdih et al. (2017) also used
GA to detect XSS vulnerabilities and made some improve-
ments [41]. Compared with previous works, they delete the
infeasible path in the CFG and thus reduce the false positive
rate effectively.

Pan and Mao (2016) proposed a method that combines the
advantages of the white box method to not only check the
inherent defects of the program but also check the logical
defects [42]. Firstly, the Behavior Graph Generator (BGG)
module receives a collection of user interactions with the
application, such as sending a request, viewing the log
and extracts features from them. The core principle is that
there are some common sequences of users interacting with
applications, and so it uses unsupervised co-clustering algo-
rithms to learn it. The BGG module outputs a set of user

behavior graphs. Secondly, the system inputs an attack graph
to the Attack Graph Mediator module (AGP). Each node in
the attack graph represents a vulnerability that has a chance to
trigger an attack event. The AGP module generates an event
graph in the end. Finally, the Behavior Graph Pruning (BGP)
module uses sub-graph isomorphism algorithm to handle
the output of the previous two modules. This module has
two jobs. One is to prevent malicious attacks with similar
features to nodes of the event graph. The other is to identify
legitimate interactions with the application and divide them
into different categories. Behaviors that do not belong to any
category are marked as new attacks.

Ben Jaballah and Kheir (2017) proposed a framework
for detecting a new type of XSS vulnerability called
DOM-Source XSS in browser extensions [43]. Compared
with the original DOM-Based XSS, the emergence of
DOM-Source XSS indicates that DOM can also be an attack
point of DOM-Based XSS. The detection process is divided
into two phases: static analysis and dynamic analysis. Static
analysis is composed of a text filter and an AST parser.
The goal of this phase is to find out potential vulnerable
user scripts by analyzing user scripts. The text filter handles
scripts with string and regular expression to check generic
instructions contained in the script and the permissions it has.
The AST parser finds the tainted source and the sink. In the
dynamic analysis phase, it modifies the process of dynamic
symbolic execution with the goal of generating hierarchical
documents to add an extra component called shadow DOM
which is used to keep the structure of document and to update
the value of element. Then in the second phase it outputs the
vulnerable scripts.

Choi et al. (2018) proposed an XSS detection method
called HXD to detect XSS vulnerabilities using PhantomJS,
a headless browser, and combining with static analysis and
dynamic analysis [44]. HXD has four parts, Log analyzer,
Data Manager, XSS Detector and Database. The log analyzer
parses URLs in the log, removes duplicate data, modifies
parameters in URLs and refines URLs as proper input URLs.

The data manager is responsible for managing the XSS
detector, job scheduler, database of HXD and interacting
with users. XSS detector includes static XSS analyzer and
dynamic XSS analyzer. The static XSS analyzer injects XSS
payloads into the URL processed by the log analyzer and
the dynamic XSS analyzer utilizes PhantomJS to execute the
URL to verify XSS vulnerabilities.

Hybrid analysis methods have the advantages of static
analysis and dynamic analysis. They can not only detect all
paths in the source code, but also get low false positive rate.
In hybrid analysis, static analysis are used to find poten-
tial vulnerabilities in applications and improve the detection
speed. Dynamic analysis are mainly used to verify XSS vul-
nerabilities. However, hybrid analysis methods also inherit
the shortcomings of static analysis. Some of the hybrid anal-
ysis methods can only be applied to a single language, which
makes them not very popular.

We summarize the above hybrid methods in Table 3.

VOLUME 7, 2019 182013

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

TABLE 3. Summary of hybrid detection method.

V. CONCLUSION
XSS vulnerabilities are mainly caused by not properly fil-
tering users’ inputs, such as the wrong order in which the
encoding function is applied. In order to prevent exploitation
of XSS vulnerabilities, when dealing with users’ inputs and
the server outputs, web applications should add escaping pro-
cess, avoid sensitive operations such as document rewriting
and redirection with DOM as much as possible. Application
developers should use the HttpOnly attribute to prevent mali-
cious JS scripts from reading cookie information.

This paper discusses the classification of XSS vulnera-
bilities, and demonstrates some common risks by exploiting
them. The paper presents a comprehensive survey on recent
studies about XSS detection methods, divides these methods
into three types: static analysis, dynamic analysis, and hybrid
analysis, and lists the pros and cons of these methods.

Although there are many methods to detect XSS vulnera-
bilities, it is still a very difficult task to detect all XSS vulner-
abilities in one web application. This is mainly because the
size of web applications is becoming larger, and the calling
logic among modules is also becoming more complicated.
In addition, various technologies such as code confusion
and dynamic code generation further hinder the detection
of XSS vulnerabilities. The methods discussed in this paper
have their own advantages and disadvantages, and so far

there has not been a perfect method. In addition to detection,
the other direction is to prevent attack vector injection. Neural
networks are good at extracting features from data, and can
find hidden information in data. An interceptor which con-
tains a well-trained neural network model can be deployed
between clients and servers. The model in the interceptor
detects whether a request sent to servers contains malicious
code. However, this kind of methods may not detect DOM
Based XSS because it is a client vulnerability. Therefore, if a
web application needs to prevent XSS vulnerability attack
perfectly, multiple methods must be used comprehensively.

REFERENCES
[1] OWASP. OWASP Top 10-2017. Accessed: Feb. 1, 2018. [Online]. Avail-

able: https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).
pdf

[2] Symantec Corporation. (2018). ISTRInternet Security. Threat Report.
vol. 23. [Online]. Available: https://www.symantec.com/security center/
threat-report

[3] Security Fix. Account Hijackings Force LiveJournal Changes. Accessed:
Jan. 20, 2006. [Online]. Available: http://voices.washingtonpost.com/
securityfix/2006/01/account_hijackings_force_livej.html

[4] Black Cloud Vulnerability Library. Baidu Post Bar XSS Worm Crawling
a Lot. Accessed: May 19, 2015. [Online]. Available: https://shuimugan.
com/bug/view?bug_no=24106

[5] MLT’s Blog. A Tale of eBay XSS and Shoddy Incident Response. Accessed:
Jan. 11, 2016. [Online]. Available: https://ret2libc.wordpress.com/2016/
01/11/a-tale-of-ebay-xss-and-shoddy-incident-response/

182014 VOLUME 7, 2019

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

[6] SecurityWeek. XSS Found in Silently Installed Acrobat Chrome Extension.
Accessed: Jan. 19, 2017. [Online]. Available: https://www.securityweek.
com/xss-found-silently-installed-acrobat-chrome-extension

[7] Security Week. AVG Chrome Extension Exposes User Data. Accessed:
Dec. 29, 2015. [Online]. Available: https://www.securityweek.com/avg-
chrome-extension-exposes-user-data

[8] Sucuri Blog. Security Advisory: Stored XSS in Magento. Accessed:
Jan. 22, 2016. [Online]. Available: https://blog.sucuri.net/2016/01/
security-advisory-stored-xss-in-magento.html

[9] Imperva. One of World’s Largest Websites Hacked: Turns Visitors
into ’DDoS Zombies. Accessed: Jun. 26, 2011. [Online]. Available:
https://www.imperva.com/blog/world-largest-site-xss-ddos-zombies/

[10] Yesky. Analysis of Sina Weibo Attacked by XSS. Accessed: Jun. 26, 2011.
[Online]. Available: http://soft.yesky.com/security/156/30179156.shtml

[11] Threatpost. TweetDeck Taken Down in Wake of XSS Attacks.
Accessed: Jun. 11, 2014. [Online]. Available: https://threatpost.com/
tweetdeck-taken-down-in-wake-of-xss-attacks/106597/

[12] Infosecurity. Twitter Hit by XSS Attack. Accessed: Sep. 21, 2010. [Online].
Available: https://www.infosecurity-magazine.com/news/twitter-hit-by-
xss-attack/

[13] Betanews. Cross-Site Scripting Worm Hits MySpace. Accessed:
Oct. 13, 2005. [Online]. Available: https://betanews.com/2005/10/13/
cross-site-scripting-worm-hits-myspace/

[14] A. Doupé, W. Cui, M. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna,
‘‘deDacota: Toward preventing server-side XSS via automatic code and
data separation,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2013, pp. 1205–1216.

[15] A. Steinhauser and F. Gauthier, ‘‘JSPChecker: Static detection of context-
sensitive cross-site scripting flaws in legacy Web applications,’’ in Proc.
ACM, PLAS, New York, NY, USA, 2016, pp. 57–68.

[16] S. Gupta and B. B. Gupta, ‘‘CSSXC: Context-sensitive sanitization frame-
work for Web applications against XSS vulnerabilities in cloud environ-
ments,’’ Procedia Comput. Sci., vol. 85, pp. 198–205, 2016.

[17] C. Wang and Y. Zhou, ‘‘A new cross-site scripting detection mechanism
integrated with HTML5 and CORS properties by using browser exten-
sions,’’ in Proc. Int. Compute. Symp. (ICS), 2016, pp. 264–269.

[18] M.Mohammadi, B. Chu, andH. R. Lipford, ‘‘Detecting cross-site scripting
vulnerabilities through automated unit testing,’’ in Proc. IEEE Int. Conf.
Softw. Quality, Rel. Secur. (QRS), Jul. 2017, pp. 364–373.

[19] S. Gupta andB.Gupta, ‘‘XSS-secure as a service for the platforms of online
social network-based multimedia Web applications in cloud,’’ Multimed.
Tools Appl., vol. 77, no. 4, pp. 4829–4861, 2018.

[20] J. Kronjee, A. Hommersom, and H. Vranken, ‘‘Discovering vulnerabilities
using data-flow analysis and machine learning,’’ in Proc. 13th Int. Conf.
Avail. Reli. Secur. Aug. 2018, p. 6.

[21] M. N. Khalid, H. Farooq, M. Iqbal, M. T. Alam, and K. Rasheed, ‘‘Predict-
ingWeb vulnerabilities inWeb applications based onmachine learning,’’ in
Intelligent Technologies and Applications (Communications in Computer
and Information Science), vol. 932, Bahawalpur, Pakistan: Springer, 2019,
p. 473.

[22] J. Walden, J. Stuckman, and R. Scandariato, ‘‘Predicting vulnerable com-
ponents: Software metrics vs text mining,’’ in Proc. IEEE 25th Int. Symp.
Softw. Reli. Eng. (ISSRE), Nov. 2014, pp. 23–33.

[23] S. Lekies, B. Stock, and M. Johns, ‘‘25 million flows later: Large-scale
detection of DOM-based XSS,’’ in Proc. ACM SIGSAC. Conf. Comput.
Commun. Secur. (CCS)., 2013, pp. 1193–1204.

[24] F. Duchène, S. Rawat, J. Richier, and R. Groz, ‘‘LigRE: Reverse-
engineering of control and data flowmodels for black-box XSS detection,’’
in Proc. 20th Work. Conf. Reverse Eng. (WCRE), Koblenz, Germany, 2013,
pp. 252–261.

[25] F. Duchene, S. Rawat, J. Richier, and R. Groz, ‘‘KameleonFuzz: Evolution-
ary fuzzing for black-box XSS detection,’’ in Proc. 4th ACM Conf. Data
App Secur. Privacy (CODASPY), 2014, pp. 37–48.

[26] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, ‘‘Precise client-
side protection against DOM-based cross-site scripting,’’ in Proc. USENIX
Conf. Secur. Symp. (SEC), 2014, pp. 655–670.

[27] B. Panja, T. Gennarelli, and P. Meharia, ‘‘Handling cross site scripting
attacks using cache check to reduce webpage rendering time with elimi-
nation of sanitization and filtering in light weight mobile Web browser,’’
in Proc. Conf. Mobi. Sec. Serv. (MOBISECSERV), 2015, pp. 1–7.

[28] S. Gupta and B. Gupta, ‘‘PHP-sensor: A prototype method to discover
workflow violation and XSS vulnerabilities in PHP Web applications,’’
in Proc. 12th ACM Int. Conf. Comput., Lausanne, Switzerland: Frontiers,
May 2015, p. 59.

[29] M. Fazzini, P. Saxena, and A. Orso, ‘‘AutoCSP: Automatically retrofitting
CSP toWeb applications,’’ inProc. 37th IEEE Int. Conf. Softw. Eng., vol. 1,
May 2015, pp. 336–346.

[30] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, ‘‘CSPAuto-
Gen: Black-box enforcement of content security policy upon real-world
Websites,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2016,
pp. 653–665.

[31] C. Kerschbaumer, S. Stamm, and S. Brunthaler, ‘‘Injecting CSP for fun
and security,’’ in Proc. Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), 2016,
pp. 15–25.

[32] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, ‘‘DexterJS: Robust testing platform for DOM-based XSS
vulnerabilities,’’ in Proc. 10th Joint Meeting Found Softw. Eng., 2015,
pp. 946–949.

[33] S. Rathore, P. Sharma, and J. Park, ‘‘XSSClassififier: An effificient XSS
attack detection approach based onmachine learning classififier on SNSs,’’
J. Inf. Process. Syst., vol. 13, no. 4, pp. 1014–1028, 2017.

[34] Y. Fang, Y. Li, L. Liu, and C. Huang, ‘‘DeepXSS: Cross site scripting
detection based on deep learning,’’ in Proc. Int. Conf. Comput. Artif. Intel.
(ICCAI), Mar. 2018, pp. 47–51.

[35] R. Wang, G. Xu, X. Zeng, X. Li, and Z. Feng, ‘‘TT-XSS: A novel taint
tracking based dynamic detection framework for DOM cross-site script-
ing,’’ J. Parallel Distrib. Comput., vol. 118, pp. 100–106, Aug. 2018.

[36] M. Liu and B. Wang, ‘‘A Web second-order vulnerabilities detection
method,’’ IEEE Access, vol. 6, pp. 70983–70988, 2018.

[37] D. Patil, K. Patil, ‘‘Client-side automated sanitizer for cross-site scripting
vulnerabilities,’’ Int. J. Comput. Appl. vol. 121, pp. 1–8, Jan. 2015.

[38] L. K. Shar, L. C. Briand, and H. B. K. Tan, ‘‘Web application vulnera-
bility prediction using hybrid program analysis and machine learning,’’
IEEE Trans. Dependable Secure Comput., vol. 12, no. 6, pp. 688–707,
Nov./Dec. 2015.

[39] I. Hydara, A. Sultan, H. Zulzalil, and N. Admodisastro, ‘‘Cross-site script-
ing detection based on an enhanced genetic algorithm,’’ Indian J. Sci.
Technol., vol. 8, no.30, pp. 1–5, 2015.

[40] M. Ahmed and F. Ali, ‘‘Multiple-path testing for cross site scripting using
genetic algorithms,’’ J. Syst. Architect., vol. 64, pp. 50–62, Mar. 2016.

[41] A. Marashdih, Z. Zaaba, and H. Omer, ‘‘Web Security: Detection of cross
site scripting in PHPWeb application using genetic algorithm,’’ Int. J. Adv.
Comput. Sci. Appl. (ijacsa), vol. 8, pp. 1–12, May 2017.

[42] J. Pan and X. Mao, ‘‘Detecting DOM-Sourced cross-site scripting in
browser extensions,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Sep. 2017, pp. 24–34.

[43] W. Ben Jaballah and N. Kheir, ‘‘A grey-box approach for detecting mali-
cious user interactions in Web applications,’’ in Proc. 8th ACM CCS Int.
Workshop Manag. Insider Secur. Threats (MIST), 2016, pp. 1–12.

[44] H. Choi, S. Hong, S. Cho, and Y. Kim, ‘‘HXD: Hybrid XSS detection by
using a headless browser,’’ in Proc. CAIPT, Kuta Bali, 2017, pp. 1–4.

MIAO LIU received the B.S. and M.S. degrees in
computer science from Information Engineering
University, China, in 1991 and 1994, respectively,
and the Ph.D. degree in computer application
technologies from the South China University
of Technology, China, in 2007. He is cur-
rently an Associate Professor with the School
of Computer Science and Cyber Engineering,
Guangzhou University, Guangzhou, China. He has
authored or coauthored over 30 technical articles.

His major research interests include network security, artificial intelligence,
and e-commerce.

BOYU ZHANG received the B.S. degree
in computer science and technology from
Guangzhou University, China, in 2018, where he
is currently pursuing the master’s degree. He is
currently a Software Engineer in a software devel-
opment company in China. His current research
interests include web security, machine learning,
and deep learning.

VOLUME 7, 2019 182015

M. Liu et al.: Survey of Exploitation and Detection Methods of XSS Vulnerabilities

WENBIN CHEN received the M.S. degree in
mathematics from the Institute of Software,
Chinese Academy of Science, in 2003, and the
Ph.D. degree in computer science from North
Carolina State University, USA, in 2010. He is
currently a Professor with Guangzhou Univer-
sity. He and his coauthors have published more
than 30 research articles. His research interests
include theoretical computer science, such as
lattice-based cryptography, algorithm design and

analysis, computational complexity, graph algorithm, and so on.

XUNLAI ZHANG received the B.S. and M.S.
degrees in computer science from Communication
Engineering University, China, in 1991 and 1999,
respectively. She is currently an Associate Pro-
fessor with the School of Computer Science and
Cyber Engineering, Guangzhou, China. Her major
research interests include computer architecture,
embedded systems, and the IoT networks.

182016 VOLUME 7, 2019

