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ABSTRACT Trajectory k-anonymity is a prevalent technique for protecting trajectory privacy. However,
the existing techniques for generating fake trajectories can be easily broken by an adversary because of the
failure to capture the probabilistic features and geographic features of the trajectories. They also reduce data
availability. Thus, this paper proposes a location recombination mechanism (LRM ) for achieving trajectory
k-anonymity privacy protection. First, we propose a metric that measures the location pair similarity
between location pairs. Based on this metric, we select sampling locations and divide locations into different
equivalent probability classes. Locations in one equivalent probability class have the same probability as one
corresponding base location. Then, we also introduce two metrics that measure the probabilistic similarity
and geographic similarity between locations. Based on these metrics, we design algorithms to generate fake
trajectories. These algorithms can recombine locations sampled from each equivalent probability class into
trajectories. All of these trajectories meet the privacy protection requirements for both base trajectories and
sampling trajectories. Finally, we evaluate our scheme thoroughly with real-world data. The results show
that our method can protect the privacy of base trajectories and sampling trajectories and achieve a better
performance of service provider utility and data availability than other schemes.

INDEX TERMS Trajectory k-anonymity, trajectory privacy, privacy protection, location recombination
mechanism, fake trajectories.

I. INTRODUCTION
Currently, the privacy issue in trajectory data publication
is attracting increasing attention. In reality, some service
providers regularly publish a large amount of trajectory data
such as check-in data and taxi mobile data. Mining and
analyzing of these data [1]–[3] can provide people with
facilitation services such as advertising pushes [4] and traf-
fic navigation [5]. However, inappropriate publishing meth-
ods may violate users’ privacy [6]–[9]. For example, if the
publishing trajectories are not anonymous, even when they
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are encrypted, the privacy of users may be breached. The
cryptography-based approach may encrypt only part of a
user’s attributes, not achieving full privacy [8]. Thus, for
trajectory data publication, fake data [10], sensitive location
suppression [11], etc. are used to protect privacy. However,
these techniques can reduce data availability in terms of
available data and data accuracy. The former means that the
published locations can be used for data analysis such as i.i.d.
mining mobility patterns and recovering trajectory. The latter
means that the proportions of different published locations are
stable (i.e., the proportion of visiting a workplace or moving
between home and a shop). For example, [12], [13] can
generate hard-to-reach locations that cannot be used for data
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analysis. For data accuracy, methods [14], [15] can always
publish a workplace with a lower proportion instead of a
shop with a higher proportion during a long period of time,
thus altering the proportions of the workplace and the shop.
Therefore, how to balance the privacy protection and data
availability in data publication has been a topic of interest.

To address the above problems, many trajectory
k-anonymity methods have been proposed for trajectory
privacy protection [14]–[18]. They publish a k-anonymous
group containing a real trajectory (called the base trajectory)
and at least k-1 fake trajectories to achieve a k-anonymity
level of privacy protection. Locations on the base trajec-
tory or on the fake trajectory are called base locations and
fake locations, respectively. The existing methods [10], [12],
[14], [15], [17], [19], [20] believe that an adversary usually
identifies the base trajectory by utilizing the mobility pattern
(speed, region, etc.) of different users’ trajectories. Therefore,
these methods are mainly based on similar mobility patterns,
such as the random walk model [12], historical trajectory
sampling [15], [17] and the grid model [20], [21], to generate
fake trajectories with high similarity to the mobility pattern of
the base trajectory. Note that the adversary identifies a user’s
real trajectory by establishing the correct correspondence
between the trajectory and the user. If the adversary has
identified the base trajectory, he can also infer the correspond-
ing user’s real trajectory according to his own background
knowledge [3], [7]. It also means that encrypting a user’s
name may still reveal her privacy [8]. Thus, the criterion for
the user’s trajectory privacy leakage discussed in this paper
is that the adversary correctly identifies the base trajectory.

However, existing methods ignore the probabilistic fea-
tures [2], [21] and the geographical features [22]–[24] of
trajectories, so base trajectories can be easily identified by the
adversary. The probabilistic feature is a set of probabilities
with which users access a sequence of locations or move
between them chronologically. The geographical feature is a
set of geographical positions where users access a sequence
of locations chronologically. For a trajectory L of user u con-
sisting of n positions, let L be l1 → l2 → · · · → ln. We use
the vector (P1,P2, · · · ,Pn) to denote the probabilistic feature
of L, where Pi(1 ≤ i ≤ n) is the probability of location li.
For Pi, it consists of two probabilities: the probability πi
(access probability) that li was visited by u and the proba-
bility pi (transition probability) that u moved from li−1 to li
in the past. Therefore, we also use <πi, pi> to represent Pi.
Similarly, we use the vector (G1,G2, · · · ,Gn) to denote the
geographical feature of L, where Gi(1 ≤ i ≤ n) is the
geographic location (geographic coordinates) of location li.
The adversary can obtain the probabilistic features and

geographic features of trajectories in a variety of ways. For
example, to publish trajectories in [10], the base trajectory
can be obtained by connecting each cloaking region, since
locations in a k-anonymous group are in a smaller cloaking
region; the probability of each actual location can be obtained
because all locations in a k-anonymous group have the
same probability [21]. The adversary can also acquire the

probabilistic features and geographic features through data
mining [3].

Note that the mobility pattern is mostly specific to the
individual and reflects the individual’s lifestyle. This means
that different users in a group have different mobility pat-
terns. The probability of a location represents overall human
behavior and reflects the common lifestyle of humans overall.
This means that the access probability and the transition
probability of different users in a crowd are the same. That
is, the access probability and transition probability of a
specific user u and the crowd are equal. Two locations with
the same access probability and the transition probability
have the same probability of locations. For two locations,
based on [22], [23], if the geographic distance between
them is geographically indistinguishable (less than a certain
threshold), they have the same geographic locations. For li,
if all locations within a region have the same geographic
location as li, this region is indistinguishable from li. For two
trajectories, if every corresponding location of them has the
same probability of location and the geographic location, they
have the same probability feature and geographic feature.
Consequently, the attacker can identify the base trajectory by
judging whether trajectories in a k-anonymous group have
the same probability feature and geographic feature as the
base trajectory. Fig. 1 shows an example to explain how the
adversary identifies the base trajectory of Alice by analyzing
probabilistic features and geographic features of different
trajectories.

FIGURE 1. An example of identifying the base trajectory of Alice in a
k-anonymous group.

In Fig. 1, differently colored small circles represent dif-
ferent probabilities of locations, and the large circle repre-
sents the indistinguishable region of the base location. In this
example, L0, L1 and L2 are trajectories in a 3-anonymous
group, which is released for protecting the base trajectory L0
of Alice. L1 and L2 are fake trajectories. As shown in Fig. 1,
the probability of location G∗3 on L1 and location G3 on L0 is
different, and the geographic location of location G∗∗4 on L2
and location G4 on L0 is different. Therefore, L0 and L1 have
a different probability feature, and L0 and L2 have a different
geographic feature. It means that the mobility patterns of L1
and L2 are different from those of L0. The adversary can filter
out L1 and L2 and correctly identify Alice’s trajectory. (We
assume that the adversary with background knowledge knows
the probabilistic features and geographical features of Alice’s
mobility pattern.)
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To prevent identification of base trajectories, exist-
ing methods contain at least k similar trajectories in a
k-anonymous group. Methods [15], [17], [24] select trajecto-
ries (sampling trajectories) from historical trajectories as fake
trajectories but ignore the privacy leakage of sampling trajec-
tories. In this paper, both sampling trajectories and historical
trajectories are real trajectories of users, and the locations in
them are historical locations and sampling locations. Another
problem is that fake trajectories in the k-anonymous group are
noise, affecting the data availability for the published data.
Some methods, such as [12], produce some hard-to-reach
locations. However, these locations cannot be used for data
analysis, which reduces the data availability in terms of avail-
able data. Other methods, e.g., [15], publish real locations
without considering the data accuracy, which reduces the data
availability, such as increasing the probability of individuals
reaching a location.

In this paper, we propose a location recombinationmethod,
called LRM , to achieve trajectory k-anonymity privacy pro-
tection. The LRM selects and recombines different sampling
locations to generate k-1 fake trajectories similar to the base
trajectory in terms of probabilistic features and geographical
features. In the LRM , we first construct a probabilistic model
based on probabilistic features of trajectories to generate
fake trajectories similar to probabilistic features of the base
trajectory. However, it is difficult to select sample trajectories
similar to the base trajectory as fake trajectories. Therefore,
we propose a metric that measures the location pair similarity
between location pairs (two adjacent locations in a trajec-
tory). Using the metric, we select sampling trajectories and
divide them into different classes (called equivalence prob-
ability classes) by the similarity to the base location. In the
same class, the access probability of each sampling location
is similar to the base location. Then, we introduce twometrics
that measure the probabilistic similarity and geographic simi-
larity between a fake trajectory and the base trajectory. Using
them, we design algorithms to synthesize fake trajectories.
For each fake trajectory, we conduct the privacy test to guar-
antee that the generated k-1 fake trajectories meet the privacy
protection requirements for both base trajectories and sam-
pling trajectories. Finally, we generate fake trajectories using
real trajectories and evaluate the effectiveness of the LRM in
terms of data availability and privacy level under inference
attacks. The results show that the LRM has efficient data
availability and better privacy protection than [14], [21], [25].

In this paper, we generate fake trajectories similar to the
base trajectory based on four facts: (i) The access probability
and the transition probability of each location will vary with
different time periods, and such change has periodicity. Sub-
way stations, for example, are visited by many more people
in the morning on weekdays than in the evening. (ii) In a
given time period, the access probability of each location is
the probability of all users accessing that location. (iii) Both
differences and similarities exist in the access probability
and transition probability in different locations. Based on
(i), (ii) and (iii), we can select locations with similar access

probability and transition probability to replace the base loca-
tion and guarantee that it is not recognized by the adversary
in terms of probabilistic features. This is the basis for our
choice of sampling locations to synthesize fake trajectories
similar to the base trajectory in terms of probabilistic fea-
tures. The differences and similarities in (iii) are the basis
of the attack model and location classification, respectively.
(iv) Geographical features in different locations exhibit a sim-
ilarity. This similarity reflects that the geographical distance
between the two locations is close enough to be indistin-
guishable. For two trajectories, if each corresponding location
in them is geographically indistinguishable, their geographic
features are indistinguishable.

To intuitively explain the advantages of the LRM ,
we assume that Alice and Bob are located in locations ha
and hb (ha 6= hb) in time period T1, and locations wa and
wb (wa 6= wb) in time period T2. If ha and hb, wa and wb,
have similar access probabilities, and ha→ wa and hb→ wb
also have similar transition probabilities, then ha → wa and
hb → wb have similar probabilistic features. In this paper,
two locations (e.g., ha and hb) satisfying the above rela-
tionship have probabilistic similarity and they are equivalent
locations. The set of equivalent locations is an equivalence
probability class. Furthermore, if ha and hb, wa and wb are
geographically indistinguishable, they have geographic sim-
ilarity. Therefore, we synthesize k-1 fake trajectories includ-
ing two features: (1) Each trajectory consists of sampling
locations selected from each equivalence probability class.
(2) Each corresponding two adjacent locations (called loca-
tion pair) between a fake trajectory and the base trajec-
tory have probabilistic similarity and geographical similarity;
thus, the base trajectory is unrecognized.

The LRM improves data availability. Compared with [25],
the LRM generates fake trajectories combined by sampling
locations. Thus, all published data by the LRM can be used
effectively. In the LRM , the access probability and transition
probability are derived from the statistics of a large number
of locations visited by many users over a long period of time.
Compared with [14], the two types of probabilities are stable
and do not degrade the accuracy using these locations. These
conclusions are shown in Fig. 12 and Fig. 13.

The LRM protects the privacy of both base trajectories
and sample trajectories. For base trajectories, the LRM must
satisfy two conditions before they are published: (1) The
number of fake trajectories is at least k-1. (2) The base trajec-
tory and the fake trajectories are similar both in probabilistic
features and geographical features. Therefore, it ensures that
base trajectories cannot be identified by inference attacks.
For sampling trajectories, the LRM requires that the number
of locations that are the same as those in the fake trajectory
does not exceed the limit threshold. Therefore, sampling
trajectories are not identified.

Specifically, the major contributions of this paper are as
follows:
• To protect the privacy of base trajectories against the
adversary with a mobility pattern, we propose the LRM
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to generate k-1 fake trajectories similar to base trajecto-
ries in terms of probabilistic features and geographical
features. The LRM also protects the privacy of sampling
trajectories.

• We propose the location pair similarity. Using it, we can
select sampling trajectories and divide them into differ-
ent equivalence probability classes by the similarity to
the base location.

• We propose the probabilistic similarity and the geo-
graphical similarity. Using them, we design algorithms
to synthesize fake trajectories that are similar to base
trajectories in terms of probabilistic features and geo-
graphical features.

• The validity of LRM in data availability and privacy
protection is verified on real-world trajectories. Com-
pared with [14], [21], [25], the results show that the
LRM has efficient data availability and can meet the pri-
vacy requirements of both base trajectories and sample
trajectories.

The rest of the paper is organized as follows: In Section II,
we discuss the related work. We present a sketch of our
scheme and describe themain intuition behind our scheme for
generating fake trajectories in Section III. We introduce the
probabilistic model and define location pair similarity, prob-
abilistic similarity and geographical similarity for analyzing
the similarity of mobility patterns between the base trajectory
and the fake trajectory in Section IV. We describe the detailed
algorithms for generating k-1 fake trajectories. We evaluate
the performance of our scheme in Section VI and Section VII.
We conclude this paper in Section VII.

II. RELATED WORK
In data publication, the trajectory k-anonymity has been
widely used to protect trajectory privacy in many different
applications such as IoT [24], [26], [27], sensor networks
[18], [28], search engines [29], mobile social networks [30],
traffic management [15], [31], etc. In these applications,
methods, such as the random walk model, historical tra-
jectory sampling and grid model, are used to achieve pri-
vacy protection by adding noise to the base trajectory to
generate k-1 fake trajectories similar to the base trajectory.
In the existing methods, [12], [13] randomly generated noise,
and some noise may be of hard-to-reach fake locations.
[14], [15] generated noise based on historical locations, and
all these locations are reachable. According to different ways
of generating noise, existing trajectory k-anonymity can be
divided into two types: the random method and the historical
method.

Random methods generate noise randomly. For example,
such a method can be accomplished by randomly select-
ing the locations near base locations [12], [32], rotating
the base trajectory by a certain angle as a fake trajectory
[10], [13], [19], and randomly selecting locations from grids
satisfying some constraints [21]. There are two shortcomings
in this method: (1) Some locations are hard to reach, causing

fake trajectories to be easily recognized. (2) Hard-to-reach
locations for data analysis reduce data availability.

Historical methods mainly select the locations from his-
torical locations as noise. For example, historical trajectories
were selected as fake trajectories [15], [31], and some seg-
ments of historical trajectories were selected to combine into
fake trajectories [17], [18]. However, they did not consider
probabilistic features and geographic features of trajectories,
leading to two disadvantages: (1) The adversary can identify
base trajectories by analyzing the difference between the fake
trajectories and base trajectories in terms of probabilistic
features and geographic features. (2) Fake locations increase
without considering the data accuracy, causing changes in
access probability and transition probability and degrading
the accuracy using these locations.

For data availability, although the LRM also generates
fake trajectories by adding noise, this method is significantly
different from the abovemethods. Comparedwith the random
method, the LRM selects locations from historical trajectories
as noise, which does not generate hard-to-reach locations.
In the LRM , the access probability and transition probability
are based on the statistics of a large number of locations
visited by many users over a long period of time. Thus, they
exhibit stability [33], [34]. However, locations in the histor-
ical method increase without considering the data accuracy.
Hence, it causes changes in access probability and transition
probability of locations.

The cryptography-based approaches, such as [35], [36],
are mainly used to make the user’s key attributes invisi-
ble to the adversary. However, efficient cryptography-based
approaches that provide full privacy do not exist, and the
remaining approaches are unable to make a trade-off between
privacy and loss of quality of service [8].

In particular, the existing methods fail to protect the prob-
abilistic features and geographical features of trajectories.
Thus, these methods cause base trajectories to be identified
and data availability to be reduced. Aiming at the above
problem, we propose the LRM to generate fake trajectories
that are difficult to be identified and improve data
availability.

Furthermore, although some methods are not k-
anonymous, they are the theoretical basis of this paper. In [7],
Du et al. demonstrated that the adversary can identify users’
anonymous ID of published data by analyzing the quasi-
identifier and attribute information. Xu et al. [3] proved that
users’ anonymous ID can be identified by using statistical
attributes of trajectories. Therefore, the work of this paper
focuses on protecting trajectory privacy from the perspec-
tive of mobility patterns. In [2], Noulas et al. analyzed the
geographic feature of the location. In [22], Andres et al.
proposed the concept of geographical indistinguishability and
proved that the farther the geographical distance between
two locations is, the greater the similarity is. Inspired by
schemes [37]–[39], which recover an image from n shadows,
we implemented this inspiration to reconstruct the trajectory
from historical locations.
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III. OUR SCHEME
In this section, we present a sketch of the LRM , as shown
in Fig. 2, and describe the main intuition behind our scheme
for generating fake trajectories. In our scheme, we generate
k-1 fake trajectories through a 6-step process. We first
compute the probability for each location of each histori-
cal trajectory, including the base trajectory. Then, we build
probabilistic models for all historical trajectories and select
sampling trajectories based on the base trajectory. Next,
we partition locations from the base trajectory and sampling
trajectories into distinct equivalence probability classes and
build a location pair graph. Using the location pair graph,
the fake trajectories have probabilistic and geographic sim-
ilarity to the base trajectory. Table 1 provides a list of the
notations used in this paper.

FIGURE 2. Sketch of the LRM.

A. COMPUTING THE ACCESS PROBABILITY AND THE
TRANSITION PROBABILITY
Different locations have different properties, e.g., time
period, time, geographical location, access probability, and
transition probability. We use them as properties of loca-
tions. Therefore, the access probability for location l in time
period T is defined as the ratio of the number of times all
users access l in T to the number of times all users access all
historical locations. For the transition probability, we assume
users could have transformed to l ′, l ′′, and l ′′′ from l in the
historical locations. The transition probability of l to l ′ is
defined as the ratio of the number of times that users could
have transformed to l ′ from l to the sum of times that users
could have transformed to l ′, l ′′, and l ′′′ from l. Note that
the access probability we discuss here is based on trajectory
rather than on a discussion of individual locations.

B. PROBABILISTIC MODEL
A trajectory is a discrete-time sequence of locations. As prob-
ability feature is one of the mobility patterns, we construct a
probabilistic model for the trajectory.

TABLE 1. List of notations.

Consider the trajectory L of user u: for a location l on L, its
access probability only depends on l. Therefore, the access
probability distribution of L is an independent distribution.
For two adjacent locations l and l ′, we find that the transition
probability of l to l ′ only depends on l, i.e., the transition
probability of a location only depends on the location in its
last instant. Therefore, the transition probability distribution
of L is a first-order Markov chain. Based on it, we model the
probabilistic model of L as 〈P,5〉, where P is the transition
probability distribution of locations and5 is the access prob-
ability distribution of locations.

Note that users may visit multiple locations during the
same time period. Because of the time dependence of these
locations, the trajectory still applies to the above model.

C. TRAJECTORY SAMPLING
The LRM selects sampling locations from sampling trajecto-
ries sampled from historical trajectories and recombines them
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into fake trajectories. To generate at least k-1 different fake
trajectories, sampling trajectories must satisfy three condi-
tions: for each base location, there are at least k-1 sampling
locations with similar access probabilities (1) and transition
probabilities (2) to each base location. Furthermore, sampling
locations satisfying (1) and (2) and their corresponding base
locations are in the same time period and almost at the same
time (3).

D. SAMPLING LOCATION CLUSTERING
For a base trajectory, if k-1 sampling trajectories are selected
as fake trajectories, each one must meet the condition that the
access probability and transition probability of each sampling
location are almost the same as its corresponding base loca-
tion. In fact, such sampling trajectories are difficult to select
and reveal the privacy of them. Even so, several sampling
locations in each sampling trajectory may still satisfy the
condition. If we select such sampling locations for each base
location and reconstruct them into a fake trajectory, the access
probability of each location on the fake trajectory must be
similar to its corresponding base location. Nevertheless, there
is no guarantee that the transition probability satisfies the
condition.

Considering the example about Alice and Bob in the
INTRODUCTION, if each location pair on sampling trajec-
tories (called sampling location pair) and its corresponding
location pair on base trajectories (base location pair) satisfy
the above 3 conditions, reconstructed fake trajectories also
necessarily satisfy the conditions. Therefore, we propose the
location pair similarity to measure how similar location pairs
are.

In the above example, ha and hb, wa and wb are in the same
equivalence probability class. To illustrate the necessity of
clustering locations in this way, we assume that ha → wa
and hb → wb are the base trajectory and the sampling
trajectory respectively. Each of them contains two locations.
We find that selecting ha → wb or hb → wa may be better
than hb → wb to protect the privacy of the base trajectory
(assuming that hb → wb or hb → wa has probabilistic
similarity to the base trajectory). Therefore, in this paper,
we can divide sampling locations into different equivalence
probability classes by base locations and select a sampling
location from each class to reconstruct a fake trajectory.

E. CONSTRUCTING THE LOCATION PAIR GRAPH
The similarity of mobility patterns for trajectories reflects
the similarity of both probabilistic features and geographical
features of trajectories. To this end, we propose the proba-
bilistic similarity and the geographic similarity tomeasure the
similarity of probabilistic features and geographical features
between two trajectories. To obtain a fake trajectory similar
to the base trajectory in the mobility pattern, one method is
to select a fake trajectory from all reconstructed trajectories.
However, this method has a higher complexity. Assuming that
there are n equivalence probability classes, the number of
locations in each class is mi, 0 ≤ i ≤ n; then, the number of

fake trajectories that can be synthesized is
∏n

i=0 mi. Hence,
we propose an algorithm to construct a location pair graph.
In the graph, each node represents a location, locations in
adjacent classes are connected by edges, and the weight of
the edge is represented by a binary group consisting of the
probabilistic similarity and geographical similarity. Through
the location pair graph, we can optimize the reconstruction
process of fake trajectories.

F. GENERATING FAKE TRAJECTORIES
After constructing the location pair graph, we consider how to
generate k-1 fake trajectories. In this process, fake trajectories
must be similar to the base trajectory in the mobility pattern,
and the privacy of sampling trajectories must be protected.
That is, a fake trajectory and a sampling trajectory should
have a similarity that is as high as possible and should have
as few as possible of the same location. Therefore, the pro-
cess needs to ensure that each fake trajectory satisfies two
conditions: (1) Protect the privacy of the base trajectory.
(2) Protect the privacy of sampling trajectories. To this end,
we design algorithms to generate k-1 fake trajectories. The
algorithms first generate the first trajectory similar to the
base trajectory in the mobility pattern and conduct a privacy
test to determine whether it satisfies conditions (1) and (2).
If so, it is regarded as the first fake trajectory. Otherwise,
the second trajectory is generated according to the above
step until the first fake trajectory is generated. Similarly,
we generate all k-1 fake trajectories in turn. In this process,
k-1 fake trajectories satisfy trajectory k-anonymity, so it can
meet condition (1). All trajectories pass the privacy test; thus,
they satisfy condition (2).

IV. TRAJECTORY SIMILARITY METRICS
In this section, we introduce the probabilistic model and two
metrics to analyze the probabilistic and geographic similarity
of trajectories.

A. PROBABILISTIC MODEL
In reality, people tend to move along a fixed route. Thus, loca-
tions are visited periodically, e.g., working in a company from
9 a.m. to 11 a.m., visiting restaurants from 12 p.m. to 1 p.m.
and remaining at home from 12 a.m. to 6 a.m. People have
different access probabilities for different locations within the
same time period and have the same location within different
time periods. Therefore, we can establish the probabilistic
model consisting of three factors: the time period, coordinates
and time. Before building the model, we first introduce some
concepts.
Definition 1 (Access Period): The physical meaning of

the access period refers to the time it takes for people to
repeatedly access some of the same locations in the same
order. Among them, the time of accessing these locations
once is called the minimum access period A. In this paper,
A is represented as a set consisting of na ordered discrete-time
segments. That is, A = {ai|i = 1, 2, . . . , na}.
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Definition 2 (Trajectory): For a trajectory L composed of
n locations, we formalize it as L = {li|i = 1, 2, . . . , n}. For
∀li ∈ L, A(li) ∈ A represents the time period in which li is
located; T (li) indicates the time of li being accessed.
For L, obviously, the access probability of li only depends

on li, so the access probability distribution of the trajectory
is an independent distribution. For the transition probability,
whether the next location is li only depends on li−1, but has
nothing to do with the previous location of li−1. It indicates
that the transition probability distribution of the trajectory is
a first-order Markov chain. Therefore, we define the proba-
bilistic model shown in Definition 3.
Definition 3 (Probabilistic Model): For the trajectory L

established on A, its probabilistic model is a binary group
L − model = (P,5).
• P = {P (li) |li ∈ L} is the transition probability distribu-
tion of L−model, and P (li) is the transition probability
of li−1 to li.

• 5 = {π (li) |li ∈ L} is the set of the access probability
distributions of positions in the L −model, and π (li) is
the access probability of li.

For the L − model, P (li) is the ratio of m (li−1, li) to∑
l∈S(A(li−1)) m (l, li), wherem (li−1, li) is the number of times

that users move from li−1 to li, and S(A(li−1)) is the set
of locations that will move to li during A(li−1). π (li) is the
ratio of m(li) to m(·), where mi is the number of times that
li appears in the historical locations and m(·) is the total
number of historical locations. Assume that there are 10 his-
torical locations, including a,b,c,d ,e, and f , and users can
only move from a, b, c, and d to f . The numbers of times
that all historical locations and f are visited are 100 and 40,
respectively. The number of times that users moved from
a, b, c, d to f are 2, 3, 5 and 7 respectively. Then, m(·) is
100, m(f ) is 40 and πf = 0.4. Assume A(a) = A(b) =
A(c); then, S(A(a)) = {a, b, c}, m(a, f ) = 2, m(b, f ) = 3,
m(c, f ) = 5 and P(f ) = 0.2. Note that the statistics here are
not the minimum period of data, but the average of multiple
periods to make the statistics more accurate. In the L−model,
the first location li does not depend on any location, that is,
the transition probability P (li) from any position to li is equal
to the access probability π (li), while any other location li only
depends on li−1. Therefore, the transition probability P (li)
and the access probability π (li) are calculated as follows.

P (l1) = π (l1)

P(li) =

∑
l∈S(A(li−1)) m (l, li)

m (li−1, li)

π (li) =
m(li)
m(·)

(1)

B. TRAJECTORY SIMILARITY METRICS
The LRM reconstructs fake trajectories by recombining loca-
tions. In this section, we propose three metrics to measure
the similarity of location pairs, probabilistic features, and
geographic features of two trajectories, which are also the
basis of algorithms generating fake trajectories in Section V.

In our scheme, there are two ways to generate fake tra-
jectories: (1) Sampling trajectory. A sampling trajectory is
selected as a fake trajectory, but the differences from the
base trajectory in terms of probabilistic features and the
geographic features make the base trajectory easy to be
identified. (2) Recombining locations. Sampling locations
similar to the access probability, transition probability and
geographic features of base locations are selected and recom-
bined into fake trajectories, which can ensure the probabilistic
similarity and geographic similarity with the base trajec-
tory. Therefore, this paper reconstructs fake trajectories by
recombining locations. The basic idea is to divide sampling
locations into different equivalence probability classes based
on the location pair similarity and finally reconstruct fake
trajectories similar to the base trajectory in the probabilistic
features and geographical features.

Location pair similarity measures the relevance of two
location pairs, reflectingwhether two users visit two locations
with a similar access probability andmove to the next location
with a similar transition probability. For two location pairs,
if the access probability and transition probability are the
same, they have maximum uncertainty. Thus, the sampling
locations can be sequentially divided into different classes,
and the access probabilities of the locations in the same class
are similar.

The probabilistic similarity measures the correlation
between two probability models, reflecting whether two tra-
jectories have similar probabilistic features. Although the
access probability of each location in a fake trajectory of
recombined locations from each equivalence probability class
is similar to its corresponding base location, it is difficult to
ensure that the transition probabilities are completely similar.
Therefore, we use probabilistic similarity to measure the
similarity of the access probability and the transition prob-
ability between the fake trajectory and the base trajectory.
If two trajectories exhibit probabilistic similarity, their access
probability and transition probability are similar.

Similarly, the geographic locations of two trajectories
with similar probabilities are difficult to guarantee to be
completely similar. Therefore, we consider measuring the
geographic differences of two trajectories with similar
probabilistic features. Geographic similarity measures the
geographical difference between two trajectories. If two
trajectories with similar probabilistic features meet the
requirement of geographic similarity, they are geographically
similar.

C. LOCATION PAIR SIMILARITY METRIC
Measuring the location pair similarity is accomplished by
selecting similar location pairs from sampling locations for
each base location pair and dividing them into different equiv-
alence probability classes. Moreover, the criterion that two
locations are similar is that they are almost the same in access
probability, transition probability, time period, and access
time (see the example in Section III).
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For the base trajectory B = {bi|i = 1, 2, . . . , n}, the server
needs to publish a k-anonymous group composed of B and
k-1 fake trajectories. Let the set of these fake trajectories be
F , and F = {fi|i = 1, 2, . . . , n} is a fake trajectory in F .
According to Definition 2, we use A = {Bi|i = 1, 2, . . . , }
to represent equivalence probability classes of base locations
in the k-anonymous group, where Bi ∈ A represents the
equivalence probability classes of bi. Additionally, we use
C to denote the set of trajectories that are possible combi-
nations of n locations from n equivalence probability classes.
C = {ci|i = 1, 2, . . . , n} is a trajectory in C and F j C.
We also use H to express the set of historical trajectories
and H = {hi|i = 1, 2, . . . , nH }, where H is a historical
trajectory in H. L =

{
Ll |Ll ∈

⋃
H hi

}
represents the set of

all nonrepetitive locations in H.
Based on the above analysis, we provide a formal definition

of location pair similarity.
Definition 4 (Location Pair Similarity): Suppose 〈bi−1, bi)

and
〈
hj−1, hj

)
are two location pairs on B andH , respectively;

if they can satisfy the following conditions, they have location
pair similarity:

(1)
∣∣π (bi−1)− π (hj−1)∣∣ ≤ δπ , ∣∣π (bi)− π (hj)∣∣ ≤ δπ

(2)
∣∣P (bi)− P (hj)∣∣ ≤ δP

(3)
∣∣T (bi−1)− T (hj−1)∣∣ ≤ δT , ∣∣T (bi)− T (hj)∣∣ ≤ δT

(4) A (bi−1) = A
(
hj−1

)
,A (bi) = A

(
hj
)

where δπ , δP and δT are thresholds of the difference of the
access probability, transition probability, and time between
two location pairs, respectively. Formulas (1), (2) and (3)
ensure that the access probability, transfer probability and
access time of two location pairs are close enough, and for-
mula (4) ensures that corresponding locations of two location
pairs are in the same time period. In particular, if δπ , δP and δT
are zero, the two location pairs reach the maximum similarity.

D. PROBABILISTIC SIMILARITY METRIC
In a k-anonymous group, intuitively, optimal fake trajectories
should exactly have the same probabilistic model as the base
trajectory. We propose the probabilistic similarity to measure
the difference of probability distributions between the base
trajectory and a fake trajectory. The smaller the difference is,
the more similar the probabilistic similarity is. In this section,
we first give two theorems and then utilize them to prove
that the difference between two probability distributions is
the expectation of differences between probabilistic features
of their corresponding locations.
Theorem 1: Let X0 be a random variable with the prob-

ability distribution P (X0). X = {Xi|i = 1, 2, . . . , n} is a
set of random variables with the probability distribution
P (Xi). For each Xi, it has a probability distribution difference
with X0. Among them, the probability distribution difference
between P (Xi) and P (X0) is d (X0,Xi), and the probability
of the probability distribution difference between P (Xi) and
P (X0) is PXi (Xi). Therefore, the probability distribution dif-
ference d (X0,X1, . . . ,Xi) between X0,X1, . . . ,Xi and X0 is
the expectation of each difference, which is represented as

follows.

d(X0,X1, . . . ,Xi) =
n∑
i=1

PXi (Xi) · d(X0,Xi) (2)

Proof: PXi (Xi) and d (X0,Xi) are functions of variables
X0 and Xi. For a given X0, the two functions only depend on
Xi. In this case, if Xi is also a given variable, then both PXi (Xi)
and d (X0,Xi) are constants. That is, if X0 is a given variable,
there is a one-to-one correspondence between PXi (Xi) and
d (X0,Xi). Thus, PXi (Xi) can be seen as the probability of
d (X0,Xi) in all probability distribution differences. There-
fore, d (X0,X1, . . . ,Xi) is the expectation of the probability
distribution difference d = {d (X0,Xi) |i = 1, 2, . . . , n} and
the probability d =

{
PXi (Xi) |i = 1, 2, . . . , n

}
.

Theorem 2: Let X ′ and Y ′ be two sets of random vari-
ables with the probability distribution P(X ′ = xi) and
P(Y ′ = yi), where X ′ = {xi|i = 1, 2, . . . ,m} and Y ′ =
{yi|i = 1, 2, . . . ,m}. For xi and yi, the probability distribution
difference between P(X ′ = xi) and P(Y ′ = yi) is d (xi, yi),
and the probability of the probability distribution difference
between P(X ′ = xi) and P(Y ′ = yi) is PY ′ (Y ′ = yi). The
difference in the probability distribution between X ′ and Y ′

is the expectation d(X ′,Y ′) of all d (xi, yi), where d(X ′,Y ′)
is represented as follows:

d(X ′,Y ′) =
m∑
i=1

PY ′ (Y
′
= yi) · d (xi, yi) (3)

Proof: For ∀xi′ ∈ X ′, according to Theorem 1,
the difference between xi′ and Y ′ is

∑m
i=1 PY ′ (Y

′
= yi,

X ′ = xi′ )·d (xi′ , yi). Then, d(X ′,Y ′) =
∑m

i=1
∑m

i=1 PY ′ (Y
′
=

yi,X ′ = xi′ ) · d (xi′ , yi). However, for d(X ′,Y ′), if i′ 6= i,
PY ′ (Y ′ = yi,X ′ = 0) and d (xi′ , yi) = 0. That is, d(X ′,Y ′) =∑m

i=1 PY ′ (Y
′
= yi) · d (xi, yi). Thus, we prove that the

difference of probability distributions between X ′ and Y ′ is
the expectation d(X ′,Y ′) of all d (xi, yi).
For ∀C ∈ C and a given B, the probability distribu-

tion difference and its probability between B and C only
depend onC . Therefore, we define the probabilistic similarity
between B and C as the expectation of the difference of prob-
ability distributions between B and C based on Theorem 2.
Definition 5: For ∀C ∈ C and a given B, the difference

between the probabilities of ci and bi is dP (ci, bi), and the
probability of the difference is PC (ci). Then, the probabilistic
similarity between B and C is defined as the expectation of
the difference of all dP (ci, bi), namely,

n∑
i=1

PC (ci) · dP (ci, bi) (4)

The adversary’s goal is to infer the user’s real trajectories
from published trajectories. To achieve this goal, in each
equivalence probability class, the adversary always estimates
a location (called estimation location) as the real location
and calculates the possibility that it is the real location by
exploiting the side information. In Bi, we assume that ĉi is the
estimation location. Without considering side information,
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the probability that ci is the real location is P(ĉi|ci). In this
case, the possibility that each location in Bi is estimated as the
real location is the same. Thus, P(ĉi|ci) = 1

k . For ci, the side
information that ci is the estimation location is that ci is esti-
mated as bi, namely, the joint probability P(ci, bi). Therefore,
the possibility that ci is estimated as bi is P(ci, bi) · P(ĉi|ci).
The greater the probability is, the greater the probability that
ĉi is bi. This means that the adversary thinks ci is more similar
to bi. Therefore, we use this probability to calculate PC (ci):

PC (ci) = 1− P(ci, bi) · P(ĉi|ci)

= 1− π (bi) · π (ci) · P(ĉi|ci) (5)

For ci and bi, the closer their access probability and tran-
sition probability are, the more similar they are, and the
smaller dP (ci, bi) is. We use Euclidean distance to measure
the difference between them.

dP (ci, bi) =
√
(π (ci)− π (bi))2 + (P(ci)− P(bi))2 (6)

According to the above formulas, we finally obtain the prob-
abilistic similarity between B and C , which is represented as
simP (B,C).

simP (B,C) =
1
√
2n
·

n∑
i=1

PC (ci) · dP (ci, bi) (7)

where 1
√
2n

is a constant used to normalize the probabilistic

similarity such that each simP (B,C) lies in [0, 1] in C .

E. GEOGRAPHIC SIMILARITY METRIC
Intuitively, we hope the published fake trajectories will be
geographically indistinguishable from the base trajectory,
i.e., the geographic distances between them are too close to
be distinguished. We introduce the geographic similarity to
measure the geographic distance between the base trajectory
and the fake trajectory. The smaller the distance is, the more
difficult it is to distinguish them geographically.

For ∀C ∈ C and given B, the geographical distance
between B and C and its probability distribution (essentially,
it is the probability of the geographical difference, called
the geographical difference probability distribution) depend
on C . Referring to Definition 5, we define the geographic
similarity between B and C as the expectation of geographic
distance between them.
Definition 6: For ∀C ∈ C and a given B, the geographic

distance between ci and bi is dG(ci, bi), and the probability
distribution of the geographical difference between them is
P[C,G](ci). Then, the geographic similarity between B and C
is defined as the expectation of the difference of all dG(ci, bi),
namely,

n∑
i=1

P[C,G](ci) · dG (ci, bi) (8)

For formula (8), we still compute P[C,G](ci) by P(ci, bi) ·
P(ĉi|ci), which is expressed as follows.

P[C,G](ci) = 1− π (bi) · π (ci) · P(ĉi|ci) (9)

According to the above formulas, we obtain the geographic
similarity simG (B,C) between B and C .

simG (B,C) =
1
zg
·

n∑
i=1

(1− P[C,G](ci)) · dG (ci, bi) (10)

where 1
zg
is a constant used to normalize the geographic simi-

larity such that each simG (B,C) lies in [0, 1]. zg is the sum of
geographic distances between locations in each equivalence
probability class that has the maximum geographic distance
from the base location and the base location.

zg =
n∑
i=1

max︸︷︷︸
ci∈Bi

{dG (ci, bi)} (11)

V. GENERATING FAKE TRAJECTORIES BY RECOMBINING
LOCATIONS
This section mainly describes the detailed algorithms for
generating k-1 fake trajectories by using the PLM .

A. SAMPLING HISTORICAL TRAJECTORIES
In this section, we select sampling trajectories meeting
the conditions of Definition 4 from historical trajectories.
To improve retrieval efficiency, we partition the database into
two areas: location area and historical trajectory area. The
location area stores location data represented by L, and the
historical trajectory area stores users’ historical trajectories,
as shown in Fig. 3 and Fig. 4. We divide the location area
into a full quad-tree with na layers and retrieve it using a grid-
based approach.

In Fig. 3, vector Q = (q1, q2, . . . , qna ) represents the
index of the block in the quad-tree. In Q, qi represents the
ith layer area of the quad-tree, and stores locations in the time
period ai. The value of qi is 1, 2, 3 or 4, indicating that it
can store the locations of their access probabilities that lie
in [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1] during ai.
The index of area A is Q = (1, 2, . . . , 0, 0), which stores
the location of their access probabilities that lie in [0.25, 0.5)
during a2. Moreover, Q(Ll) denotes the index of the block
where Ll locate, Q̂(Ll) expresses the subblock with the same
father block as Q(Ll), and Q̂P(Ll) represents the probability
interval of Q̂(Ll), such as Q̂P(Ll) = [0, 0.25).

FIGURE 3. Location domain.
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In the location area, (Q(Ll),G(Ll),L(Ll+1)) denotes
the data structure of Ll , where G(Ll) is the geographic
coordinate ofLl , andL(Ll+1) is the set of locations whereLl
has arrived at the next instant. In the historical trajectory area,
(Qc(hj), hj) represents locations on trajectory H , as shown
in Fig. 4.

FIGURE 4. Historical trajectories domain.

For B, we select sampling trajectories meeting the condi-
tions of Definition 4 from the two areas. Algorithm 1 shows
the formal description of trajectory sampling. It first selects a
location pair 〈bi, bi+1〉 and then determines the location area
Q̂(bi) based on bi, where locations in Q̂(bi) have the same
time period as bi and satisfy formula (1) of Definition 4.
It limits the search range to quad-tree blocks that are the
same time period as bi and whose access probability of
locations meets the conditions of Definition 4 and reduces
unnecessary retrieval. Next, it selects the location Ll from
Q̂(bi) and Q(bi), and selects Ll+1 to form the location pair
〈Ll,Ll+1〉 to be similar to 〈bi, bi+1〉. This process mainly
selects a location pair similar to 〈bi, bi+1〉 from the search
block. Then, a trajectory containing a location pair 〈Ll,Ll+1〉
similar to 〈bi, bi+1〉 is selected from the historical trajectories
block as a sampling trajectory. The above steps are repeated
until each location pair on B has at least k-1 similar location
pairs, and the obtained trajectories are sampling trajectories.

B. CLUSTERING THE SAMPLING LOCATION
We cluster the sampling locations from sampling trajectories
set S in Algorithm 1 into different equivalent probability
classes by the base location. Algorithm 2 shows the formal
description of location sampling. First, the sampling locations
in the same equivalent probability class as b1 and b2 are
aggregated into B1 and B2, respectively. For ∀H ∈ S,
Algorithm 2 traverses each location pair in H starting from
〈h1, h2〉. If a location pair is similar to 〈bi, bi+1〉 or there
is no such location pair, the next trajectory is retrieved
until all trajectories in S are traversed, and the sampling
locations are added to Bi and Bi+1, respectively. Second,
to aggregate the sampling locations into Bi and Bi+1(i ≥ 2),
Algorithm 2 no longer traverses all trajectories in S, but
only those that contain locations in Bi. During the process,
Algorithm 2 traverses each location pair on H . Once a
location pair is similar to 〈bi, bi+1〉 or there is no such location
pair, the next trajectory is retrieved until all trajectories are
traversed and sampling locations are added to Bi and Bi+1,

Algorithm 1 Trajectory Sampling
Input: base trajectory B, historical trajectory set H,

nonrepetitive location set L, location pair
similarity threshold δπ , δP, δT

Output: sampling trajectory set S
1 S ← ∅;
2 for all bi ∈ B do
3 Num (〈bi, bi+1〉) = 0;
4 Calculate Q̂(bi) that

|π (bi)− δπ | ∈ Q̂P(bi) or π (bi)+ δπ ∈ Q̂P(bi);
5 for all Ll ∈ Q(bi) ∪ Q̂(bi) do
6 if Num (〈bi, bi+1〉) > k − 1 then
7 exit

8 else if 〈bi, bi+1〉 and 〈Ll,Ll+1〉 meet the
condition of Definition 4 then

9 for all H ∈ H do
10 if 〈bi, bi+1〉 and 〈Li,Li+1〉 ∈ H meet the

condition of Definition 4 then
11 S ← H ;
12 Num (〈bi, bi+1〉)+ = 1;
13 exit

14 return S

respectively. The above process is repeated until Bn is aggre-
gated. Finally, Algorithm 2 returns the set of equivalence
probability classes B.

C. CONSTRUCTING THE LOCATION PAIR GRAPH
We need to randomly select a sampling location from each
equivalence probability class and combine them into a fake
trajectory. However, this method has a higher complexity. The
reason is that some nonexistent location pairs in historical tra-
jectories may be selected to construct trajectories. As shown
in Fig. 5, the solid lines and the dotted lines, respectively, rep-
resent existing location pairs and nonexistent location pairs in
the historical trajectories. To this end, we build the location
pair graph G = (A,E,W ).

FIGURE 5. Example of constructing fake trajectories.
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Algorithm 2 Sampling Location Clustering
Input: base trajectory B, sampling trajectory set S,

location pair similarity threshold δπ , δP, δT
Output: equivalent probability class set A

1 A← ∅;
2 for all bi ∈ B do
3 if i = 1 then
4 B1← b1,B2← b2;
5 for all H ∈ S do
6 for all hj ∈ H do
7 if

〈
hj, hj+1

〉
and 〈b1, b2〉 meets the

condition of Definition 4 then
8 B1← hj,B2← hj+1;
9 exit

10 A← B1,A← B2;

11 else if i > 2 then
12 Bi← bi,Bi+1← bi+1;
13 for all H ∈ S do
14 for all hj ∈ (H ∩ Bi) do
15 if

〈
hj, hj+1

〉
and 〈bi, bi+1〉 meets the

condition of Definition 4 then
16 Bi← hj,Bi+1← hj+1;
17 exit

18 A← Bi,A← Bi+1;

19 return A

In G, A is the set of all equivalent probability locations
from Algorithm 2, and each location is represented as a node
of G; b′i is a location in Bi; E(b′i, b

′

i+1) is a directed edge
connecting b′i and b

′

i+1;W (b′i, b
′

i+1) is the weight of the edge
E(b′i, b

′

i+1), which is a binary group composed of probabilis-
tic similarity and geographic similarity between< b′i, b

′

i+1 >

and 〈bi, bi+1〉.
We construct G by analyzing E and W among A.

Algorithm 3 shows the formal description of constructing the
location pair graph. First, it traverses each class Bi in A, and
selects a location from Bi and Bi+1, respectively, to constitute
a location pair < b′i, b

′

i+1 >. Then, Algorithm 3 judges
whether the location pair is in historical trajectories. If so,
Algorithm 3 adds E(b′i, b

′

i+1) and W (b′i, b
′

i+1) to G. This
process is repeated until it traverses each class in A. Finally,
Algorithm 3 returns the location pair graph G.

D. GENERATING FAKE TRAJECTORIES
In this section, we generate k-1 fake trajectories similar to
the base trajectory in the mobility pattern. A fake trajectory
is a sequence of locations that are selected from each equiv-
alence probability class in G, and two adjacent locations are
connected by an adjacent directed edge. For each sequence,
its ith node is a location in the probability class Bi. In this
way, we turn the goal of generating k-1 fake trajectories

Algorithm 3 Location Pair Graph Construction
Input: base trajectory B, equivalent probability class set

A
Output: location pair graph G

1 E ← ∅,W ← ∅;
2 G = (A,E,W ) for all bi ∈ B do
3 for all Bi ∈ B do
4 for each b′i ∈ Bi do
5 if < b′i, b

′

i+1 >∈ H then
6 E ← E(b′i, b

′

i+1);
7 W ← W (b′i, b

′

i+1);

8 return G

into the problems reconstructing sequences in G. Among
them, the efficiency of sequence reconstruction and the
effect of privacy protection are the problems that need to be
solved.

We consider improving the efficiency of sequence recon-
struction from two aspects: (1) Delete locations that do not
meet the privacy protection requirements for the base trajec-
tory (Section V-F). In G, there may be some directed edges
with a weight greater than δB or δG. Then, any sequence
of locations containing the directed edges cannot satisfy the
privacy protection requirement for the base trajectory, so we
need to delete these locations before the sequence reconstruc-
tion. (2) Delete sampling trajectories. Some reconstructed
sequences are also sampling trajectories, which obviously do
not meet the privacy protection requirement for the sampling
trajectory, so we need to delete them.

After obtaining a sequence of locations, we need to delete
those that do not satisfy the privacy protection requirements
for the base trajectory or the sampling trajectory. If the proba-
bilistic similarity of a trajectory does not satisfy formula (12)
and the geographic similarity of a trajectory does not sat-
isfy formula (13), it does not satisfy the privacy protection
requirement for the base trajectory. If the trajectory does not
satisfy formula (14), it does not satisfy the privacy protection
requirement for the sampling trajectory.

According to the above analysis, we design an algorithm to
generate k-1 fake trajectories. Algorithm 4 shows the formal
description of generating fake trajectories. First, it retrieves
all directed edges in G. If the probabilistic similarity of the
weight of E(b′i, b

′

i+1) is greater than δB or the geographic
similarity is greater than δG, E(b′i, b

′

i+1) is deleted. Second,
after obtaining the deleted location pair graph, it randomly
generates a fake trajectory F . If F is B or a sampling tra-
jectory, it continues to randomly generate another fake tra-
jectory. Then, Algorithm 4 uses the Privacy Test 1 algorithm
and Privacy Test 2 algorithm to conduct a privacy test for F .
If the test results are all True, it selects F as a fake trajectory.
Finally, Algorithm 4 repeats the above process until k-1 fake
trajectories are generated.
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Algorithm 4 Generating Fake Trajectories
Input: base trajectory B, location pair graph G, sampling

trajectory set S, probabilistic similarity threshold
δB, geographic similarity threshold δG, sampling
trajectory privacy requirement threshold δS

Output: fake trajectory set F
1 F ← ∅,G′← ∅, n(F)← 0;
2 Remove all E(b′i, b

′

i+1) for which W (b′i, b
′

i+1) do not
satisfy conditions (12) or (13);

3 G′← G;
4 while n(F) < k − 1 do
5 Randomly generates a trajectory F ;
6 if F = B or F ∈ S then
7 n(F) = n(F)

8 else
9 �← PrivacyTest1, �′← PrivacyTest2;

10 if � = True and �′ = True then
11 F ← F ∪ F ;
12 n(F) = n(F)+ 1

13 return F

E. PRIVACY THREAT MODEL
In this paper, we focus on the scenario of anonymous trajec-
tory publication. The scenario has three features: (1) All fake
trajectories in the published k-anonymous group have the
same ID as the base trajectory. (2) Side information grasped
by the adversary is the trajectorymobility patterns of all users.
(3) The adversary can obtain the published k-anonymous
group through various channels. Thus, we consider two types
of privacy threats faced by users. The first type is against
the inference attack on the base trajectory. By comparing
the mobility pattern of the base trajectory with that of all
of the trajectories in the k-anonymous group, the adversary
matches trajectories similar to the base trajectory in terms of
probabilistic features and geographical features of the base
trajectory.

The second type is against the inference attack on the
sampling trajectory. Since locations on a fake trajectory come
from sampling trajectories, there may be some locations
that are the same as the locations on a sampling trajectory.
Moreover, the more such locations on a fake trajectory there
are, the more privacy a sampling trajectory leaks. Therefore,
it is necessary to protect sampling trajectories by limiting the
number of such locations.

To address the above two threats, we define two privacy
protection requirements for both base trajectories and sam-
pling trajectories (see V-F, G). In the LRM , we need to test
the privacy requirement of the fake trajectory to meet these
two requirements.

F. PRIVACY PROTECTION REQUIREMENTS FOR THE BASE
TRAJECTORY
Generally, when we say that fake trajectories and base
trajectories have the same mobility pattern, we mean that

the probabilistic similarity and geographic similarity of two
trajectories reach a certain range. However, the LRM may
release some fake trajectories that are different from the base
trajectory in the mobility pattern, causing the base trajectory
to be identified. Therefore, we need to generate fake trajecto-
ries that are the same mobility pattern as the base trajectory
to protect the base trajectory privacy. We call it the privacy
protection requirement for the base trajectory.

In the attack model, the privacy protection requirements
for the base trajectory need to consider two aspects: (1) The
probabilistic similarity between the base trajectory and each
fake trajectory F is less than the threshold δB. The rationale
is that the smaller the probabilistic similarity is, the more
difficult it is to distinguish the probabilistic features of them.
(2) The geographic similarity between the base trajectory and
each of the fake trajectoriesF is smaller than the threshold δG.
Similarly, the rationale is that the smaller the geographic sim-
ilarity is, the more difficult it is to distinguish the geographic
features of them. In addition, F should not be the same as
the base trajectory in geographic features. That is, δG is not
equal to 0. We ensure that the mobility pattern between the
base trajectory and each fake trajectory is similar by setting
the above aspects (1) and (2).

simP(B,F) ≤ δB (12)

0 < simG(B,F) ≤ δG (13)

Formula (12) and (13) are criteria for verifying the similarity
of the mobility pattern. Therefore, we can construct a fake
trajectory meeting these criteria to solve the privacy threat of
the base trajectory.

We design a privacy test algorithm to ensure that fake
trajectories meet this standard. Algorithm 5 shows the formal
description of it. It judges the relationships of simP(B,F) and
simG(B,F). If simP(B,F) ≤ δB and 0 < simG(B,F) ≤ δG,
it satisfies the privacy protection requirement for the base
trajectory, so the privacy test result � is True.

Algorithm 5 Privacy Test 1
Input: probabilistic similarity simP(B,F),

geographic similarity simG(B,F),
probabilistic similarity threshold δB,
geographic similarity threshold δG

Output: test result �
1 if simP(B,F) ≤ δB and 0 < simG(B,F) ≤ δG then
2 �← True

3 return �

G. PRIVACY PROTECTION REQUIREMENT FOR THE
SAMPLING TRAJECTORY
In the LRM , the sampling trajectory also faces a privacy
threat. To explain the reason, we consider a 2-anonymous
group containing the base trajectory La and the sampling
trajectory L ′a for Alice and another 2-anonymous group con-
taining the base trajectory Lb and the sampling trajectory L ′b
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for Bob. We assume that Lb is a sampling trajectory in the
process of protecting La. Then, some locations on L ′a may be
from Lb. In this case, L ′a and Lb will have some of the same
locations. Although Lb cannot be obtained by the adversary
using the first privacy threat model, it can suffer from the
inference attack on the sampling trajectory. If the number
of the same locations of L ′a and Lb reaches the threshold,
especially when they are completely the same, the adversary
can identify Lb. Therefore, we must ensure that the adversary
cannot identify the sampling trajectory through the published
k-anonymous group.We call it the privacy protection require-
ment for the sampling trajectory.

For a fake trajectory and a sampling trajectory, the greater
the proportion is of the same locations contained in the fake
trajectory, the more likely the fake trajectory is identified
as the sampling trajectory. Therefore, for each F , it should
satisfy the relationship:

n(F,H )
n(F)

≤ δS (14)

In formula (14), n(F,H ) is the number of the same loca-
tions of F and H , n(F) is the number of locations in F , and
δS is the threshold of the privacy requirement protection for
the sampling trajectory and is constant. In other words, when
F and all H satisfy formula (14), the adversary is not able to
identify the sampling trajectory through F .
Similarly, we design a privacy test algorithm to ensure that

fake trajectories meet this standard. Algorithm 6 shows the
formal description of it. It determines whether an F and all
trajectories H in S meet condition (14). If they satisfy the
privacy protection requirement for the sampling trajectory,
the privacy test result �′ is True.

Algorithm 6 Privacy Test 2
Input: sampling trajectory set S, fake trajectory F ,

sampling trajectory privacy requirement
threshold δS

Output: test result �′

1 if all H ∈ S meets condition of
n(F,H )
n(F)

≤ δS then

2 �′← True

3 return �′

H. TIME COMPLEXITY
In our scheme, most of the computation time is spent on
Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4. For
a base trajectory B, we assume that the number of historical
trajectories and locations stored inQ(bi)∪Q̂(bi) ismH andmi,
respectively. Here, Q(bi) ∪ Q̂(bi) are the blocks that meet
conditions |π (bi)− δπ | ∈ Q̂P(bi) or π (bi) + δπ ∈ Q̂P(bi).
IfB requests a k-anonymous privacy protection, for 〈bi, bi+1〉,
Algorithm 1 needs to select at least k−1 ofmi×mi+1 location
pairs and select one out of mH historical trajectories for each
selected location pair. In the worst case, the time complexity

of Algorithm 1 is O(mH ×
∑n−1

i=1 mi × mi+1). Assume
that Algorithm 1 returns h sampling trajectories and the jth

trajectory hj contains nhj sampling locations. In the worst
case, Algorithm 2 needs to traverse each location in every
sampling trajectory and cluster the sampling locations into n
equivalent probability classes. Therefore, the time complexity
of Algorithm 2 is O((n − 1) × h × nhj ). Assume that Bi that
Algorithm 2 returns contains nBi locations. For the location
pair graph, in the worst case, each location in Bi connects to
every location in Bi+1. Consequently, the time complexity of
Algorithm 3 is O(

∑n−1
i=1 nBi × nBi+1 ). For the location pair

graph that Algorithm 3 returns, we need to randomly select
a sampling location from each equivalence probability class
and combine them into a fake trajectory. Thus, in the worst
case, the time complexity of Algorithm 4 is

∏n
i=1 nBi .

VI. EVALUATION SETUP
In our experiment, we evaluate the performance of the LRM
through the evaluation setup (Section VI) and evaluation
results (Section VII).

A. DATASET
The data we use for the evaluation are from a real GPS
trajectory dataset, called GeoLife. The GeoLife dataset was
collected in (Microsoft Research Asia) the GeoLife project
(see [40]), in which GPS was used to collect the data, such
as latitude, longitude and altitude, etc., and has been widely
used in many studies, such as location privacy [41], data
mining [42], and location recommendation [43], etc. It has
recorded the GPS trajectory of 182 users with 17,621 tra-
jectories in a period of over five years (from April 2007 to
August 2012). In this paper, we select five valid fields—user
ID, longitude, longitude, date and time—fromGeoLife as our
dataset, called the Raw dataset. We run our algorithms on the
Raw dataset to generate a trajectory k-anonymous group for
data release.

In the Raw dataset, each trajectory is a sequence of times-
tamped points, each of which contains all five fields. For all
trajectories, 91.2 percent of locations are positioned every
5∼10 seconds. That is, multiple consecutive GPS points
may refer to the same place, which causes that a place
that is actually only accessed once is mistaken for frequent
access. Thus, we add two fields to the Raw dataset, location
and street, which are the house number of a location and
the street where it is located, respectively. In addition, for
multiple consecutive GPS points representing one place,
we sample the one with the smallest difference from the
average time of all points for our evaluation, and reduce the
others. Then, we extract approximately 30 days of trajectories
of 22 users (the days of a small number of users are more
than 30 days or less than 30 days) from the Raw dataset and
obtain a new dataset called the Preprocessed Dataset for the
evaluation.

B. EXPERIMENTAL SETTINGS
To set the access period, we need to know how many
days each user visited his most frequently visited street in
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approximately 30 days. Considering the different sampling
days for each user in the Preprocessed Dataset, we use the
frequency f ∈ [0, 1] to evaluate the access period. For exam-
ple, f = 0.5 means a user visits his most frequently accessed
street every other day. Due to different positioning times,
however, simply summing up the time of each location in
the sequence of locations periodically accessed is insufficient
because it is difficult for the same sequence of locations to
repeatedly appear. For example, one location accessed by a
user with less than the positioning time will not be positioned.
Thus, we use the time of the street accessed instead of the
sequence of locations to evaluate the access period. The result
is shown in Fig. 6.

FIGURE 6. Statistics of the frequency of days for which the street was
accessed most frequently by users.

Fig. 6 shows that frequencies of all users are in the interval
[0.65, 1], and 21 users are in the interval [0.75, 1]. It means
the number of users with an access period of no more than
1.5 days is 22, and the number of users with a maximum
access period of 1.3 days is 21. Thus, we set the access period
as 1 day.

Intuitively, people’s activity patterns during a period in
an access period are stable. Based on it, we analyze the
distribution of users’ locations in different time periods of
every access period, as shown in Fig. 7. In Fig. 7, there are
4 different time periods—period 1, period 2, period 3, and
period 4—which represent that their time periods in an access
period are between 12 a.m. and 6 a.m., between 6 a.m. and
3 p.m., between 3 p.m. and 8 p.m. and between 8 p.m. and
12 a.m. respectively. For most of the access periods, because
people go out to work during the day, period 2 is the time
period in which users have the most frequent activity, and its
ratio steadily falls in the range [0.4, 0.6]. In addition, because
people reduce their activities in the afternoon and evening,
ratios of period 1, period 3, and period4 steadily fall in the
range [0.1, 0.3], [0, 0.1] and [0.1, 0.2], respectively, and all
are smaller than period 2. Thus, we partition the time in every
access period into 4 different time periods: period 1-period
2-period 3-period 4.

FIGURE 7. Distribution of users’ locations in different time periods of
every access period.

In the Preprocessed Dataset, each trajectory is a user’s
sequence of GPS points within one day or more. We con-
sider dividing each trajectory into multiple trajectories with
fewer locations. For each user, there are two states: uniform
motion and staying in one place. We consider the time t0,
the time at which a user stays in one place, as the criterion
for dividing trajectories. If the time interval of two adjacent
locations t ≤ t0, they belong to the same trajectory; other-
wise, they do not. Suppose that n locations are divided into
different trajectories; then, the number of trajectories is the
function f (t0) for t0. For the trajectory containing the most
locations among f (t0) trajectories, the number of its locations
is the function g(t0) for t0.

The division of trajectories needs to balance the privacy
level and the utility. The privacy level measures privacy
that trajectories leak and the utility measures privacy that
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trajectories contain. The smaller t0 is, the larger f (t0) is, and
the less privacy that each trajectory leaks. We assume that
the average privacy of trajectories is 1, and then its average
privacy level is 1− 1

f (t0)
. In addition, the larger t0 is, the larger

g(t0) is, and the more average utility that trajectories contain.
We use 1

g(t0)
to represent the average utility of trajectories.

If 1 − 1
f (t0)

=
1

g(t0)
, the privacy level and the utility are

balanced. Thus, we define the time interval in which the
privacy level and the utility are balanced as t0. In Fig. 8,
the time interval of balance t0 is 51 s. Based on t0, we divide
the trajectory on 12/10/2018 into 51 trajectories, and the
trajectory that has the most locations contains 51 locations.
Analogous to Fig. 8, we divide all the trajectories in the
Preprocessed Dataset and obtain the trajectory set H.

FIGURE 8. Division of user trajectories on 12/10/2018.

In our experiment, we randomly sampled 10 trajectories,
which are in the same access period, as base trajectories from
the Preprocessed Dataset. For each base trajectory, we run
Algorithm 1 to select sampling trajectories and build prob-
abilistic models for them. For all sampling trajectories and
the base trajectory, we use Algorithm 2 to partition locations
from them into distinct equivalence probability classes, and
Algorithm 3 is implemented to build a location pair graph for
them. Based on the location pair graph, we run Algorithm 4 to
randomly generate trajectories. For each trajectory, if two
results from Algorithm 5 and Algorithm 6 are True, it is a
fake trajectory that meets the privacy requirements of the
base trajectory and sampling trajectories. The implementa-
tion procedure of our experiment is shown in Fig 9. Finally,
we generate 10 to 12 k-anonymous groups with an anonymity
level of 4 to 15 by setting the parameters in Table 2.

VII. EVALUATION RESULTS
A. THREAT SCENARIO SETUP
In this scenario, users u and u′, respectively, send their real
trajectories l and l ′ to a service provider and share a location-
based service. The service provider receives l and l ′ and
releases a k-anonymous group for each of them. In addition,
l ′ is a sampling trajectory exactly sourced from the process
of privacy protection for l.

FIGURE 9. Implementation procedure of our experiment.

TABLE 2. Experimental parameters.

For u, the adversary can legally obtain his k-anonymous
groups and all sampling trajectories such as l ′. Analogous
to [3], [7], we assume that the adversary knows the user’s
mobility pattern and the LRM mechanism. For example, u is a
real user and his real trajectory l is hidden in the k-anonymous
groups. However, he does not know how does the LRM works
(we assume that service providers are trustworthy).

To resist the inference attacks on the base trajectory, it is
necessary to ensure that the mobility patterns of all fake tra-
jectories and the base trajectory in a k-anonymous group are
indistinguishable. Suppose that a, b, c, d is a k-anonymous
group, where a is the base trajectory and others are fake tra-
jectories. Although the adversary cannot identify the base tra-
jectory by analyzing its mobility pattern, he may identify fake
trajectories in the k-anonymous group (e.g., no similarity to
the base trajectory in the mobility pattern is considered a fake
trajectory). It is the reason why we propose the geographic
similarity and the probabilistic similarity. They ensure that
each fake trajectory is similar to the base trajectory in the
mobility pattern so that the LRM has a higher privacy level
(see Fig. 10).

There are two types of fake trajectories used by the adver-
sary to identify sampling trajectories. One is from the same
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FIGURE 10. The privacy level of the base trajectory vs. k .

process as the sampling trajectory and the other is not, but its
part regarding locations is the same as that in the sampling tra-
jectory. Both of them can be used by the adversary to launch
inference attacks. For the second, all historical trajectories are
required to satisfy the sampling trajectory privacy require-
ments. Therefore, we only consider the sampling trajectory
privacy requirements that satisfy the first.

B. EXISTING TRAJECTORY k-ANONYMITY METHODS
In this section, we study existing typical trajectory
k-anonymity methods [12], [14], [15], [17], [21], [25],
[31], [44], which protect trajectory privacy by generating
k-anonymous groups. However, these methods differ in how
fake trajectories are generated. According to the difference,
existing typical methods can be divided into three categories.
• Random [12], [25]: Generate a fake trajectory by ran-
domly rotating the base trajectory [14] or randomly
generating k-1 fake locations for each base location
[36]. Thus, some fake locations in a fake trajectory may
be hard-to-reach locations.

• Sample [14], [15], [17], [31]: Select one historical
trajectory of a user as a fake trajectory. Thus, all fake
trajectories in the k-anonymous group are historical
trajectories.

• Grid [21], [44]: For each base location, randomly select
k-1 locations that have the same probability as it does as
the fake locations. In [21], [44], each location is a grid
and is given a query probability of a user. Thus, all fake
locations are historical locations.

We respectively select [14], [21], [25] from the three meth-
ods to compare with our methods (LRM). Reference [25]
randomly generates k − 1 fake locations without the
spatiotemporal correlation for each base location. Thus,
some fake locations may still be hard-to-reach locations.
Reference [14] selects k − 1 independent historical trajecto-
ries that satisfy the privacy criterion from real-world datasets
as fake trajectories. Reference [21] selects k−1 real locations
that have the highest uncertainty of identifying a user as fake
locations for each base location independently. Therefore,

the fake locations corresponding to different base locations
are uncorrelated. For comparison purposes, these methods
use the same 10 base trajectories as the LRM for k-anonymity
protection. For the same base trajectory, we run three algo-
rithms separately to generate k-anonymous groups with the
same number and anonymity level as the LRM . In particular,
for [21], we chose k fake locations for each base location
in each base trajectory and recombine locations that sample
from each k fake location into a trajectory.

We then use these trajectories to evaluate the perfor-
mance of the four methods in terms of four metrics (see
Section VII-C). (i) Base trajectory privacy. Counting the
number of base trajectories identified under the inference
attack on the base trajectory to evaluate the capability of
the four methods for protecting the base trajectory privacy.
(ii) Sampling trajectory privacy. Counting the number of
sampling trajectories unidentified under the inference attack
on sampling trajectories to evaluate the capability of the LRM
and the Samplemethod for protecting sampling trajectory pri-
vacy. (iii) Service provider utility. Counting the number of tra-
jectories released at the same level of privacy for all methods
to measure the service provider utility. (iv) Data availability.
Analyze the hard-to-reach locations in k-anonymous groups
and the change of probabilities of locations to evaluate the
data availability for all methods. (Section VII-D presents the
evaluation results.)

C. PRIVACY METRIC
The metric to quantify the privacy level of the base trajectory
is the probability that the base trajectory is identified (called
identifiable probability). Although the adversary can easily
obtain k-anonymous groups, he cannot identify fake trajec-
tories that are similar to the base trajectory in the mobility
pattern. For a base trajectory, if there are m(m ≤ k) trajec-
tories similar to it in its k-anonymous group, the identifiable
probability is 1

m . The largerm is, themore difficult identifying
the base trajectory is, and the higher the privacy level of the
base trajectory is. We evaluated the privacy level of the LRM
and all three methods.

We use the ratio of sampling trajectories that are not identi-
fied (called unidentifiable ratio) to quantify the privacy level
of sampling trajectories. Assume that there are n0 sampling
trajectories in the process of trajectory k-anonymity, and
n(n ≤ n0) among them cannot be identified by the adver-
sary; then, the unidentifiable ratio is n

n0
. In our experiments,

we only evaluated the privacy level of sampling trajectories
of the LRM and the Sample scheme. (Random and Grid do
not use sampling trajectories to generate fake trajectories).
Unlike the LRM , each fake trajectory in the Sample scheme
is a sampling trajectory. The more locations in each fake tra-
jectory that are released, the more likely it is to be identified.

D. UTILITY METRIC
Different users need different utilities of location data. For
example, users wish to leak their privacy as little as possible
but obtain a higher quality of services, service providers
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want to release more locations with the lowest load, and
researchers hope to acquire the most accurate location data
for data analysis. We measure the utility of our approach in
terms of the privacy level (Section VII-C), load, and data
availability.

For the service provider, the more trajectories the
k-anonymous group has, the greater the overhead
(e.g., storage, computation) is, and the lower the utility of
the service provider is. Fig. 10 shows that different methods
need to release different numbers of trajectories to achieve the
same privacy level for the base trajectory. Thus, we measure
the utility of the service provider using the minimum number
of trajectories that need to be released to achieve a certain
level of privacy.

The utility of researchers refers to data availability in terms
of available data and data accuracy. We use the available data
ratio to measure the available data and the variance of the
difference before and after the change in access probability
(called change variance) to measure the data accuracy. For
a k-anonymous group, the more accessible locations there
are, the greater the available data ratio is. For data accuracy,
change of locations probability can affect data accuracy. The
smaller the access probability of locations changes, the lower
the data accuracy is. The smaller the variance is, the smaller
the change variance is, and the higher the data accuracy is.

E. RESULTS
1) PRIVACY LEVEL OF THE BASE TRAJECTORY vs. k
We evaluate the relationship between the privacy level of the
base trajectory and anonymity level k . The privacy level is
measured by the average identifiable probability of 10 base
trajectories. Fig. 10 shows the privacy level in terms of
the average identifiable probability of different methods.
Generally, the average identifiable probability decreases
with k . This occurs because more trajectories in a
k-anonymous group mean more trajectories are similar to
the basic trajectory. Among these schemes, Random has the
highest average identifiable probability since fake trajectories
contain some hard-to-reach locations. It also ignores the
probabilistic and geographical features of these trajectories.
As a result, it has the most fake trajectories filtered out by
the adversary and has the easiest identification of the base
trajectory. The privacy level of Grid and Sample are higher
than that of Random, since both Grid and Sample select
historical locations to synthesize fake trajectories instead of
hard-to-reach locations. The privacy level ofGrid and Sample
are also similar. The reason is that the k − 1 fake locations
chosen by Sample and their corresponding base location have
the same geographic location, and the locations of the Grid
scheme have the same access probability. Compared with
the three schemes, we can see that the LRM can achieve a
much greater privacy level. This occurs because fake loca-
tions in our scheme are not hard-to-reach locations, and fake
trajectories are similar to the basic trajectory in terms of the
probabilistic and geographic features.

2) PRIVACY LEVEL OF SAMPLING TRAJECTORIES vs. k
Weevaluate the relationship between the privacy level of sam-
pling trajectories and anonymity level k . Their privacy level is
measured by the average unidentifiable ratio of sampling tra-
jectories corresponding to 10 base trajectories. Fig. 11 shows
the privacy level in terms of the average unidentifiable ratio
of two schemes. Obviously, the LRM has the higher average
unidentifiable ratio than the Sample scheme. In the LRM ,
locations in a fake trajectory are sampled from different sam-
pling trajectories, which ensures that each sampling trajectory
cannot be identified due to the lower similarity to this fake
trajectory. This is why all average unidentifiable ratio in the
LRM are 1. For the Sample scheme, each fake trajectory is
also a sampling trajectory. This means that some sampling
trajectories cannot satisfy the privacy protection requirement
of the sampling trajectory. However, to ensure the similarity
between the base trajectory and sampling trajectories, only
locations with the same geographic location as the base loca-
tion are released. This is why no average unidentifiable ratio
in the Sample are zero in Fig. 11.

FIGURE 11. The privacy level of sampling trajectories vs. k .

3) UTILITY OF THE SERVICE PROVIDER vs. PRIVACY LEVEL
OF THE BASE TRAJECTORY
Fig. 12 shows the relationship between the minimum num-
ber of trajectories and identifiable probability for different
methods. We evaluate the utility of the service provider
at different identifiable probability: 0.2, 0.4, 0.6 and 0.8.
Generally, the utility decreases with the identifiable
probability since reducing the privacy level results in the
decrease of fake trajectories needed to be released. Among
these methods, the LRM is optimal because it is more effec-
tive against the inference attacks on the base trajectory, which
causes it to require fewer fake trajectories to achieve the same
privacy level as other methods. It also means that the LRM
requires releasing the least locations to achieve the same
privacy level. The reason is that the LRM selects locations
similar to the base location from the smaller areas to ensure
the similarity to the base trajectory in the mobility pattern.
As a result, only fewer locations can be selected, which
requires the LRM to repeatedly use some location pairs to
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FIGURE 12. The utility of the service provider vs. the privacy level of the
base trajectory.

meet the privacy protection requirement of the base trajectory.
The Grid and the Sample are slightly worse than the LRM .
The reason is that both the Grid and the Sample methods
release more trajectories than the LRM at the same privacy
level. Random is the worst since it contains some hard-to-
reach locations and ignores the probabilistic and geographical
features. As a result, it requires the most fake trajectories to
achieve the same privacy level as other methods.

4) THE DATA AVAILABILITY vs. k
Data availability and anonymity level k . Fig. 13 shows the
relationship between data availability and k for different
methods. In Fig. 13(a), we evaluate the available data ratio
of different schemes. Among these schemes, Random has
the lowest available data ratio since it contains some hard-
to-reach locations that cannot be used for data analysis.
Compared with Random, the others have a much higher
available data ratio because they select historical locations
to synthesize fake trajectories. All these historical locations
can be used for data analysis. It is also the reason that all of
the available data ratios of the LRM , the Grid scheme and
the Sample scheme are 1.0. In Fig. 13(b), we evaluate the
minimum change variance of different schemes. Among all
the schemes, the access probabilities in the LRM are the most
stable. Given that the access probability is a statistic based on
how times many people visit a location over a long period of
time, it has stability. However, other methods do not consider
the stability, resulting in a more remarkable change of access
probabilities for some or fewer released locations than that
in the LRM . Grid and Random randomly select locations to
synthesize fake trajectories, especially Random selects some
hard-to-reach locations, resulting in greater randomness and
an increase in the instability of the access probability of
locations. Sample needs to select k − 1 historical locations
that are closer to a base location for each base location. Thus,
it has less randomness than Grid and Random. This is why
Sample is superior to Grid and Random, and Random has the
worst data accuracy.

FIGURE 13. Data availability vs. k .

VIII. CONCLUSION
This paper proposes a location recombination mechanism
based on trajectory k-anonymity to protect the trajectory pri-
vacy in the scenario of the data release. We introduce proba-
bilistic similarity and geographic similarity to synthesize fake
trajectories that satisfy the privacy protection requirements
for both the base trajectory and the sampling trajectory. The
verification results on real-world data show that our scheme
is more effective than other trajectory k-anonymity schemes
against the inference attacks on both the base trajectory and
the sampling trajectory. Our method also has a better effect
on the privacy protection trajectory. Compared with other
approaches, our method achieves better utility for service
providers and researchers.
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