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ABSTRACT In this paper, the generalized recursive formulations of the finite difference time
domain (FDTD) for updating the electric and magnetic fields in the multi-layer anisotropic media are derived
with a uniaxial perfectly matched layer. The stability condition of the proposed method is clearly analyzed
and verified. Then this method is used to calculate the three-dimensional complex scattering fields in planar
multilayered anisotropic microstructures with optical axis perpendicular to the layered interface and the
scattering fields of arbitrary shape scatters in the anisotropic layered structures. The electric field induced
by the sine dipole source is calculated in the spatial domain and the corresponding spectral domain results
are achieved through Fourier transform. The scattering field of composite materials with submillimeter
thicknesses used in the industrial engineering is calculated using a terahertz wave with operation frequency
of 0.3 THz. Robustness of the derived formulations for the complex uniaxial anisotropic media is verified
by comparing with the COMSOL software, which is based on FEM analysis. The comparison of memory
and CPU time shows the efficiency of the proposed FDTD method. Finally, the scattering fields of different
scatters buried inmultilayer anisotropicmedia are studied. So it is expected to become an effective simulation
tool for dealing with complex electromagnetic environment in the future, such as abnormal detection of
aircraft coating materials and detection of hidden target and so on.

INDEX TERMS Finite difference time domain, multilayers media, anisotropic, terahertz waves.

I. INTRODUCTION
The attraction of the subject of wave interaction in planar
multilayeredmedia stems from its relevance tomany practical
applications, ranging from geophysical exploration [1]–[3]
to electromagnetic performance prediction of microwave
antennas [4]–[5], aerospace industry applications [6]–[8], and
microwave/millimeter wave integrated circuit (MMIC) wave
guides [9]–[10]. With the continuous improvement of science
and technology, the aerospace industry has constantly devel-
oped, and the performance and types of materials used are
increasing. In striving for high corrosion resistance, sufficient
stiffness and high strength-to-weight ratio, the aerospace
industry has made the wide use of various composite mate-
rials. In particular, anisotropic composites have been widely
used in civilian and defense applications for the aerospace
industry in recent years.

The associate editor coordinating the review of this manuscript and
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The research methods of multilayer materials are also
varied. Zhang Wen (2009) studied electromagnetic mod-
eling and analysis for pulsed terahertz testing of hidden
corrosion under aircraft coatings using the axisymmetrical
form of Maxwell’s equations and the finite element time
domain (FETD) method, where the dispersion properties of
the dielectrics were ignored [11]. In order to study the elec-
tromagnetic characteristics of planar multilayers of uniaxial
media, Ping-Ping Ding et al. first derived the spatial-domain
and spectral-domain dyadic Green’s functions based on
the modified fast Hankel transform (MFHT) method [12].
Yu Zhong et al. further proposed Padua point integration
method to deal with the Sommerfeld integrals related to the
dyadic Green’s function for uniaxially anisotropic multilay-
ers and studied the scattering problem of volume inhomo-
geneity in uniaxial planar layered media [13]. They used
dyadic Green’s functions in their eigen function expansion
forms to analyze the planarly layered anisotropic media,
which takes up a lot of memory because of the need for
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matrix inversion. Therefore, theMoMmethod is much slower
because of the calculation of Green’s function.

The volume differential equation method, usually imple-
mented via the finite difference time domain (FDTD), is a
popular approach for many scattering problems, such as elec-
tromagnetic wave propagation in inhomogeneous anisotropic
media. The FDTD method offers several advantages, such
as robustness and the ability to study dispersive, nonlin-
ear, or anisotropic materials. Moreover, the FDTD approach
demonstrated excellent agreement with classic Mie scat-
tering theory [14]. Since the differential equation solving
process is simpler and can be used to analyze continu-
ous electromagnetic problems, the FDTD method has been
widely used for electromagnetic scattering of inhomogeneous
bodies embedded within multi-layer media. In recent years,
some researchers have used FDTD method to study layered
media, which provides useful experience and knowledge
for the study of multi-layer anisotropic media. For exam-
ple, Schneider J. et al. derived the 3D FDTD formula for
generalized anisotropic materials and calculated the electro-
magnetic field distribution and reflection coefficient in one-
dimensional case [15]. However, it has not been applied to
the case of three-dimensional multi-layer anisotropic media.
Verdu J. B. et al. using FDTD method have studied the struc-
tures of different dielectric layers and transmission lines, but
most of them are isotropic [16]. Sarto M. S. used full FDTD
and hybrid MFIE/FDTD approaches to simulate composite
multilayer plates [17]. Numerical applications to the anal-
ysis of the field distribution inside and outside a lightning
struck aircraft are presented. But the method can not calcu-
late the electromagnetic field distribution of micro-structure.
Zhang H. et al. studied the shielding effectiveness (SE) high
performance computing (HPC) of 3D multilayer anisotropic
carbon fiber composite (CFC) thin layer [18]. Moss C.J et al.
tried to study the numerical dispersion effects for the FDTD
method in anisotropic and layered media [19], but he did
give an explicit dispersion equation and numerical stability
conditions.

Most of the abovementioned works are based on isotropic
media, monolayer media, and 1D or 2D models. To the
best of our knowledge, there are few theoretical studies on
electromagnetic wave radiation propagation in anisotropic
multilayered medium structures. In this paper, we extend
the FDTD method to analyze 3D electromagnetic propaga-
tion of terahertz waves in anisotropic multilayered medium
structures, and the electromagnetic scattering of embedded
bodies. We chose terahertz wave because it has the advan-
tages of the nonionization, the submillimeter resolution of
observation images, and the relatively transparent nature of
many materials to terahertz waves. THz inspection seems to
be a very good choice for the examination of multilayered
composites, such as detecting materials under coating lay-
ers [20]–[22] and characterizing layered polymer compos-
ites [23]–[24]. We calculate the propagation of THz waves
in a multilayered uniaxial anisotropic medium. For the whole
simulation domain, we derived a complete formulation for

uniaxial anisotropic media. The electric field induced by
the dipole source is calculated in the spatial domain and
the spectral domain electric field is obtained through the
Fourier transform. The proposed FDTDmethod could also be
used as building block of an imaging procedure for damaged
anisotropic laminates.

The main contributions of this paper are as follows:
1) We derive a generalized formulation for the entire sim-

ulation domain involving uniaxial anisotropic media
and a perfectly matched layer absorbing boundary con-
ditions.

2) We study anisotropic multilayered media and calculate
the scattering field of terahertz wave in uniaxial multi-
layered microstructures.

3) Compared with the MoM method, which must calcu-
late Green’s function in, the scattering field can be
solved directly and quickly.

4) FDTD simulations involving 3D-volumetric scatter
with comparisons to finite element method (FEM)
computations confirm the effectiveness of the approach
and provide reliable benchmarks for further studies.

II. MODEL AND METHODS
As shown in Figure 1, the plane of the layered medium is
at the plane. The sine dipole source will be set in any layer,
on the interface of layered medium, or in the uppermost
free space layer. When electromagnetic waves propagate in
a multilayered medium, they will be reflected or transmitted
wherever there is a sudden change in the refractive index or
the optical absorption coefficient of the material (caused by
either structural or chemical changes in the medium). In the
following, the multilayered medium is set as an anisotropic
medium, and the uniaxial perfectly matched layer (UPML) is
used to derive the generalized 3D-FDTD formulas for both
the uniaxial anisotropic model and the absorbing boundaries.
These generalized equations can help to simplify numerical
calculation process and significantly reduce the computa-
tional time.

The anisotropic Maxwell’s curl equation in the case of a
spectral-harmonic field is as follows.

∇ ×H = jω ε̄ · E+ J (1)

∇ × E = −jω µ̄ ·H (2)

Here H , E, J , ε̄, and µ̄ are magnetic field, electric field,
current density, permittivity and permeability, respectively.
When we simultaneously consider the anisotropic UPML and
the uniaxialmediummodels, the complex permittivity and the
permeability can be written in tensor form as follows.

ε̄ = ε0ε̄r ε̄p = ε0

 εx 0 0
0 εy 0
0 0 εz



×


sysz
sx

0 0

0
sxsz
sy

0

0 0
sysx
sz

 (3)
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FIGURE 1. Theoretical model of the multilayered structure, where the
lowermost layer is PEC.

µ̄ = µ0µ̄r µ̄p = µ0

µx 0 0
0 µy 0
0 0 µz



×


sy1sz1
sx1

0 0

0
sx1sz1
sy1

0

0 0
sy1sx1
sz1

 (4)

Here, ε0 and µ0 are permittivity and permeability of the
vacuum. ε̄r and µ̄r are relative permittivity and permeability
of the uniaxial medium model. ε̄p and µ̄p are the matching
matrices of permittivity and permeability of the anisotropic
UPML model, respectively. At the same time, the matching
relative permittivity and permeability are set as

si = 1+
σi

jωε0
(i = x, y, z) (5)

si1 = 1+
ρi

jωε0
(i = x, y, z) (6)

where σi and ρi are conductivity and reluctivity along the i-
axis, respectively.

According to the constitutive relation of electromagnetic
medium, the generalized 3D coupling equations in time
domain can be derivedwith (1) and (2). Taking the equation in
x-direction as an example, the renewal equations are derived
as

∂Hz
∂y
−
∂Hy
∂z
=
∂Dx
∂t
+
σy

ε0
Dx + Jx (7)

∂Dx
∂t
+
σx

ε0
Dx = ε0εx

∂Ex
∂t
+ εxσzEx (8)

∂Ez
∂y
−
∂Ey
∂z
= −

∂Bx
∂t
−
ρy

ε0
Bx (9)

∂Bx
∂t
+
ρx

ε0
Bx = µ0µx

∂Hx
∂t
+
µ0µx

ε0
ρzHx (10)

HereD andB are intermediate variables related to the electric
and magnetic flux density, and defined as

Dx = ε0εx
sz
sx
Ex ,Dy = ε0εy

sx
sy
Ey,Dz = ε0εz

sy
sz
Ez (11)

Bx = µ0µx
sz1
sx1

Hx ,By = µ0µy
sx1
sy1

Hy,Bz = µ0µz
sy1
sz1

Hz

(12)

Following Yee’s rules, any function of space and time is
discretized as

Fn (i, j, k) = F
(
i1x , j1y, k1z, n1t

)
(13)

where 1x , 1y and 1z are the space increments and 1t
is the time increment. To facilitate the FDTD iteration,
we stipulate flux density components D and the electric
field components EE at integer time steps, i.e., En and
Dn, H and B at half time steps, i.e., Hn+1/2 and Bn+1/2.
Then (7-10) can be discretized into iterative forms. Tak-
ing x-direction as an example, the iterative equations can
be obtained as

Dnx

(
i+

1
2
, j, k

)
=

2ε0 −1tσy

(
i+ 1

2 , j, k
)

2ε0 +1tσy

(
i+ 1

2 , j, k
) · Dn−1x

(
i+

1
2
, j, k

)

−
2ε01t

2ε0 +1tσy

(
i+ 1

2 , j, k
) · Jn− 1

2
x

(
i+

1
2
, j, k

)

+
2ε01t

2ε0 +1tσy

(
i+ 1

2 , j, k
)

·

Hn− 1
2

z

(
i+ 1

2 , j+
1
2 , k

)
− H

n− 1
2

z

(
i+ 1

2 , j−
1
2 , k

)
1y

−

H
n− 1

2
y

(
i+ 1

2 , j, k +
1
2

)
− H

n− 1
2

y

(
i+ 1

2 , j, k −
1
2

)
1z


(14)

Enx

(
i+

1
2
, j, k

)
=

2ε0 −1tσz

(
i+ 1

2 , j, k
)

2ε0 +1tσz

(
i+ 1

2 , j, k
) · En−1x

(
i+

1
2
, j, k

)

+

2ε0 +1tσx

(
i+ 1

2 , j, k
)

2ε20εx +1tε0εxσz

(
i+ 1

2 , j, k
) · Dnx (i+ 1

2
, j, k

)

−

2ε0 −1tσx

(
i+ 1

2 , j, k
)

2ε20εx +1tε0εxσz

(
i+ 1

2 , j, k
) · Dn−1x

(
i+

1
2
, j, k

)
(15)
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B
n+ 1

2
x

(
i, j+

1
2
, k +

1
2

)
=

2ε0 −1tρy

(
i, j+ 1

2 , k +
1
2

)
2ε0 +1tρy

(
i, j+ 1

2 , k +
1
2

) · Bn− 1
2

x

(
i, j+

1
2
, k +

1
2

)

−
1

2ε0 +1tρy

(
i, j+ 1

2 , k +
1
2

)
·

Enz
(
i, j+ 1, k + 1

2

)
− Enz

(
i, j, k + 1

2

)
1y

−

Eny
(
i, j+ 1

2 , k + 1
)
− Eny

(
i, j+ 1

2 , k
)

1z

 (16)

H
n+ 1

2
x

(
i, j+

1
2
, k +

1
2

)
=

2ε0 −1tρz

(
i, j+ 1

2 , k +
1
2

)
2ε0 +1tρz

(
i, j+ 1

2 , k +
1
2

) · Hn− 1
2

x

(
i, j+

1
2
, k+

1
2

)

+

2ε0 +1tρx

(
i, j+ 1

2 , k +
1
2

)
2ε0µ0µx +1tµ0µxρz

(
i, j+ 1

2 , k +
1
2

)
·B
n+ 1

2
x

(
i, j+

1
2
, k +

1
2

)

−

2ε0 −1tρx

(
i, j+ 1

2 , k +
1
2

)
2ε0µ0µx +1tµ0µxρz

(
i, j+ 1

2 , k +
1
2

)
·B
n− 1

2
x

(
i, j+

1
2
, k +

1
2

)
(17)

Other y and z component formulae can be derived via a
similar procedure as shown in the Appendix. Then, the time
update progression sequence is expressed as Hn−1/2

→

Dn→ En→ Bn+1/2→ Hn+1/2.
In this paper, the UPML absorbing boundaries are chosen

to mimic the unbounded space. Considering the anisotropic
characteristics of the uniaxial multi-layer structures, four
layers of UPML are utilized to maximally absorbing the
out-going waves. To simply the settings, the ideal conductor
is put as the outermost truncation boundary of PML. For each
layer, the conductivity σi and reluctivity ρi of each axis are
non-uniform stratification. Take the interface perpendicular
to x-axis as an example, the transverse conductivities σy =
σz = 0 and σx is only related to x as [25]

σx (x) =
σmax |x − x0|m

dm
(18)

where d is the total thickness of PML layer, x0 is the interface
position of PML layer near FDTD area.m is the layer number,
and is valued asm = 4 in this paper. The conductivity reaches
maximum at the outermost layer, and the best value is chose
as

σmax = (m+ 1)/
(
150π1x

√
εmin

)
(19)

where1x is space step along x-axis. As can be seen from (19),
the value of σmax will be different for each layer of the

multilayer medium. Parameters of PML layer alone y-axis
and z-axis can be set similarly.

III. NUMERICAL DISPERSION RELATION FOR
ANISOTROPIC UNIAXIAL MEDIA
We consider a time harmonic form V n(i, j, k) =

Vej0(ikx1x+jky1y+kkz1z−nω1t) for each component of electro-
magnetic field. Here j0 is the imaginary unit, and (kx , ky, kz)
are the three components of the incident wave vector, and
ω is the angular frequency of the incident electromagnetic.
By applying this form to (7-10), we obtain the following eigen
matrix.

1 =

 C1 ∂̃x ∂̂y ∂̃x ∂̂z

∂̃y∂̂x C2 ∂̃y∂̂z

∂̃z∂̂x ∂̃z∂̂y C3

 (20)

Here ∂̃ denotes the forward difference operator and ∂̂ denotes
the backward difference operator, whose expressions were
given in Ref. [24]. After setting the determinant of the matrix
in (20) to zero, we can get the eigenvalue equation. For an
anisotropic uniaxial media with low conductivity, the alge-
braic equation is

−µ2εzε
2
xλ

4
+ µ {(εx + εz) εx [X + Y ]+ 2εxεzZ } λ2

−εx

[
Y 2
+X2

]
− εzZ2

− (εx + εz)Z [X + Y ]− 2ε2xY = 0

(21)

Here,

X =
sin2

(
kx
1x
2

)
(
1x
2

)2 ,Y =
sin2

(
ky
1y
2

)
(
1y
)2 ,Z =

sin2
(
kz
1z
2

)
(
1z
2

)2
(22)

The solution of (21) is

λ2 = −
X + Y + Z

µεx
(23)

λ2 = −
εx (X + Y )+ εzZ

µεxεz
(24)

In order to satisfy the stability condition for all possible kx , ky,
kz the time dispersion must satisfy the following conditions

1t ≤
1

√
µmax (εx , εz)

√
1

(1x )
2 +

1
(1y)

2 +
1

(1z)
2

(25)

In the following numerical simulation, the discrete step
size of time and space needs to satisfy (25) for each layer.

IV. NUMERICAL EXAMPLES
A. LOSSLESS ANISOTROPIC UNIAXIAL MEDIA
We use the above generalized equations to calculate the
scattered field of scatters buried in the three-dimensional
planar uniaxial anisotropic multilayer, where the lowermost
layer is PEC. Perfect multilayered materials and defective
multilayered materials are within our consideration. The cal-
culation results of the first two examples are compared with
the outcome obtained by COMSOL (a software based on the
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FIGURE 2. Geometry of the perfect two-layer uniaxial anisotropic
structure.

finite element method) to verify the accuracy of the numer-
ical results. The latter two examples are used to study the
complex scattering fields of more complex scatters buried
in multilayered anisotropic media. These results will help to
detect abnormal damage in aircraft coating structure. In the
following numerical examples, the operating frequency is
0.3 THz.

Composite material is any new material that is optimized
by advanced material preparation technology. The purpose
of composite preparation is to meet the needs of certain
functions. Therefore, it is meaningful to study the distribu-
tion of the internal field of composite materials with spe-
cific sources. The first example is a two-layer geometric
structure, as shown in Figure 2. With Ī as the identity
tensor, the permittivity of layer 1 is ε̄1 = ε0Ī . Along
the principal axes, the permittivity of layer 2 is ε̄2 =
diag [2.1, 2.1, 4.2] ε0. A sine wave dipole source is set for
Jx at point P(4 mm, 0.5 mm, 0.2 mm) inside layer 1,
as shown in Figure 2. Line1 (y = 0.5 mm , z = 0.1 mm) is
chosen as the monitoring line. Here, according to the stability
condition, we get a space interval of 5 nm and a time interval
of 8.3333× 10−14s.
The above FDTD method is used for numerical simulation

and the UPML is used to absorb outward electromagnetic
waves without reflection, so that the infinite propagation
space can be truncated into a limited area for numerical sim-
ulation. For the simulation domain, the transverse dimension
in XY plane is 8.0 mm × 1.0 mm. The thickness of the first
layer along the z-direction is 1 mm, and the thickness of
the second layer is 0.7 mm. Thus, the computational domain
is discretized into 180× 40× 44 mesh grids. Figure 3 shows
the magnitude of the electric field Ex and Ez along line 1.
The results show that the error between our FDTD method
and the COMSOL software is less than 0.2 dB, which shows
that the results are in good agreement and proves the validity
of the method. We used the same PC machine with main
frequency of 3.2 GHz. Our FDTD method FDTD method
takes 6 minutes, while COMSOL software takes 12 minutes,
thus demonstrating the efficiency of our FDTD method.

The multilayer structure is often used in engineering such
as aircraft coatings and radomes. Although themanufacturing
technology of composite materials has been greatly improved
with the progress of science and technology, there is still some
unavoidable faultiness in the preparation and use of compos-
ite materials. For example, other characteristic inclusions are
mixed during the material manufacturing process, air bubbles
exist in the material, and cracks or peeling problems occur in

FIGURE 3. Electric fields along line 1.

FIGURE 4. Geometry of the four-layer uniaxial anisotropic structure with
an air inclusion scatter.

the material. In the following examples, we try to calculate
the scattering fields due to some scatters of different shapes
in multilayer structures.

In the following three examples shown in Figure 4, 6 and 8,
the basic structure and parameters of the multilayered mate-
rial are the same as a four-layer uniaxial anisotropic struc-
ture where the uppermost layer is taken to be free space,
while the lowermost layer is PEC. With Ī as the iden-
tity tensor, the permittivity of layer 1 is ε̄1 = ε0 Ī .
The second to fourth layers are uniaxial anisotropic media.
Along their principal axes, the permittivity are ε̄2 =

diag [2.1, 2.1, 4.2] ε0, ε̄3 = diag [9.8, 9.8, 19.6] ε0, and
ε̄4 = diag [8.6, 8.6, 17.2] ε0, respectively. The thicknesses
along the z-direction are 1.0 mm, 0.7 mm, 0.55 mm and
0.3 mm, respectively. A sine wave dipole source is set for
Jx at point P ( 4 mm, 0.5 mm, 0.2 mm ) inside the free space
layer (layer 1).

In these simulation, ‘‘case 1’’ represents the scattering
field when only anisotropic materials exist (total scattering
field generated by ‘‘media’’ minus incident scattering field
generated by ‘‘air’’), ‘‘case 2’’ represents the scattering field
when there are anisotropic materials and scatters (total scat-
tering field generated by ‘‘media + scatter’’ minus incident
scattering field generated by ‘‘air’’), and ‘‘case 3’’ represents
the scattering field generated by the scatter (scattering field
generated by ‘‘media + scatter’’ minus scattering field gen-
erated by ‘‘media’’).

VOLUME 7, 2019 185945
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FIGURE 5. Scattered electric fields Ex and Ez along line1.

The first example as shown in Figure 4 involves a paral-
lelepiped air inclusion (its permittivity is ε̄s = ε0 Ī , and it
size is 4× 4× 4 mesh) embedded in the second layer, which
is also a type of normal defect in composite materials. Its
upper surface is located at z = −0.1 mm and its horizontal
position is in the middle. The lateral dimension of simulation
area in Figure 4 is x × y = 16.0 mm × 2.0 mm. The whole
computational domain is discrete into 340 × 60 × 60 mesh
grids.

Figure 5 shows the x-component and z-component of the
scattered electric field along Line1 ( z = 0.1 mm ). It is evi-
dent from the resultant plots that the spectral-domain electric
fields obtained by this example agree very well with the
multi-physics COMSOL software based on the finite element
method. We used the same 3.2-GHz PC to run this numeri-
cal experiment. Compared with the computational time and
memory occupied by COMSOL software, the FDTD method
calculates the scattering field of uniaxial planar layeredmedia
in a shorter time and occupies less memory. In terms of
computational time, using COMSOL software to calculate
case 1, case 2 and case 3 takes 185 minutes, 191 minutes
and 312 minutes respectively, while FDTD method takes

FIGURE 6. Geometry of the four-layer uniaxial anisotropic structure with
one right-angle crack.

FIGURE 7. Scattered electric fields Ex and Ez along line1.

65 minutes, 64 minutes and 63 minutes respectively. In terms
of memory occupied, FDTD method occupies 1.42 GB, but
COMSOL method has reached 109.6 GB. So this FDTD
method is suitable for complex scattering problems.

The second example as shown in Figure 6 involves a
right-angled crack with only one grid width on the surface
of the second layer. The size parallel to x-axis is 0.3 mm ×
0.05 mm × 0.1 mm, and the other size parallel to y-axis is
0.05 mm × 0.3 mm × 0.1 mm. The crack is filled with air
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FIGURE 8. Geometry of the four-layer uniaxial anisotropic structure with
two scatters.

FIGURE 9. Scattered electric fields Ex and Ez along line1.

(ε̄crack = ε0Ī ), and its upper surface is at z = 0. In this
example, the source is at (x/2, y/2, 0). The monitoring line
is at Line1 (z = 0.1 mm). Figure 7 shows the magnitude of
the scattered electric field Ex and Ez as a function of the
horizontal distance from the source alone line 1.

The third example as shown in Figure 8 involves two par-
allel hexahedron scatters embedded in the second layer. One
is an air inclusion of size 0.2 mm×0.2 mm×0.1 mm, where
the upper surface of the air inclusion is located at the interface
of the first layer and the second layer, and its permittivity
is ε̄s1 = ε0Ī . The other one is a cubic uniaxial medium

FIGURE 10. Distribution of the scattered time-domain electric field Ex in
the XY plane at z = 0.1 mm.

inclusionwith side length of 0.2mm and permittivity of ε̄s2 =
diag [1, 1, 2] ε0. Its upper surface is located at z = - 0.1mm.
The horizontal distance between the two scatters in the x-
direction is 0.25 mm. The monitoring line is at Line1 ( z =
0.1 mm ). The source location in this example is the same as
above. Figure 9 shows the magnitude of the scattered electric
field Ex and Ez as a function of the horizontal distance from
the source.

The distribution of the scattered field in the time domain
directly indicates the wave propagation in the complicated
anisotropic media, including the global reflection and global
transmission in the multilayered structure. Figure 10 shows
the time-domain electric fields in the xy plane at the time
step 163 and 188, respectively. The position at z direction is
z = 0.1 mm. It can be seen that the scattered field is strongly
influenced by two scatters which are very close to each other.
The influenced scattered field due to the left scatter is much
smaller than that due to the right scatter. These phenomena
are consistent with the actual geometry structure.
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FIGURE 11. Distribution of the scattered time-domain electric field Ex in
the XZ plane at y = 0.9 mm.

FIGURE 12. Scattered electric fields Ex and Ez along line1 in Figure 8.

Figure 11 shows the scattered time-domain field in the xz
plane at y = 0.9 mm. The two subfigures at different time
steps obviously demonstrate the complicated wave propa-
gation in the multilayered structure. The global reflections
and transmissions can be seen and numerically recorded in
a straight way by our method.

B. LOSSY ANISOTROPIC UNIAXIAL MEDIA
The algorithm is extended and tested on a lossy anisotropic
uniaxial media problem. Because of the global character
of the algorithm, it is very simple to expand from lossless
medium to lossy medium. To test its applicability, the prop-
agation of scattering field generated by dipole source in
anisotropic uniaxial mediumwith low conductivity is studied.
In this example, we use the same model as Figure 8 to
calculate the scattering field, except that the parameters of
each layer are different. And the operating frequency is
also 0.3 THz. Layer 1 of the computational domain is air.
The second to fourth layers are low loss uniaxial anisotropic
media. Along their principal axes, the permittivity are ε̄2 =
diag [2.1, 2.1, 4.2] ε0, ε̄3 = diag [9.8, 9.8, 19.6] ε0, and

ε̄4 = diag [8.6, 8.6, 17.2] ε0. The conductivity are σ̄ 2 =

0.0001 × diag [1, 1, 2], σ̄ 3 = 0.0001 × diag [2, 2, 4] and
σ̄ 4 = 0.0001× diag [2.5, 2.5, 5]. The source location in this
example is the same as above. Figure 12 shows the magnitude
of the scattered electric fields Ex and Ez as a function of the
horizontal distance from the source. It can be seen from the
result chart that our method can also get better results under
the condition of low loss and conductivity.

V. CONCLUSION
In this paper, scattering by microstructural volumetric inho-
mogeneity in uniaxial planar multilayered media with optical
axes perpendicular to the layer interface was calculated. The
FDTD method is utilized, and the generalized formulations
are derived with a uniaxial perfectly matched layer. The
stability condition is given to restrict the time and spatial steps
for updating the recursive equations. A Fourier transform
is used to derive the scattered field value in the frequency
domain. Based on the FDTD method, fast scattering solu-
tions are obtained for the multilayered uniaxial anisotropic
media. Numerical simulations involving uniaxial multilay-
ered media, when compared to results provided by COM-
SOL software based on the finite element method, show that
the three-dimensional finite difference method can produce
accurate results in an efficient fashion. Moreover, the global
reflections and transmissions can be seen and numerically
recorded in a straight way by this method, which can be used
as a reliable benchmark for further research.

APPENDIX
The FDTD difference formula in y-direction is derived as

Dny

(
i, j+

1
2
, k
)
=

2ε0 −1tσz

(
i, j+ 1

2 , k
)

2ε0 +1tσz

(
i, j+ 1

2 , k
) · Dn−1y

(
i, j+

1
2
, k
)

−
2ε01t

2ε0 +1tσz

(
i, j+ 1

2 , k
) · Jn− 1

2
y

(
i, j+

1
2
, k
)

+
2ε01t

2ε0 +1tσz

(
i, j+ 1

2 , k
)

·

Hn− 1
2

x

(
i, j+ 1

2 , k +
1
2

)
− H

n− 1
2

x

(
i, j+ 1

2 , k −
1
2

)
1z

−

H
n− 1

2
z

(
i+ 1

2 , j+
1
2 , k

)
− H

n− 1
2

z

(
i− 1

2 , j+
1
2 , k

)
1x


(A1)

Eny

(
i, j+

1
2
, k
)
=

2ε0 −1tσx

(
i, j+ 1

2 , k
)

2ε0 +1tσx

(
i, j+ 1

2 , k
) · En−1y

(
i, j+

1
2
, k
)

185948 VOLUME 7, 2019



H. Hu et al.: Fast Calculation of Scattering in Planar Uniaxial Anisotropic Multilayers

+

2ε0 +1tσy

(
i, j+ 1

2 , k
)

2ε20εy +1tε0εyσx

(
i, j+ 1

2 , k
) · Dny (i, j+ 1

2
, k
)

−

2ε0 −1tσy

(
i, j+ 1

2 , k
)

2ε20εy +1tε0εyσx

(
i, j+ 1

2 , k
) · Dn−1y

(
i, j+

1
2
, k
)
(A2)

B
n+ 1

2
y

(
i+

1
2
, j, k +

1
2

)
=

2ε0 −1tρz

(
i+ 1

2 , j, k +
1
2

)
2ε0 +1tρz

(
i+ 1

2 , j, k +
1
2

) · Bn− 1
2

y

(
i+

1
2
, j, k +

1
2

)

−
1

2ε0 +1tρz

(
i+ 1

2 , j, k +
1
2

)
·

Enx
(
i+ 1

2 , j, k + 1
)
− Enx

(
i+ 1

2 , j, k
)

1z

−

Enz
(
i+ 1, j, k + 1

2

)
− Enz

(
i, j, k + 1

2

)
1x

 (A3)

H
n+ 1

2
y

(
i+

1
2
, j, k +

1
2

)
=

2ε0 −1tρx

(
i+ 1

2 , j, k +
1
2

)
2ε0 +1tρx

(
i+ 1

2 , j, k +
1
2

) · Hn− 1
2

y

(
i+

1
2
, j, k+

1
2

)

+

2ε0 +1tρy

(
i+ 1

2 , j, k +
1
2

)
2ε0µ0µy +1tµ0µyρx

(
i+ 1

2 , j, k +
1
2

)
·B
n+ 1

2
y

(
i+

1
2
, j, k +

1
2

)

−

2ε0 −1tρy

(
i+ 1

2 , j, k +
1
2

)
2ε0µ0µy +1tµ0µyρx

(
i+ 1

2 , j, k +
1
2

)
·B
n− 1

2
y

(
i+

1
2
, j, k +

1
2

)
(A4)

The FDTD difference formula in z-direction is derived as
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