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ABSTRACT To detect drowsy driving accurately, this paper collects the characteristic parameters of
driver’s operating behavior and vehicle’s running state through simulation experiments. Then, the factor
analysis was adopted to reduce the dimensionality of the characteristic parameters, and the composite factor
scores was computed under both normal and drowsy states, forming a time series. Next, the time series of
composite factor scores was divided into information granules and the particle swarm optimization (PSO)
was implemented to optimize the dynamic time window for the characteristic parameters. After that, the mean
and standard deviation were computed for each composite factor score in each sub-time window, and fused
into one data. Finally, a drowsy driving model was established with LIBSVM based on the fused data. The
experimental results demonstrate that our model achieved an accuracy of 86.47% in detecting drowsy driving.
The research finding shed new lights on the detection of drowsy driving.

INDEX TERMS Drowsy driving, information granulation, support vector machine (SVM), dynamic time

window.

I. INTRODUCTION

The driver, a key player in the road traffic system, has long
been considered as a primary factor in traffic accidents.
During driving, potential conflicts may arise between the
driver and other drivers and pedestrians. The driver must
notice the signs of conflict, and take quick and proper mea-
sures to avoid the conflict, achieving safe and smooth driving.
This requires the driver to be energetic and stay focused,
rather than be sidetracked. In the case of drowsy driving,
however, the driver will face a decline in physical strength
and find it hard to keep attention, make a correct judgment
or execute proper operations. The common causes of drowsy
driving include lack of adequate sleep, extended driving
time, medications, or drinking alcohol. The driving fatigue
is directly related to sleep quality. Sleep is the best way for
drivers to ease fatigue and restore energy.

Driving is more of mental work than physical work. When
he/she is driving, the driver must keep an eye on the changing
road and traffic conditions, while predicting the changes in
a certain range ahead of the vehicle. After driving for a
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long distance or long time, the concentrated efforts will lead
to muscle tension, poor blood circulation, and insufficient
oxygen supply. If the driver takes sleeping pills or analgesics,
the medicines will act on the central nervous system and cause
drowsiness. If the driver drinks alcohol-containing beverages,
drowsiness will also occur under the effect of alcohol.

A drowsy driver cannot accurately perceive or handle
traffic conditions in time. Therefore, many major traffic acci-
dents are potentially caused by drowsy driving. This danger-
ous driving mode is 4~6 times more likely to induce traffic
accidents than normal driving [1]. In fact, drowsy driving
contributes to about 20% of all traffic accidents and more than
40% of major traffic accidents each year [2], [3]. According
to the estimation by the National Highway Traffic Safety
Administration (NHTSA) of the US, the police reported more
than 72,000 crashes involves drowsy drivers in 2015 alone,
leading to 41,000 injuries and more than 800 deaths [4].

The danger of drowsy driving calls for attention from
both the driver and the authority of traffic management.
However, the efforts from the two parties are hindered by
several factors. First, a drowsy driver is slow in response
and often underestimates his/her fatigue level. Second, many
drivers, driven by economic interests, often continue to drive
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for a long time after feeling drowsy, ignoring the traffic
laws. Third, drowsy driving is very concealed and difficult
to be monitored by the authority. Thus, technical measures
should be adopted to control drowsy driving, in addition to
policy making. Most importantly, new techniques must be
developed to accurately identify the state of drowsy driv-
ing, alerting both driver and the authority to take action.
Therefore, it is of great significance to detect the state of the
driver in real time and issue an effective warning of drowsy
driving.

Drowsy driving detection can be divided into two cate-
gories: subjective evaluation method and objective detection
method.

If performed by the driver, the subjective evaluation usually
uses drowsiness scales like Stanford Sleepiness Scale and
the Piper Fatigue Scale; the drowsiness levels are basically
set up through questionnaire surveys [5]. If performed by
others, the subjective evaluation is often realized through
expert scoring of videos on the driver’s facial expressions.
By this method, each video is divided into several segments,
and several experts are invited to identify the drowsiness
level of the driver according to the facial expressions, such
as yawning, eye shift and head posture [6].

The objective detection means finding out the characteristic
parameters of drowsy driving according to the physiology,
psychology and operating behavior of the driver. The char-
acteristic parameters can be extracted either from bioelectri-
cal signals like electrocardiogram (EEG), electrocardiogram
(ECG), electroencephalogram (EOG) and respiratory signals,
or from facial features like eye movements, face expression
and head position.

The early studies that detect drowsy driving based on
bioelectrical signals have mostly relied on the EEG signal.
Yeo et al. [7] established a support vector machine (SVM)
model based on drivers’ EEG signals, and accurately rec-
ognized 95% of drowsing driving states. Lin et al. [8], [9]
designed a real-time wireless EEG-based brain-computer
interface system and an EEG-based self-organizing fuzzy
neural system to predict drowsy driving. Later, many scholars
combined the EEG, ECG, and EOG to extract the charac-
teristic parameters. For instance, Fujiwara et al. [10] pro-
posed a driver drowsiness detection algorithm based on heart
rate variability (HRV) analysis using the ECG and validated
the algorithm in comparison to EEG-based sleep scoring.
Wang et al. [11] performed a fusion entropy analysis to
detect driver drowsiness. Ahn et al. [12] collected multi-
modal EEG/ECG/EOG and functional near-infrared spec-
troscopy (fNIRS) data [12], and then developed algorithms
to identify neurophysiological correlations of drivers’ mental
states. Guede-Ferndndez et al. [13] designed a drowsiness
detection method based on changes in respiratory signals,
which processes the respiratory signals in real time to classify
the driver into drowsy state or awake state. The existing
bioelectrical signal-based drowsiness detection methods need
to measure the signals in contact mode, which has many
limitations in actual applications.
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The existing studies that detect drowsy driving based on
facial features have utilized various features, ranging from
eye blinking rate [14], slow eye movements [15], the percent-
age of eye closure [16]-[19] to face expressions. Saradadevi
[20] and Abtahi et al. [21] tracked the mouth of drivers
and recognized yawning, thus detecting driver drowsiness.
Jie et al. [22] presented an automatic yawning detection
approach that extracts the geometric and appearance features
of both mouth and eye regions, which successfully detected
95% of yawns, whether covered or not covered by hands.
In general, facial feature-based detection methods for drowsy
driving need to track and process facial images, posing a
challenge to real-time performance.

In fact, the drowsiness of drivers can be identified based
on unnatural operating behavior like the abnormal angle and
angular speed of the steering wheel. McDonald et al. [23]
put forward a method to detect drowsiness based on lane
departures. The method uses unfiltered data of steering
wheel angle and a random forest algorithm. Li et al. [24]
developed an online drowsiness detection system to monitor
driver fatigue level under real driving conditions, using the
steering wheel angle collected by sensors mounted on the
steering lever. Arefnezhad et al. [25], Chai et al. [26] and
Schwarz et al. [27] also extracted features from the data on
the steering wheel, and treated them as important indices for
drowsy driving detection.

Owing to the diversity of data, it is of great significance
to fuse different types of information. Xiao et al. [28], [29]
proposed a hybrid approach to describe the trend of informa-
tion dissemination in social networks, which couples multi-
dimensional user attributes, evolutionary games, and the tra-
ditional susceptible-infected-recovered epidemic model. Jin
et al. [30] and Guo et al. [31] fused the data on the eye move-
ments of drivers and those on vehicle running status, the index
system was established to evaluate secondary task driving
based on the fused data, and analyzed the importance of the
system to driving safety. To improve the accuracy of drowsy
driving detection, many other methods have been developed
based on the fusion of yawn and head movement [32], or the
fusion of multiple types of features [33]-[36], e.g. the facial
features of the driver and the steering features of the vehicle.

In many studies, the index data used to detect drowsy
driving are fused from various types of features, each of
which has its inherent features. In this case, it is a key
issue to select a suitable size of the time window for
operation. However, little attention has been paid to how
time window size affects the detection of drowsy driving.
In most researches, the time window of an index is usually
selected empirically. For example, Eskandarian et al. [37]
directly used a 15s-long time window for steering wheel data.
Zhang et al. [38] adopted a uniform 30s-long time window for
different indices used to detect drowsing driving, namely, eye
movement, steering wheel operation, and vehicle’s running
state. Some scholars have selected time windows of different
sizes, rather than a fixed time window. For instance, Niu [39]
analyzed the angle of the steering wheel with time windows of
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four sizes, i.e. 5s, 10s, 15s, and 20s. Wang et al. [40] explored
the effects of different combinations of input parameters with
different sizes of time windows (4s, 10s, 20s, 30s and 60s) on
driving detection based on the random forest; the parameters
include lateral acceleration, longitudinal acceleration, and
steering angle. To sum up, the same index has been studied
with a fixed time window or time windows of different sizes,
while different indices have been discussed with a fixed time
window. Compared with a dynamic time window, the fixed
time window is not conducive to mining the intrinsic features
of each index.

In drowsy driving detection, the extracted indices form a
special time series, which can be processed by information
granulation put forward by Zadeh in 1979 [41]. Information
granulation splits a piece of information into several granules
and processes them separately with a dynamic time win-
dow. Later, Pedrycz developed the information granulation
of time series, which becomes increasingly popular in recent
years [42]-[46].

Factor analysis [47], proposed by Spearman in 1904, is a
dimensionality reduction method that extracts common fac-
tors from a number of variables. In factor analysis, the orig-
inal variables that are closely correlated with each other
are allocated to the same group, such that the intra-group
correlation is greater than inter-group correlation. Each group
represents a basic structure and has a hidden parameter called
the common factor. The common factor helps to reduce the
dimensionality of the collected indices and obtain a compos-
ite factor score of each index.

Drawing on the relevant literature, this paper carries out
experiments on experienced young and middle-aged drivers
on a driving simulation platform, and collects characteristic
parameters of driver’s operating behavior (e.g. steering wheel
angle, steering wheel angular speed, throttle pedal opening,
and brake pedal opening) and those of the vehicle’s running
state (e.g. lateral speed, longitudinal speed, lateral accelera-
tion, longitudinal acceleration, yaw angle, yaw angular speed,
and yaw angular acceleration). The collected parameters were
fused and used to establish a drowsy driving model was estab-
lished with LIBSVM [48]. There are three main contributions
of this research:

(1) Since the accuracy of drowsy driving detection hinges
on the indicative parameters, whose intrinsic features are not
easy to explore, the authors proposed a novel method based
on the fused data and information granulation. This method
guarantees the comprehensive performance of the parameters
and fully considers their respective features through data
fusion and information granulation.

(2) Considering the sheer number of indicative parame-
ters of drowsy driving, the factor analysis was introduced to
reduce the dimensionality, and output composite factor scores
of the parameters. The composite factor scores form a time
series. Through the analysis, the main influencing factors
and their impacts were identified, and the score of common
factors was obtained, laying the basis for subsequent data
fusion.
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(3) A fixed time window cannot track the changes in
parameter data timely, making it impossible to interpret the
data rationally. To solve the problem, the information gran-
ulation of time series was adopted to split the time series of
common factors into information granules. Then, the particle
swarm optimization (PSO) [49] was performed to optimize
the dynamic time window. Compared with fixed time win-
dows, the dynamic time window brought high data fitness and
significant indices in each sub-time window. This is a novel
method for selecting the size of time windows for indicative
parameters in drowsy driving detection.

The remainder of this paper is organized as follows:
Section II introduces the methods adopted for this research
and explains the model establishment; Section III presents
the experiments on our model and analyzes the experi-
mental results; Section IV further discusses our model;
Section 5 sums up the main findings of this research.

Il. METHODOLOGY

This section mainly introduces the establishment of the
drowsy driving model based on methods like factor analysis,
information granulation of time series and the SVM.

A. FACTOR ANALYSIS

Proposed by Spearman in 1904, factor analysis [47] is a
dimensionality reduction method that extracts common fac-
tors from several variables. In factor analysis, the original
variables that are closely correlated with each other are allo-
cated to the same group, such that the intra-group correlation
is greater than inter-group correlation. Each group represents
a basic structure and has a hidden parameter called the com-
mon factor. The most popular model for factor analysis is as
follows:

Xy =anF1+apky+ -+ aimFm+ el

Xo =a F1 +anky+ - +aby + &2 W

Xy = ap1 F\ + apa b + - - + apmbF + &
Equation (1) can be simplified as:
Xpx1 = ApxmFmx1 + €px1 (2)

where, X = (X1, -+, X p)T is a p-dimensional random vector
consisting of p measurable indices; F = (Fp, - -, Fm)T are
the common factors of X; a;; is the load of variable i on
common factor j; A is the factor load matrix; e = &1, -+ , &p
are the special factors of X.

The factor analysis model is subjected to the following
constraints:

The number of common factors must be less than or equal
to the number of measurable indices:

m=p

The common factor F is not correlated with the special
factor ¢:

Cov(F,e)=0
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The common factors Fy, --- , F,, are not correlated with
each other, and their variances are the same (one):

1 0

D(F) = . = Iy 3)
0 1

The special factors 1, - - -, &p are not correlated with each
other, and their variances are different:

012 0
o3
D(e) = . @)
0 apz

B. INFORMATION GRANULATION
There are three theories on information granulation: fuzzy set
theory [41], rough set theory [50] and quotient space theory
[51].

The information granulation of time series is mainly imple-
mented in the following steps:

Step 1: Creating information granules

For the n-element time series X = {x;|i=1,2,---,n},
initialize g time windows T, T2, - - - , T, to divide the time
series into g subseries Dy, Dy, - - - , Dy according to the ratio-
nal granulation criterion [42], creating g information granules
Q1,Q, -+, Q.

Step 2: Identifying information granules

Find the optimal information granule ;(«), o € [0, 1] by
computing the optimal lower and upper bounds a; and b; of
information granule 2; in time window Tj:

a; = arg MaXg<med(;) tcard {xx € Q;, a < x; < med(R2;)}

X exp(—o |med(82;) — al)} )
b; = arg maxp>med(,) {card {xy € Q;, med(2;) < x; < b}
x exp(—a |b — med($2;)])} (6)

where, card (x; € ;) and med (£2;) are the number and
median of the data in information granule 2;; o € [0, 1] is
the given parameter.

Step 3: Computing information granule indices

Calculate the index Vol(€2;) of the information granule £2;
in time window T;:

Xmax

Vol($2) = |Til 1Q2i(2)Idz (N
Xmin
where, || is the length or size of the corresponding quantity;
Xmax and xpjp are the maximum and minimum amplitudes of
the subseries in the time window.

Step 4: Optimizing time window size

According to the rational granulation criterion, the infor-
mation granule index Vol(£2;) is negatively correlated with
the number of data in the information granule €2;. Then, the
optimal length of the time window 7}, T}, -, T; can be
obtained by:

min > Vol(Q) ®)

T\, Ty, T, “—i=

183742

C. THE SYM

The SVM is a supervised machine learning method pro-
posed by Vapnik based on the Vapnik—Chervonenkis (VC)
dimension and structural risk minimization (SRM) [52]. The
core idea of the SVM is to find the optimal classification
hyperplane in the sample space, and determine the maxi-
mum interval to divide the samples into two categories. The
specific process of the binary classification depends on the
linearity of the samples.

1) BINARY CLASSIFICATION OF LINEAR SAMPLES

In a d-dimensional space, the binary classification of sample
set (x;,yi) x € R,y € {+1,—1},i = 1,2,...,n) can be
defined as:

g =wl-x+b ©)
The classification hyperplane can be obtained by:
wl - x+b=0 (10)

In real-world scenarios, the samples are often inseparable
n

linearly. To solve the problem, a penalty factor C )_ & for

i=1
linear separability was introduced to convert the optimization
of the classification plane into:

) 1 n
min <§||W||2 + C;S,)
=
» yiwT -x+b)>1-§,
&0,

i=1,2,...,n,
4 s~ n (11)

i=1,2,...,n.

Then, the Lagrange function based on (11) can be solved
by:

Lw, b, a) = %(WT W +CY &

i=1
=Y ey xi+b) —1+&] (12)
i=1

where, o; > 0 is the Lagrange coefficient. The following can

be derived from the partial differentials w and b in (12):

n
W=y (13)
i=1

n
D ayi=0 (14)
i=1

Substituting (13) and (14) into (10), the original problem
can be transformed into:

n n
1
max L(a) = > &= > aiyyiyj(xi - X;)
i=1 ij=1
0<a =C,

n
Yoayi=0

i=1

i=1,2,...,n
s.t.

15)
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Then, the function of the optimal classification hyperplane
can be obtained by solving (15):

f@) =sgn{d_ yiK (xi - x;) + b} (16)
i=1

2) BINARY CLASSIFICATION OF NONLINEAR SAMPLES
The SVM relies on the kernel function to solve the binary
classification of nonlinear samples:

K(x; - xp) = ¢(x)p(x)) 7)

According to (17), the binary classification of nonlinear
samples can be converted into:

n n
1
mo?xL((x) = El %= E lai“jinJK(xi ")
i= ij=

0<a; =C,

n
> aiyi=0.

i=1

i=1,2,...,n,

5.t (18)

D. THE PROPOSED METHOD

Fig. 1 shows the structural of the proposed method for drowsy
driving detection. Obviously, the proposed method mainly
consists of three stages.

In Stage 1, the characteristic parameters of driver’s oper-
ating behavior and those of the vehicle’s running state were
collected on the driving simulation platform. The collected
parameters were taken as the indicative parameters to be
preprocessed to form the drowsy driving dataset. In the exper-
iment, every driver is required to drive the test vehicle twice,
once in normal state and the other in drowsy state.

In Stage 2, the indicative parameters were preprocessed
and fused. Firstly, the factor analysis was performed to reduce
the dimensions of the indicative parameters in normal and
drowsy states, and to determine the composite factor scores of
them, respectively. Secondly, the information granulation of
time series was adopted to split the series of composite factor
scores into information granules, and the PSO was performed
to optimize the dynamic time window. Finally, the mean and
standard deviation of composite factor scores were computed
and fused into one data in the optimal dynamic time window.

In Stage 3, a drowsy driving detection model was estab-
lished based on LIBSVM. The fused data were randomly
divided into a training set and a test set. Then, the model was
trained to optimize the penalty coefficient and kernel function
parameter with the training set. Finally, the established model
was tested with the test set.

The pseudo code of the drowsy driving detection model
is shown in Algorithm 1. The time complexity of the model
comes from three parts: dimensionality reduction, the PSO
of dynamic time window, and the model training and test.
Thus, the time complexity of Algorithm 1 can be expressed
as T = Ty + Ty + Tam ~ Om3), where Ty = O(n),
Tiw = O?) and Ty = On?) are the time complexities
of the three parts, respectively. In fact, the problem scale
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FIGURE 1. The framework of the proposed method.

was decreased through dimensionality reduction, and further
reduced from n to q through the optimization of dynamic time
window. In general, Algorithm 1 has an acceptable level of
time complexity.

Ill. EXPERIMENTS AND RESULTS

A. EXPERIMENTS

1) SUBJECTS

Female drivers generally have weaker motor perception
skills, and thus poorer control of the vehicle, than their male
counterparts [53]. Therefore, female drivers are more likely
to face abnormal changes in the running state of the vehicle.
Our drowsy driving detection is based on driver operation
behavior and vehicle running state. To minimize the influ-
ence of personal factors, about 25% of the subjects of our
experiments are female drivers.

In total, 16 experienced drivers, aged between 24 and 4,
including 4 females and 12 males, were selected for our
experiments. The mean age was 29.7 years and the standard
deviation was 5.16. All of them have hold class C1 driv-
ing licenses for over 3 years and driven 5,000+ kilometers
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FIGURE 2. The driving simulation platform.

Algorithm 1 Drowsy Driving Detection Model Algorithm

Input: Drowsy driving dataset: G;»p; number of informa-
tion granules: ¢; given parameter of information granula-
tion: « € [0, 1].

Output: Labels of drowsy driving.
l:fori=1,2,...,pdo

2:  Standardize the dataset Gy xp;
3: end for

4: obtain the standardized dataset G;; p
5: Execute factor analysis of the standardized dataset G
from Eq. (1);

6: obtain the common factors: Fj,x,,(m < p);

7: Calculate the composite factor scores of Fx;

8: obtain the series of composite factor scores: D, x1;
9: Divide the series D, %1 into g subseries D1, D2, --- , Dy,
to create ¢ information granules 1, Q, - -+, Qg4;
10:fori=1,2,...,gdo

11:  Perform information granulation to calculate the
index Vol(£2;) of the information granule €2; in time win-
dow T; by Eq. (5)-(7);

12:  Perform PSO to optimize the time window size

/
nxp

from (8);

13: end for

14: obtain the optimal dynamic time window
Ty T5. - TS

15: Calculate the mean and standard deviation of the com-
posite factors scores in the optimal dynamic time window
T: Ty, -, T; and create a training set and a test set;
16: Perform LIBSVM and PSO on the training set by
Egs. (11) -(12), (17);

17: obtain the optimal combination (C, y ) of penalty coef-
ficient and kernel function parameter;

18: Perform LIBSVM with the optimal combination (C, y)
to the test set;

19: result: Labels of drowsy driving.

per year. Besides, all the subjects are healthy mentally and
physically, without taking any drug that may affect driving in
the month preceding our experiments.

2) SIMULATION PLATFORM

Our experiments were conducted on the research plat-
form for driver behavior and traffic safety of passenger
vehicles, which was developed by Jilin University. As shown

183744

FIGURE 3. The photo of the road section.

FIGURE 4. The alignment of the road section.

in Figure 1, the simulation platform consists of a simula-
tion cab, a projection apparatus and a control cabinet. The
platform includes driver touch simulation system, driving
environment simulation system, image display system, audio
simulation system, vehicle dynamics dynamic simulation
system and data acquisition system.

For convenience, the Changchun-Siping section of
Beijing-Harbin Expressway (Fig. 3 and 4) was selected as the
driving scene in our experiments. The 96km-long rectangular
road section is essentially a two-way four-lane road, in which
each lane is 3.75m-wide and the isolation strip is 3m-wide.
The speed limit on vehicles driving on the road section is
80~120km/h. In addition to the test vehicle, several other
vehicles were added, which ran in the same or opposite
direction with the test vehicle, aiming to simulate the realistic
driving environment.

3) EXPERIMENTAL PROCESS

Every driver was required to drive the test vehicle twice, once
in normal state and the other in drowsy state. The data of
normal driving and drowsy driving were collected into the
control group.

VOLUME 7, 2019



Y. Wang et al.: Drowsy Driving Detection Based on Fused Data and Information Granulation

IEEE Access

TABLE 1. The characteristic parameters.

Type of parameters Symbols Name of parameters Unit
Time Time s
Driver’s operating behavior SwA Steering wheel angle rad
SWR Steering wheel angular speed  rad/s
XA Throttle pedal opening %
XB Brake pedal opening %
VSx Lateral speed m/s
VSy Longitudinal speed m/s
ASx Lateral acceleration m/s’
Vehicle’s running state ASy Longitudinal acceleration m/s®
Ya Yaw angle rad
YaR Yaw angular speed rad/s
YaD Yaw angular acceleration rad/s’

Based on our circadian clock, drowsy driving tends
to occur in three periods: 2:00~6:00, 11:00~13:00 and
15:00~16:00, especially in the first and last periods. The
risk of drowsy driving in 15:00~16:00 is twice that at
around 10:00 [54]. Hence, the normal driving experiment
was arranged in 9:00~11:00, while the drowsy driving
experiment was scheduled in 14:00~16:00.

Before the normal driving experiment, the drivers were
required to sleep more than 8h a day in the weak leading
to the experiment, and intake no alcohol. On the experi-
mental day, the drivers arrived at the test site at 8:30 and
had their basic information recorded. Then, the experimenter
introduced the simulation platform to the drivers, and gave
them 10~15min to familiarize themselves with the platform.
No data was recorded in this period. After that, the normal
driving experiment officially started and lasted for 2h.

Before the drowsy driving experiment, the drivers were
asked to sleep less, such that they could enter the drowsy state
quickly. During the 24h before the experiment, the drivers
were required to sleep for less than Sh between 1:00 and 6:00,
and take no drug, caffeine or tea. On the experiment day,
the drivers first had their basic information recorded. Then,
the experimenter introduced the simulation platform to the
drivers, and gave them 10~15min to familiarize themselves
with the platform. No data was recorded in this period. After
that, the drowsy driving experiment officially started and
lasted for 2h.

B. EXPERIMENTAL RESULTS

As shown in Table 1, the characteristic parameters of driver’s
operating behavior (e.g. steering wheel angle, steering wheel
angular speed, throttle pedal opening, and brake pedal open-
ing) and those of the vehicle’s running state (e.g. lateral
speed, longitudinal speed, lateral acceleration, longitudinal
acceleration, yaw angle, yaw angular speed, and yaw angu-
lar acceleration) were collected during the two experiments.
Meanwhile, the videos on the foreground and driver’s face
were taken at the frequency of 10Hz by an external surveil-
lance camera and internal camera.

C. DROWSY STATE EVALUATION

During the experiments, it is impossible for a driver to eval-
uate his/her drowsiness in real time. Studies have shown
that, if the driver’s face video and the road foreground video
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TABLE 2. Results of the KMO test and bartlett’s test.

KMO test Sampling adequacy 0.694
Bartlett’s test Approx. Chi-square 13,311.610
df 55
Sig. 0.000

are evaluated against the Karolinska sleepiness scale (KSS),
the results will be almost the same whether the evaluation
is done by others or by the driver him/herself [55]. There-
fore, the author decided to invite three experts, rather than
the driver, to evaluate the driver’s drowsiness independently
based on the videos against the KSS [56]. The mean KSS
score was adopted as the objective score of the drivers’
drowsiness. If their scores differed greatly, the three experts
were required to reconfirm the original scores. In addition,
each driver was asked to evaluate his/her drowsiness before
and after each experiment against the KSS.

Drawing on relevant studies [55], a driver was considered
as normal if his/her KSS score is smaller than or equal to
3, and drowsy if the latter is greater than or equal to 7.
Then, the data labeled of each driver in normal state and
those labeled in drowsy state were sorted out for further
analysis.

D. DATA PREPROCESSING

1) DIMENSIONALITY REDUCTION

For simplicity, the high-dimensional characteristic param-
eters in Table 1 were processed through factor analysis,
using SPSS Statistics 19.0. The eleven parameters, namely,
steering wheel angle, steering wheel angular speed, throttle
pedal opening, brake pedal opening, lateral speed, longitudi-
nal speed, lateral acceleration, longitudinal acceleration, yaw
angle, yaw angular speed and yaw angular acceleration, were
denoted as xj, x2, ..., X11, In turn.

Taking the data of driver 1 for example, the data were
subjected to Kaiser-Meyer-Olkin (KMO) test and Bartlett’s
test. The test results (Table 2) show that the data are suitable
for factor analysis.

As shown in Fig. 5 and Table 3, there were three common
factors with greater-than-one characteristic root, and the first
four common factors made a 91.884% cumulative contribu-
tion to variance, i.e. the four factors carry about 92% of the
original information.
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TABLE 3. Eigenvalues, contributions to variance and cumulative
contributions to variance of common factors.

. Cumulative
Contribution e
. . Contribution
Factors Eigenvalue to variance .
(%) to variance
(%)
F 4.308 39.168 39.168
F 2.739 24.901 64.069
F; 2.166 19.695 83.764
Fy 0.893 8.120 91.884
TABLE 4. Rotated factor matrix.
F F Fs Fy
X1 0.227 0.857 0.351 0.180
X2 0.966
X3 0.698 0.158 0.605
X4 0.973
Xs 0.955 0.102 0.178
X6 -0.934 0.234
X7 0.205 0.181 0.938
Xg -0.217 -0.865
Xo 0.982
X10 0.968 0.100 0.156
X1 -0.104 0.893

As shown in Table 1, F| had significant positive correla-
tions with x3, x4, x5 and x9; F> had significant positive corre-
lations with x; and xj¢, and a significant negative correlation
with x¢; F3 had significant positive correlations with x, and
x11, and a significant negative correlation with xg; F4 had
significant positive correlations with x3 and x7.

According to Table 5, the four common factors can be
expressed as:

F1=0.007Zx; 4 0.002Zx3 + 0.100Zx3 4 0.343Zx4
4+ 0.309Zxs + 0.021Zx¢ — 0.172Zx7 4+ 0.346Zx9
—0.056Zx19 + 0.001Zx11,

Fr=0.311Zx; — 0.035Zx; — 0.056Zx3 — 0.018Zx4
—0.022Zx5 — 0.399Zx¢ + 0.080Zx7 — 0.064Zx3
—0.021Zx9 + 0.378Zx19 — 0.085Zx11,
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TABLE 5. Factor score coefficient matrix.

F F, F; Fy

X1 0.007 0.311 0.099 -0.017
X2 0.002 -0.035 0.366 -0.003
X3 0.100 -0.056 -0.010 0.400

X4 0.343 -0.018 0.003 -0.185
Xs 0.309 -0.022 -0.003 -0.084
X6 0.021 -0.399 0.125 0.145

X7 -0.172 -0.080 -0.013 0.857
X3 0.000 -0.064 -0.320 0.074
X9 0.346 -0.021 -0.000 -0.186
X10 -0.056 0.378 0.001 0.013
X1 0.001 -0.085 0.342 0.044
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FIGURE 6. Comparison of composite factor scores in (a) normal state and
(b) drowsy state.

F3=0.099Zx; 4 0.369Zx2 — 0.010Zx3 + 0.003Zx4
—0.003Zx5 + 0.125Zx¢ — 0.013Zx7 — 0.320Zxg
—0.001Zx10 + 0.342Zxy,

F4=—-0.017Zx; — 0.003Zx2 4 0.400Zx3 — 0.185Zx4
—0.084Zx5 + 0.145Zx¢ + 0.857Zx7 + 0.074Zxg
—0.186Zx9 — 0.013Zxo + 0.044Zx1;.

where, Zxy, Zxy, - -+, Zx11 are the normalized variables of
X1, X2, -+ ,Xx11. Then, the composite factor score of driver
1 in normal or drowsy state can be described as:

F = 0.39F 4 0.25F, + 0.20F3 + 0.08F}.

The data of the other drivers were processed in the same
manner, resulting in the composite factor scores of these
drivers in the normal and drowsy states. Then, the composite
factor scores of the two states were compared (Fig. 6).

From Fig. 6, it can be seen that, under normal driving,
the composite factor score was basically stable, with a slight
fluctuation. Under drowsy state, the composite factor score
was very unstable, featuring violent fluctuations.

Furthermore, the composite factor scores in the normal and
drowsy states were subjected to a one-way analysis of vari-
ance (ANOVA) on SPSS Statistics 19.0, with the significance
level of 0.05. The analysis results (Table 6), F = 19.722 and
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TABLE 6. ANOVA results.

140

Sum of squares df Mean square F Sig.
Between group variation 14.780 1 14.780 19.722 0.000
Intra-group variance 5218.820 6964 0.749
Total 5233.600 6965
e ] . A ~ P
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FIGURE 7. The variations of the composite factor scores of a driver in different time

windows.

p = 0.000 < 0.05, show that the composite factor scores can
characterize the features of drowsy driving.

2) OPTIMIZATION OF DYNAMIC TIME WINDOW

The optimal time window of characteristic parameters was
searched for through information granulation of time series.
Specifically, the time series of the composite factor scores of
each driver was divided into Smin-long segments. The data
shorter than 5min were discarded. In this way, the author
obtained 162 drowsing state segments and 214 normal state
segments. Then, each segment was processed into 15 infor-
mation granules. The particle swarm optimization (PSO) was
introduced to optimize the dynamic time window of common
factors in each segment. Fig. 7 presents the variations of the
composite factor scores of a driver in different time windows
in 300s. Obviously, the dynamic time window is suitable for
partitioning of data states.

E. MODEL CONSTRUCTION AND RESULTS ANALYSIS

The mean and standard deviation of the composite factors
scores in the optimal dynamic window were fused. Then,
the characteristic parameters of normal and drowsy states
were extracted from the fused data, producing 3,210 nor-
mal samples and 2,430 drowsy samples. Then, the LIBSVM
toolbox was employed to set up a drowsy driving detection
model.

1) MODEL TRAINING

The model training, essentially the selection of kernel
function, aims to optimize the internal parameters using the
training samples. In this paper, the radial basis function (RBF)
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is selected as the kernel function:

kG yp) = e (19)
Then, the model was trained to optimize the penalty
coefficient C and kernel function parameter y. Firstly,
2,000 normal samples and 1,600 drowsy samples were
selected randomly and grouped into the training set. Taking
accuracy as the training objective, the PSO was conducted
to find the optimal combination (C, y) of penalty coefficient
and kernel function parameter. The results show that the
optimal value of C and y were respectively 0.5 and 0.3.

2) MODEL TESTING AND RESULTS

The established model was tested with the test set, which
contains the remaining 1,210 normal samples and 830 drowsy
samples. To verify its effectiveness, our model was compared
with several other models, which are also based on the data
fused between the mean and standard deviation of composite
factor scores. The main difference between our model and the
contrastive models lies in that: our model adopts the optimal
dynamic time window with LIBSVM, while those models
adopt a fixed time window (20s) generated by LIBSVM,
decision tree [57], backpropagation [58] and fuzzy c-means
(FCM) clustering [59], respectively. Table 7 compares the
detection accuracies of the models, including the true positive
rate (TPR), true negative rate (TNR) and the false positive rate
(FPR). The TRP refers to the detection accuracy of drowsy
state, the TNR refers to the detection accuracy of normal
state, and the FRP refers to the proportion of normal states
that are wrongly determined as drowsy states. The receiver
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TABLE 7. The detection accuracies of the two models.

Actual state of Detection result

Method

Detection accuracy

the driver
Drowsy Normal TPR TNR FPR Overall accuracy
Drowsy 788 42 N N o o
Our model Normal 234 976 94.9% 80.7% 19.3% 86.47%
Contrastive Drowsy 775 55 N o N 0
model 1 Normal 316 894 93.3% 73.9% 26.1% 81.81%
Contrastive Drowsy 768 62 . . . .
model 2 Normal 334 876 92.5% 72.4% 27.6% 80.58%
Contrastive Drowsy 762 68 . . . .
model 3 Normal 390 820 91.8% 67.8% 32.2% 77.55%
i Drows 754 76
Contrastive ey 90.8%  664%  33.6% 76.32%
model 4 Normal 407 803
= 20s, the changes in parameter data could not be tracked
1 timely, making it impossible to interpret the data in a rational
1 manner. Neither was the results satisfactory when the time
i window was adjusted to 15 or 30s. To solve the problem,
i this paper adopts the information granulation of time series,
—— Ourmodsl<0.911 | splitting the time series of common factors into informa-
——The ccontrstive model 1=0.847 | . ..
—The ccontstive model 220834 | tion granules. Next, the PSO was performed to optimize the
The ccontrstive model 3=0.813 dynamic time window. Fig. 7(c) shows that the time window
02+ The ccontrstive model 4=0.806 | . . . . . .
ol __ ressiorcelive | size obtained by granulation was not fixed but varied with the
0 ; ; ‘ ‘ ‘ [ , ] : data trend. Compared with fixed time windows, the dynamic
0 0.1 0.2 03 0.4 05 0.6 07 08 09 1

oD

FIGURE 8. The ROC curves of the models.

operating characteristic (ROC) curves and the areas under the
curve (AUC) of the models are given in Fig. 8.

IV. DISCUSSION

This paper generally detects drowsy driving based on the
fused data on the characteristic parameters of driver’s operat-
ing behavior and the vehicle’s running state. The four basic
steps of our research are discussed below.

A. DIMENSIONALITY REDUCTION OF CHARACTERISTIC
PARAMETERS

The factor analysis was conducted to reduce the dimensions
of the characteristic parameters of driver’s operating behav-
ior and the vehicle’s running state. Through the analysis,
the author established the time series of the composite factor
scores. The advantage of this strategy lies in the identification
of main influencing factors and their impacts through the
analysis, and the ability to determine the composite factor
scores. As shown in Table 3, the 11 characteristic param-
eters were reduced to 4 common factors, while preserving
92% of the original information. The results in Fig. 6 and
Table 6 show that the composite factor scores are significant
indices of drowsy driving detection.

B. OPTIMIZATION OF DYNAMIC TIME WINDOW

In previous studies, the characteristic parameters are usually
fixed in the same time window, without considering the
dynamic features of the time window. As shown in
Fig. 7(a) and (b), when the time window was fixed at 10 or
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time window leads to high data fitness and significant indices
in each sub-time window.

C. INFORMATION FUSION

In each sub-time window, the mean and standard deviation
of composite factor scores were computed and fused into one
data. The characteristic parameters of the driver’s operating
behavior were combined with those of the vehicle’s running
state to enhance the accuracy of drowsy driving detection.

D. CONSTRUCTION OF DETECTION MODEL

Based on the fused information, the normal samples
and drowsy samples were determined, respectively. Then,
the samples were divided into a training set and a test set.
Our drowsy driving detection model was trained and tested by
LIBSVM. After that, our model, which has a dynamic time
window, was compared with models with fixed time window.
Table 7 and Fig. 8 demonstrate that our model outperformed
the contrastive models with an accuracy of 86.47% and an
AUC of 0.911.

V. CONCLUSION

For accurate detection of drowsy driving, this paper put
forward a novel model based on data fusion and information
granulation. The drowsing driving mode was identified on a
simulation platform for driver’s operating behavior and the
vehicle’s running state. In our drowsy driving experiments,
16 drivers were recruited to drive the test vehicle twice,
once in normal state and the other in drowsy state, and
11 indicative parameters of both normal and drowsy states
were collected as evaluation indices. The factor analysis was
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applied to reduce the dimensionality and determine the com-
posite factor scores of the indicative parameters. Through the
analysis, the indicative parameters were reduced to 4 common
factors, while preserving 92% of the original information.
In addition, the variations of the composite factor scores were
compared between the fixed time window and the dynamic
time window, revealing that the latter can track and interpret
the data variations timelier and more rationally. Therefore,
the time series of common factors was split into information
granules with the strategy called the information granulation
of time series, and the optimal dynamic time window was
obtained by the PSO. Finally, the drowsy driving detection
model was trained and tested by LIBSVM based on the fused
information of the mean and standard deviation of composite
factor scores in each sub-time window. Experimental results
showed that our model outperformed the contrastive models
with an accuracy of 86.47% and an AUC of 0.911.

In this paper, drowsy driving detection is investigated under
the condition that the driver is not distracted by other factors.
In the future, more attention will be paid to the drowsy
driving detection when the driver is in distracted states. After
all, in real-world scenarios, the driver is often distracted by
factors like chatting, listening to the music and making a
phone call.
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