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ABSTRACT In a large-scale national forest recreation park, it is difficult for park managers to maintain
facilities and provide timely or emergency services to visitors in need (e.g., elderly adults, children,
or lost visitors without communication devices). To implement smart tourism services, park managers have
introduced the Internet of things (IoT) to their parks, which has enabled the provision of diversified intelligent
information services. However, most of the previous studies focused on 2D deployment of the IoT system to
cover all targets, ignoring actual 3D topographic differences; their objectives rarely included the effectiveness
of services generated from introducing the IoT; they assumed targets to be equally crucial, regardless of
differences in tourism attractiveness (e.g., tourist attractions, view trails, and recreation facilities). Therefore,
this study investigates 3D deployment of an IoT system to cover targets with different scores based on
tourism attractiveness in a forest recreation park with optimal management service benefits, represented
as a weighted sum of service quality index (SQI) and managerial setting attributes index (MSAI), so that
the system collects the data from visitors equipped with wearable devices, and applies it to tasks such as
physiological detection and positioning. This problem belongs to deployment and coverage problems, which
have been shown to be NP-hard, and thus is also NP-hard. Therefore, this study further solves this problem
by improved simulated annealing (ISA), including three neighborhood searching operators and the dynamic
probability adjustment scheme. Experimental results under various parameter settings indicate that ISA has
an excellent optimization ability.

INDEX TERMS Smart tourism service, Internet of Things, simulated annealing, three-dimensional
deployment, national forest recreation park.

I. INTRODUCTION
The travel and tourism industries have been flourishing in
recent years, and the technological cooperation between
tourism and information technology (IT) has also matured.
In smart tourism services, IT such as Internet of things
(IoT) [1], radio frequency identification (RFID), wireless sen-
sor networks (WSNs), and near-field communication (NFC)
has been used to provide tourists with accurate travel
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information and rich travel experiences [2], [3]. For example,
tourists may download a recreation park’s app and book time
slots for their rides or facilities. This can shorten visitors’
waiting time spent in queues as well as improve facilities’
overall usage rate and visitors’ satisfaction.

Visitors enjoy local art and culture, festivities and activ-
ities, and nature and ecosystems. Nature-based tourism [4]
is a rapidly growing sector of the tourism industry. The main
goals of visitors are to experience the natural environment and
feel natural phenomena such as topographic, hydrographic,
and forest landscapes. Tourists have increasingly been
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FIGURE 1. (a) Illustration of 3D deployment of an IoT system in a forest recreation park. (b) The park is projected to a 2D grid with a 3D underling space.
(c) Target nodes, including crucial facility nodes. (d) Candidate nodes which can be deployed with sink nodes. (e) A solution with deployment of four
sink nodes.

escaping from the city and travelling to the countryside
to walk and relax both physically and psychologically.
Forest recreation parks have natural landscape ecologies; they
enable visitors to experience the natural environment and
engage in leisure, sports, and entertainment activities, which
have led to a gradual increase in the number of visitors to
forest recreation parks. However, forest recreation parks have
a large scope and can be difficult to manage, and thus fail to
satisfy visitors’ needs in a timely manner. For example, such
parks cannot provide timely services to (1) elderly adults,
children, or visitors who become separated from their group
and do not have a communication device, (2) emergency
services to visitors who suddenly become ill, and (3) prompt
cleaning services to dirty facilities. Therefore, forest park
managers have sought to transform their business models into
recreation parks characterized y smart tourism, to increase
visitors’ satisfaction and their willingness to revisit.

To implement smart tourism services, forest parkmanagers
have introduced IoT systems to their parks. Specifically, they
deployed wired or wireless sink nodes (which are the devices
to which the data collected is sent) to cover various types of
targets (e.g., tourist attractions, viewing trails, and recreation
facilities) in their parks. Visitors were equipped with wear-
able devices (e.g., wristbands, medical bands, smartwatches,
smart glasses, and so on), or carried smartphones or other
smart devices; facilities in parks were equipped with sensor
devices. The data (e.g., location, heartbeat, blood pressure,
sleep quality, usage frequency, and user survey) of visitors
and facilities collected by sink nodes through the IoT system
was sent to the cloud center of the system for operational
analysis to provide various smart services and applications,
and was applied immediately to provide timely diversified

services (e.g., timely search and rescue, warning reminder,
sedentary reminder, interactive environmental explanation,
interactive recreation games, human-computer interaction
with facilities, social media check-ins, and augmented-reality
image/video) to increase visitors’ satisfaction and their will-
ingness to revisit (Figure 1(a)). The IoT has a wide range
of applications and can achieve the benefits of immediate
response, information integration, and proactive services.
Introducing the IoT to travel destinations can enable the
future sustainable growth of tourist attractions; additionally,
integrating visitor interactions and environmental facilities
can enhance the quality of travel experiences in destina-
tions (Gretzel et al., 2015).

Most related studies had the following four features.
Firstly, most studies focused on deployment of the IoT sys-
tem that optimizes various objectives such as the number of
deployments, coverage of targets, system survival lifetime,
and energy consumption [5]. Secondly, most studies inves-
tigated deployment of IoT systems in 2D spaces, regardless
of actual 3D topographic differences. Consequently, even
though the deployment results had optimized a certain objec-
tive on a 2D plane, they might not be implemented in real
3D environments. For instance, a region covered by a sink
node on a 2D plane may not be covered by this sink node
according to actual 3D topographic differences. Thirdly, most
studies assumed all targets to be equally crucial. That is, they
did not assign different scores to various targets according
to the usage frequency of these targets. Consequently, when
deploying a limited number of sink nodes in a forest recre-
ation park, some crucial tourist attraction targets may not be
covered. Therefore, the importance of the characteristics of
each target should be identified by users, and scores should be
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set according to the information of targets, thereby increasing
the precision of sink-node deployment [6]. Fourthly, most
studies rarely investigated the service level index [7]. This
index evaluates the service quality of IoT deployment sys-
tems; furthermore, it examines whether the range covered by
the IoT deployment was the regions that park managers wish
to manage, thereby enhancing service quality. Additionally,
to meet park managers’ expectations, adjustments were
made to parameters related to the service level index, such as
the number of sink nodes, distance between them, and scores
of landscapes.

In light of the above, this study investigates 3D deployment
of an IoT system in a forest recreation park with optimal
management service benefits, so that the system can col-
lect the data from visitors equipped with wearable devices,
and apply it to tasks such as physiological detection and
positioning. First, this study represents a 3D national forest
recreation park as a 2D grid (Figure 1(b)), in which each grid
point is assigned with a score according to visitor flows and
tourism attractiveness (e.g., tourist attractions, viewing trails,
and recreation facilities). Those grid points with non-zero
score are target nodes; furthermore, some of the target nodes
are crucial facility nodes emphasized by the park managers
(Figure 1(c)), so that the deployment result will be influenced
by the park managers according to their management service
benefits. Then, according to 3D topographies and actual facil-
ities in the park, a part of the grid points are the candidate
nodes that could be placed by sink nodes (Figure 1(d)).

The problem concerned in this study is to find the candidate
nodes that are deployed with sink nodes, so as to optimize
a weighted sum of the following two management service
indices proposed in this study: service quality index (SQI) and
managerial setting attributes index (MSAI), which are used
to evaluate the total score of the covered area and the crucial
facilities (e.g., toilets, trails, and specific tourist attractions),
respectively. With the two indices, the park managers could
provide timely facility maintenance services through the IoT
system, further improving visitors’ satisfaction. Furthermore,
this study considers the collision problem between multi-
ple sink nodes and IoT tags attached to visitors [8], [9].
Specifically, the collision problem refers to a signal interfer-
ence caused by overly short distances between sink nodes.
When a tag is located in the identification zone of two sink
nodes simultaneously, the IoT tag is read by multiple sink
nodes, resulting in imprecise positioning of the label. To pre-
vent the collision problem, the distance between sink nodes
cannot be set to be less than a specified minimum distance.

This study first models the concerned problem as a binary
integer programming model, which is NP-hard. Additionally,
relevant studies have showed deployment and coverage prob-
lems to be NP-hard (e.g., [10], [11]), and thus the concerned
problem is also NP-hard. Therefore, this study solves the con-
cerned problem by the improved simulated annealing (ISA)
algorithm, which employs three neighborhood searching
operators to increase the diversity of searching neighbor-
hoods, and dynamically adjusts the probabilities of selecting

one of the three operators in each iteration through a dynamic
selection probability adjustment scheme. The main contribu-
tions of this study were as follows:

• Different from most studies that deployed IoT systems
in 2D spaces, this study solves the problem of deploying
an IoT system after 3D topographic differences and
tourist attractions are considered.

• Different from most studies that assume all targets
to be equally crucial, the problem model assigns dif-
ferent scores to tourist attractions according to their
tourism attractiveness and crucial facilities. Moreover,
topographic limitations, coverage problem, and collision
problem are considered.

• This study proposes the SQI and MSAI, thereby achiev-
ing the optimal sink-node coverage of regions with
visitor flows. Moreover, it considers crucial facilities
emphasized by park managers and helps managers to
select optimal deployment positions.

The remainder of this study is organized as follows.
Section 2 presents a literature review on deployment prob-
lems and the factors affecting the attractiveness of forest
recreation parks. Section 3 describes the overall framework of
the concerned IoT system deployed in forest recreation parks,
describes the concerned problem, and creates a mathematical
programming model for the problem. Section 4 presents the
proposed ISA algorithm in detail. Section 5 presents imple-
mentation of the proposed ISA and conducts experimental
analysis. Finally, Section 6 presents the conclusions with
future works.

II. LITERATURE REVIEW
It is of importance to investigate how to deploy sink nodes in
the perception layer of an IoT system. Effective deployment
can reduce costs and increase the quality of perceptions in the
system. This section reviews deployment problems of sink
nodes that optimize various objectives, 3D deployment prob-
lems, and the previous studies on analyzing factors affecting
the attractiveness of forest recreation parks.

A. DEPLOYMENT PROBLEMS OPTIMIZING VARIOUS
OBJECTIVES
Rebai et al. [12] investigated how to deploy the minimum
number of wireless sensors to cover the concerned geograph-
ical region, under the constraint with connectivity between
sensors. Khoufi et al. [13] not only considered the constraints
of the coverage range and connectivity, but also emphasized
the importance of energy consumption. Specifically, they first
deployed sensor nodes and receivers, and then scheduled the
activities of sensor nodes. Sengupta et al. [5] investigated
a multi-objective problem that considers the tradeoff among
maximization of the covered range, maximization of network
lifetime, and minimization of energy consumption. Similarly,
Maheshwari and Chand [14] investigated the multi-objective
problem that considers maximization of covered range,
maximization of network lifetime, and minimization of the
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number of sensors. Farsi et al. [15] integrated the prob-
lems of maximizing the network lifetime, the covered range,
and connectivity of WSNs; additionally, they compared the
advantages and disadvantages of different WSNs.

Mini et al. [16] solved WSN deployment problems that
considers optimization of different types of target coverage
(i.e., simple cover, k-cover, and Q-cover); moreover, they
used the artificial bee colony (ABC) algorithm to identify
optimal deployments in 3D topographies. Mini et al. [17]
investigated a bi-objective problem of deploying WSNs, and
used the ABC algorithm to first deploy sensors with weights
based on sensor battery power, and then to plan a schedule of
switching on/off sensors, to achieve the maximum network
lifetime. Sitanayah [18] measured the importance of sensor
nodes on transmission efficiency, and then deployed theWSN
according to the ranking of importance, increasing the stabil-
ity of the WSN.

Tsai et al. [7] investigated the optimal deployment of RFID
readers with the objective of maximizing the coverage rate
and minimizing the weight of the collision chance of readers;
additionally, they evaluated the quality of service (QoS) of
the SQI of the system [19].

B. THREE-DIMENSIONAL DEPLOYMENT PROBLEMS
Hervert-Escobar et al. [20] considered the interference of
obstacles in 3D warehouses, achieving coverage of all tar-
get objects using the minimum number of RFID readers.
Lin et al. [21] proposed an IoT simulation model based on
Zigbee, and discussed the effect of various topographies,
data loadings, and node velocities on the performance of
WSNs in 3D spaces. They consulted the aforementioned
research on 3D deployments, and employed them as their
deployment method. Cao et al. [22] deployed WSNs in 3D
industrial spaces considering optimization of the covered
range and the WSN lifetime. Naveen et al. [23] deployed a
WSN in a 3D virtual grid with the objective of prolonging
the WSN lifetime. Qasim et al. [24] used ant colony opti-
mization (ACO) to deploy a WSN in a 3D grid with the
objective of minimizing cost. Mnasri et al. [25] used a multi-
objective optimization algorithm based on dominance and
decomposition (MOEA/DD) to solve problems regarding the
deployment of WSNs in indoor 3D virtual spaces.

C. ANALYZING FACTORS AFFECTING THE
ATTRACTIVENESS OF FOREST RECREATION PARKS
To reflect the real situation, this study considers that tourist
attractions have different importance, based on which the
optimal deployment of sink nodes in the park is determined.
Table 1 indicates the categorization of factors affecting the
tourism attractiveness of forest recreation parks in the previ-
ous studies. Deng et al. [26] and Lee et al. [27] conducted
hierarchical structural analysis [28] on factors affecting
the tourism attractiveness of forest recreation parks [29].
Wang et al. [30] extracted keywords from Internet platforms,
and investigated factors affecting the attractiveness of each
location and landscape in forest recreation parks through

TABLE 1. Factors affecting the attractiveness of forest recreation parks in
the previous studies.

semi-open questionnaires. Similarly, Markowski et al. [31]
organized 30 factors affecting the tourism attractiveness of
Vietnamese national parks.

D. DISCUSSION
Most studies on deploying the IoT (orWSN, or RFID readers)
have focused the following objectives: the system deploy-
ment cost, coverage maximization, hardware system lifetime,
and energy consumption. However, the effectiveness of ser-
vices generated by the introduction of the IoT to forest recre-
ation parks has rarely been discussed. Studies have mostly
deployed the IoT in 2D spaces and ignored actual topographic
differences. Forest recreation parks must be deployed in 3D
spaces to better conform to reality. The previous studies
on coverage maximization have assumed all objectives to
be equally crucial, and thus failed to consider differences
in tourism attractiveness. Consequently, some crucial tourist
attractions may not be covered when considering deploying a
limited number of sink nodes in forest recreation parks.

The problem model in this study considers the following
features:
• This model considers 3D topographic differences and
limitations to deploy sink nodes in 3D spaces.

• This model assigns different scores to different facilities
in the park according to tourism attractiveness and cru-
cial facilities.

• This model considers the interference problem caused
by signal collisions between sink nodes.

• This model proposes the SQI and MSAI based
on tourists’ preferences and managers’ managerial
decisions.

III. PROBLEM DESCRIPTION
This section first gives the overall framework of the IoT
system deployed in forest recreation parks, then describes the
problem setting, and then creates a mathematical program-
ming model for this problem.

A. SYSTEM FRAMEWORK
This study considers deploying an IoT system in a forest
recreation park. The IoT system is separated into the follow-
ing three layers: (1) Perception layer: This layer includes two
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types of devices: wearable device and sink node. Each visitor
to the park is asked to be equipped with a wearable device,
which is a sensor or a smart device. Sink nodes are deployed
in the park, and are used to collect data fromwearable devices
on visitors. Each sink node has a wireless coverage, and
it gathers data collected by the wearable devices within its
coverage. (2) Network layer: This layer receives data col-
lected in the perception layer, and sends it to the application
layer. (3) Application layer: This layer conducts data integra-
tion and analysis, and applies the results to the forest recre-
ation park. This study considers the following applications in
forest recreation parks:
• Landscape interactions: Tourist attractions can be inte-
grated with their local music, arts, and the Internet.
Additionally, human-computer interaction (HCI)
devices can be set up to interact with visitors, so that
greater exchanges and memorable travel experiences
can be created when visitors are interacting with tourist
attractions. Moreover, this achieves the effect of market-
ing and may attract new visitors.

• Physiological detection: Most visitors travel to forest
recreation parks in the hope of obtaining health benefits.
Therefore, through wearable devices, visitors can check
their own physiological data, including heartrate, blood
pressure, blood oxygen, step count, calories consumed,
and a reminder when individuals sit for a long time.

• Positioning: If visitors encounter an emergency
(e.g., elderly adults or children getting lost) and do not
have communication devices, it is difficult to search for
them in a short time because the forest park area is large.
Alternatively, when emergency services are required for
visitors who suddenly become ill, they can be tracked
and helped through positioning.

• Game mechanism: Forest landscapes have seasonal
changes, and forest park managers may propose
thematic activities accordingly. Specifically, park
managers may hold point collection activities using
trails or landscapes. This can be indirectly used to
recommend suitable travel itineraries for a particu-
lar season to visitors and enable them to experience
diverse travel itineraries. Augmented reality (AR) [32]
is the synchronous display of virtual 3D objects and
the actual environment through mobile devices, such
as smartphones or tablets. If AR stations were set up
in less popular tourist attractions, visitors would be
encouraged to complete tasks and visit more tourist
attractions; this can be achieved through enabling
integration and interactions between virtual objects
and attractions in reality. In addition to providing the
aforementioned IoT applications, park managers could
obtain visitor data from wearable devices and feedback
from the aforementioned applications; for example, the
walking route of visitors, highly crowded regions, and
rarely visited tourist attractions. Management policy
can be adjusted based on valuable information obtained
through IT [33], [34].

Sink nodes could be wired or wireless. In practice, a forest
recreation park generally provides wired roadside lights to
visitors in the neighborhood of both target nodes and crucial
facility nodes. Therefore, this study assumes that sink nodes
are connected with roadside lights by wires, and hence their
power is supported by the same energy source with the road-
side lights. Note that if recharging sink nodes is concerned,
it requires the cost of acquiring recharging facilities and the
cost of maintaining these facilities. In the future, it would
be of interest to investigate the recharging management of
sink nodes, or the sink nodes equipped with the function of
harvesting renewable energy.

B. PROBLEM SETTING AND DESCRIPTION
At the park entrances, the park staff distribute a wearable
device to each visitor. Suppose that wearable devices have
uniform specifications; and there are no interferences from
system malfunctions or environmental factors (metal and
water). The problem concerned in this study is concerned
about determining a 3D deployment of an IoT system
(i.e., determining positions of a number of sink nodes) to
cover targets with different scores based on tourism attrac-
tiveness and crucial facilities emphasized by park managers
in a forest recreation park, to collect tourist information and
further to provide diversified IoT applications.

Consider a forest recreation park in a 3D space
(Figure 1(a)), in which tourist attractions are mostly flat
regions. This study first maps this 3D park to a 2D map
represented as a grid (Figure 1(b)) with H × W grid points.
Then, according to the information on the visitor flow of each
place as well as locations of tourist attractions in the park,
the park managers set a subset of these grid points as target
nodes (Figure 1(c)), and they assign each target node a score
to reflect the degree of importance, tourism attractiveness,
and crucial facilities. For example, in Figure 1(c), both blue
and red nodes on the map represent target nodes, and red
target nodes further represent crucial facilities (e.g., toilets
and specific tourist attractions), which are emphasized by
park managers. Note that the grid points on the right side
of the map are not target nodes, because visitors cannot enter
these grid points. Additionally, the number attached to each
target node is its score decided by the park managers. Also
note that some target nodes for crucial facilities (i.e., red
target nodes in Figure 1(c)) may not be assigned a high
score by park managers, because park managers might see
the potential for development in currently unpopular tourist
attractions or focusing on regions that will be developed.

To deploy an IoT system (i.e., to place sink nodes to
cover target nodes) in the park, this study selects a subset
of grid points in the map grid as the candidate nodes in
which sink nodes could be placed according to the condition
that the actual topographies of 3D spaces cannot be seen
in 2D grid nodes, such as steep slopes and cliff surroundings
(Figure 1(d)). In addition, grid points with limited places
cannot serve as candidate nodes, e.g., those in the middle of
entrances and trails.
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With the above problem setting, the problem in this study
is to deploy a number of sink nodes (each of which has
a wireless coverage range, which can be regarded as a 3D
sphere in the 3D park space) on candidate nodes to cover
target nodes, with the objective of maximizing managerial
service benefits, consisting of service quality index (SQI) and
managerial setting attributes index (MSAI) in terms of the
scores of target nodes (Figure 1(e)), subject to the following
constraints:
• Constraint of the maximal score sum of the target nodes
covered by each sink node: Because a target node with a
higher score needs to serve more visitors (i.e., to collect
more visitor information), this constraint is added to
prevent one single sink node from receiving excessive
information, which could overload the system.

• Constraint of collision avoidance between sink nodes
(or the distance constraint between sink nodes): The
minimum 3D distance (MD) between sink nodes is set
because overly short distances would result in collisions
that cause signal interferences.

C. MATHEMATICAL PROGRAMMING MODEL
The notation used in the mathematical programming model
of the concerned problem is given in Table 2.

TABLE 2. Notation used in the problem model.

The problem concerned in this study is modeled as a
binary integer programming model, which is detailed as
follows. Consider a park represented as a grid consisting of
G = H × W grid points. Among the G grid points, N grid
points are candidate nodes for deployment of sink nodes
(denoted by x1, x2, . . . xi, . . . , xN ); T grid points are target
nodes (denoted by t1, t2, . . . , tk , . . . , tT ). Among the T targets
nodes, F target nodes are crucial facilities nodes emphasized
by park managers (denoted by f1, f2, . . . , fl, . . . , fF ). Note
that N ≤ G; F ≤ T ≤ G. Note that the N candidate nodes
and the T target nodes may not be disjoint (i.e., some target
nodes and candidate nodes refer to the same grid point).

Let S denote the score function of a target node (or a crucial
facility node). That is, the score of target node tk is S(tk ); and
the score of crucial facility node fl is S(fl).

The problem concerned in this study is to place at most Q
sink nodes on the N candidate nodes to maximize managerial
service benefits consisting of SQI and MSAI as follows:

Maximize ω · SQI+ (1− ω) ·MSAI (1)

where ω controls the weight of the two indices, and can be
adjusted according to park managers’ needs.

The SQI is evaluated as follows:

SQI =
TCS∑T
k=1 S(tk )

·
MD
2R

(2)

where TCS is the sum of all target scores of the candidate
nodes covered by sink nodes (i.e., within the coverage of sink
nodes), which is calculated as follows:

TCS =
∑T

k=1
Ck · S(tk ) (3)

where Ck is a binary variable for determining whether target
node tk is covered by some sink node;MD is theminimum 3D
distance between sink nodes; andR is the radius of the sensing
coverage of each sink node. In the right side of Eq. (2),
the first fraction is a normalized TCS; and the second fraction
is used for collision avoidance. A greaterMD/2R valuemeans
that collisions between sink nodes are not allowed, and thus,
the SQI is expected to be more important than the MSAI in
the objective function.

When the SQI value is greater, maximum coverage is
achieved without minimal collisions between sink nodes.
This indicates that managers can receive more precise infor-
mation and make superior decisions when the precision of
sensing is higher. Note that the SQI in this study is different
from the SQI proposed in [7], which only considered the
maximization of coverage but not collision problems between
sink nodes.

The MSAI is a normalized TFS as evaluated as follows:

MSAI =
TFS∑F
l=1 S(fl)

(4)

where TFS is the sum of the scores of all crucial facility nodes
covered by sink nodes, which is calculated as follows:

TFS =
∑F

l=1
Cµ(fl ) · S(fl) (5)
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where µ is a function mapping from a crucial facility
node to the corresponding target node. That is, for each
l ∈ {1, 2, . . . ,F}, crucial facility node fl is mapped to target
node tk = µ(fl) for a certain index k ∈ {1, 2, . . . ,T }, so that
crucial facility node fl and target node tk are the same grid
point on the map grid.

When the TFS value is greater, the coverage rate of crucial
facility nodes would be higher. For example, places such as
toilets, specific tourist attractions, and trails should have high
score values to provide precise visitor information and enable
park managers to provide services that are more congruent
with visitors’ feelings or provide timely facility maintenance.
For this concept, we consulted thework in [35], who proposed
that visitors were influenced by the environment when engag-
ing in recreational activities; and therefore, managers’ man-
agement decisions would affect the recreational environment,
further affecting visitors’ experiences and feelings. Park
managers’ efforts to manage the natural environment, retain
its original appearance, and hold recreational activities can
improve a park’s tourism attractiveness and competitiveness.
Furthermore, park managers’ efforts to create an excellent
recreational region and enable tourists to have high-quality
nature experiences would increase visitors’ satisfaction [36].
Therefore, this study not only considers visitor preferences
(in terms of visitor flows) but also adds park managers’ man-
agement decisions (i.e., we add the concept that the regions
emphasized by park managers are crucial facilities).

With the objective function (1), the problem model is
subject to Constraints (6)–(11). Because the park range is
broad, park managers could only deploy a limited number
of sink nodes. Therefore, Constraint (6) enforces that the
number of sink nodes to be deployed in the park must be no
greater than a maximum capacity number Q as follows:∑N

i=1
Xi ≤ Q (6)

where Xi is a binary variable to determine whether candidate
node xi is selected to be deployed with a sink node.
Most previous studies on deployment problems of sink

nodes have considered collision avoidance, i.e., avoiding that
two sink nodes are placed too closely to cause signal collision.
Constraint (7) enforces that the distanceDij between two sink
nodes deployed on candidate nodes xi and xj in the 3D park
space must be no less than the given maximum 3D distance
MD except that one of the two scores of the two sink nodes
is large, as expressed as follows:

d(xi, xj) ≥ Xi · Xj · λij ·MD, ∀i, j ∈ {1, 2, . . . ,N } , i 6= j

(7)

where λij is a binary variable to determine whether at least
one of the scores of the two target nodes corresponding
to candidate nodes xi and xj is no less than threshold Sth
(i.e., if the λij value is zero, the distance constraint between
sink nodes is cancelled). This exception is set because we
would like the candidate nodes causing larger scores (i.e.,
higher visitor flows or larger-score crucial facilities) to be

selected to be deployed by sink nodes to share sensing loads.
When the sink nodes are collecting data from the wearable
devices, they are limited by hardware so that only a limited
number of wearable devices can be read at the same time.
A high score for tourism attractiveness indicates that this
tourism attractiveness region is popular and has high visitor
flows. Visitors wear these wearable devices, and thus, regions
with higher scores require a larger number of sink nodes to
read visitors’ wearable devices, in order to prevent sink nodes
from being overloaded by an excessive number of wearable
devices.

In Constraint (8), the sum of scores of the target nodes
covered by each sink node must not exceed an upper bound
U as follows:∑T

k=1
Gki · S(tk ) ≤ U , ∀i ∈ {1, 2, . . . ,N } (8)

where Gki is a binary decision variable to determine whether
target node tk is covered by the sink node deployed on can-
didate node xi. Note that it is not necessary to add another
constraint similar to Constraint (8) for crucial facility nodes,
because target nodes include crucial facility nodes.

The constraints used to calculate decision variablesGki and
Ck are as follows:

(R− d(tk , xi)) · Gki ≥ 0, ∀k ∈ {1, 2, . . . ,T } ,

∀i ∈ {1, 2, . . . ,N } ; (9)

Ck = max
i∈{1,2...,N }

{Gki}, ∀k ∈{1, 2, . . . ,T }.

(10)

The constraints for all binary variables are as follows:

Xi, λij,Ck ,Gki ∈ {0, 1}, ∀k ∈ {1, 2, . . . ,T },

∀i ∈ {1, 2, . . . ,N }. (11)

The differences of the model of this study from previous
studies are as follows.

• Different from previous studies that focused on 2D
deployment of sink nodes in IoT systems, this study
investigates 3D deployment.

• Different from previous studies that hardly considered
optimization of multiple management indices in forest
recreation parks, this study proposes 3D deployment of
an IoT system with optimal management service indices
(i.e., SQI and MSAI).

• This study considers the deployment problem with cov-
erage, collision avoidance, and maximal reading loads.

Note that the IoT devices are vulnerable to interference in
dense forest and hilly areas. To ensure connectivity in these
areas, park managers can set the grid nodes within these areas
as critical facility nodes with higher scores. Therefore, when
the proposed algorithm searches for a deployment with higher
scores, it tends to deploy more sink nodes in these vulnerable
areas to ensure connectivity.
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Algorithm 1 Proposed ISA
1: Initialize the current temperature τ = τh
2: Randomly generate an initial solution X , and use

Algorithm 2 to evaluate the cost δ(X ) of solution X
3: Initialize the probabilities of selecting the insertion

operator (π1), the swap operator (π2), and the inversion
operator (π3), i.e., π1 = π2 = π3 = 1/3

4: while τ > τl do
5: while the iteration number is no more than dwell

times L do
6: Use Algorithm 3 to search for a neighboring

solution X ′

7: Use Algorithm 2 to evaluate the cost δ(X ′) of the
neighboring solution X ′

8: Use Algorithm 4 to conduct the dynamic
selection probability adjustment scheme

9: if (δ(X ′) < δ(X )) or (δ(X ′) ≥ δ(X ) and
rand(0, 1) < exp(−(δ(X ′)− δ(X ))/(κτ ))) then

10: X = X ′

11: end if
12: end while
13: Decrease temperature (i.e., τ = τ · γ )
14: end while

IV. PROPOSED ISA FOR THE CONCERNED PROBLEM
The deployment problems of IoT systems have been shown
to be NP-hard (e.g., [10], [11]). The problem of this study
extends the previous deployment problems, and hence is
also NP-hard. Therefore, this study further proposes an ISA
to solve the problem. The ISA is a simulated annealing
(SA) [37], which is a global optimization metaheuristic
algorithm, which can escape from local optimal solutions and
allow the user easily adjust the parameters of the algorithm.
The idea of the SA is to solve a problem through simulating an
annealing process of a solid. First, the SA generates a random
solution. Then, it iteratively searches for a neighboring solu-
tion of this solution through a temperature cooling scheme,
and determines whether the neighboring solution replaces the
current solution through the Metropolis criterion. The SA has
successfully solved numerous optimization problems.

The proposed ISA improves the SA with two schemes:
1) three neighborhood searching operators, and 2) the
dynamic selection probability adjustment scheme. The pro-
posed ISA is given in Algorithm 1, and its flowchart is given
in Figure 2. The details of Algorithm 1 are explained as
follows. The ISA is operated with a temperature cooling
scheme, i.e., decreasing from the highest temperature τh to
the lowest temperature τl . Therefore, Line 1 first initializes
temperature τ to be the highest temperature τh. Subsequently,
Line 2 randomly generates an initial solution X , and uses
Algorithm 2 to evaluate its cost δ(X ).

Different from the SA, the ISA adopts a dynamic selection
probability adjustment scheme, which dynamically adjusts
the probabilities of selecting three neighborhood searching

FIGURE 2. Flowchart of the proposed ISA.

operators: insertion, swap, and inversion (i.e., π1, π2, and π3).
Initially, Line 3 sets all probabilities to be equal, i.e., π1 =
π2 = π3 = 1/3. Then, the ISA enters a main loop
(Lines 4 – 14) based on a temperature cooling scheme
(i.e., the temperature τ decreases from τh to τl , and the ratio
of the next temperature and the current temperature is γ ).

Inside the main loop (Lines 4 – 14), the inner loop
(Lines 5 – 12) executes at most L iterations (a.k.a., dwell
times) under a fixed temperature τ . In the inner loop, a
neighboring solution is generated by Algorithm 3 (Line 6),
which selects one of the three neighborhood searching oper-
ators according to probabilities π1, π2, and π3. Line 7
uses Algorithm 2 to evaluate the cost δ(X ′) of the neighbor-
ing solution X ′. Then, Line 8 uses Algorithm 4 to conduct
the dynamic selection probability adjustment scheme. Then,
Line 9 checks the Metropolis criterion. If the criterion is
true, then Line 10 replaces the current solution X by the
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Algorithm 2 Cost Evaluation
Input: A solution X = (X1,X2, . . . ,XN )
Output: Cost of the solution δ(X ).
1: Initialize TCS, TFS, ρquantity, ρdistance, ρterrain, and ρscore

to be zero.
2: for each k = 1, 2, . . . ,T do
3: for each i = 1, 2, . . . ,N do
4: if d(tk , xi) < R then
5: Gki = 1
6: else
7: Gki = 0
8: end if
9: next for
10: Ck = maxi∈{1,2...,N } Gki
11: next for
12: for each k = 1, 2, . . . ,T do
13: if Ck = 1 then
14: TCS = TCS + S(tk )
15: end if
16: next for
17: for each l = 1, 2, . . . ,F do
18: if Cµ(fl ) = 1 then
19: TFS = TFS + S(fl)
20: end if
21: next for
22: ρquantity = max{

∑N
i=1 Xi − Q, 0}

23: for each i = 1, 2, . . . ,N − 1 do
24: for each j = i+ 1, . . . ,N do
25: if S(Xi) < Sh and S(Xj) < Sth and Xi = 1 and

Xj = 1 and d(xi, xj) <MD then
26: ρterrain = ρterrain + 1
27: next for
28: next for
29: for each i = 1, 2, . . . ,N do
30: if

∑T
k=1 Gki · S(tk ) > U then

31: ρscore = ρscore + 1
32: end if
33: next for
34: Output 1− ω · TCS /

∑T
k=1 S(tk )·MD / R− (1− ω) ·

TFS /
∑F

l=1 S(fl)+Mh · (ρqantity+ ρterrain)+Ms · ρscore

neighboring solution X ′. The main function of the Metropolis
criterion is to escape from a local optimal solution and prevent
premature convergence. The criterion include the following
two cases: (1) If the neighboring solution X ′ is better than the
current solution X (i.e., δ(X ′) < δ(X )), then it accepts X ′. (2)
If the neighboring solution X ′ is worse (i.e., δ(X ′) ≥ δ(X )),
then it still accepts X ′ when a random number between
0 and 1 is smaller than exp(−(δ(X ′) − δ(X ))/(κτ )), which a
Boltzmann distribution, where κ is the Boltzmann constant.

A. SOLUTION REPRESENTATION
As detailed in the last section, the decision variables of the
problem model are X1,X2, . . . ,XN , where Xi is a binary
variable to determine whether the ith candidate node is

Algorithm 3 Neighborhood Search
Input: A solution X = (X1,X2, . . . ,XN )
Output: A neighboring solution X ′

1: Randomly select two numbers i and j from {1, 2, . . . ,N}
where i < j

2: Generate a random value p from the uniform distribution
of [0, 1]

3: X ′ = X
4: if p ≤ π1 then
5: Move Xj to the (i− 1)-th position on solution X ′

6: else if p ≤ π2 then
7: Swap Xi with Xj on solution X ′

8: else
9: Reverse the sequence between positions i and

min{i+ ε, j} on solution X ′

10: end if

deployed with a sink node. Therefore, a solution used in
the ISA is encoded as a vector of these decision variables:
(X1,X2, . . . ,XN ), where Xi ∈ {0, 1}.

B. COST EVALUATION
The ISA requires a cost function to evaluate the performance
of the solution. Because the concerned problem is to maxi-
mize Objective (1) under major constraints (6)–(8), this study
changes to minimize one minus Objective (1), and considers
the costs of penalizing violation of the constraints. Note that
Constraints (6) and (7) are hard constraints (because their
violation leads to infeasibility of the solution); Constraint (8)
is a soft constraint (because violation of this constraint only
leads to heavy load of sink nodes, but the solution is still
feasible). In general, the penalty cost for hard constraints
is greater than that for soft constraints. Given a solution
X = (X1,X2, . . . ,XN ), this study sets the cost δ(X ) of
solution X as one minus Objective (1) plus the penalty costs
of Constraints (6)–(8) as follows:

δ(X ) = 1− ω · SQI− (1− ω) ·MSAI

+Mh · (ρquantity + ρterrain)+Ms · ρscore (12)

where Mh (resp., Ms) are the costs of penalizing a hard
constraint (resp., soft constraint); ρquantity, ρterrain, and ρscore
are the numbers of penalizing Constraints (6), (7), and (8),
respectively.

The algorithm of evaluating the cost of a solution is given in
Algorithm 2, which is explained as follows. Line 1 initializes
variables TCS, TFS, δ1, δ2, ρquantity, ρdistance, ρterrain, and
ρscore to be zero. Lines 2 – 11 calculate decision variable Gki,
which is one only when d(tk , xi) < R, and further calculate
decision variableCk = max i∈ {1, 2 . . . ,N}Gki. With the two
types of decision variables, Lines 12 – 16 calculate TCS, and
Lines 17 – 21 calculate TFS. Lines 22 calculates penalty num-
ber ρquantity for Constraint (6). Lines 23 – 28 calculate penalty
number ρterrain for Constraint (7). Lines 29 – 33 calculate
penalty number ρscore for Constraint (8). Finally, Lines 34
calculates the cost according to Equation (12).
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Algorithm 4 Dynamic Selection Probability Adjustment
Scheme
1: if δ(X ′) < δ(X ) then
2: Compute 1v1 by Equation (15)
3: if the insertion move is adopted then
4: π1 = π1 +1v1
5: π2 = π2 −1v1/2 and π3 = π3 −1v1/2
6: else if the swap move is adopted then
7: π2 = π2 +1v1
8: π1 = π1 −1v1/2 and π3 = π3 −1v1/2
9: else
10: π3 = π3 +1v1
11: π1 = π1 −1v1/2 and π2 = π2 −1v1/2
12: end if
13: else
14: Compute 1v2 by Equation (16)
15: if the insertion move is adopted then
16: π1 = π1 +1v2
17: π2 = π2 −1v2/2 and π3 = π3 −1v2/2
18: else if the swap move is adopted then
19: π2 = π2 +1v2
20: π1 = π1 −1v2/2 and π3 = π3 −1v2/2
21: else
22: π3 = π3 +1v2
23: π1 = π1 −1v2/2 and π2 = π2 −1v2/2
24: end if
25: end if
26: for s = 1, 2, 3 do
27: if πs > 0.8 then
28: πs = 0.8
29: πt = πt + (πs − 0.8)/2 for each

t ∈ {1, 2, 3} \ {s}
30: else if πs < 0.1 then
31: πs = 0.1
32: πt = πt + (0.1− πs) / 2 for each

t ∈ {1, 2, 3} \ {s}
33: end if
34: next for

C. THREE NEIGHBORHOOD SEARCHING OPERATORS
Each iteration of the ISA generates a neighboring solution X ′

of the current solution X (i.e., Line 6 of Algorithm 1), based
on three neighborhood searching operators [38] (Figure 3):

• Insertion: This operator refers to randomly selecting one
element in the solution vector X , and then inserting this
element before another randomly selected location.

• Swap: This operator refers to randomly selecting two
elements from solution X , and then swapping them.

• Inversion: This operator refers to randomly selecting
two indices from {1, 2, . . . , N}. Subsequently, the sub-
sequence of solution X between the two indices is
reversed. To avoid excessively large changes in the gen-
erated neighboring solution, the maximum length of
inversion is set as ε.

FIGURE 3. Illustration of three neighborhood searching operators.

The proposed ISA conducts the above three neighbor-
hood searching operators according to three probability
values adjusted in each iterations (i.e., π1, π2, π3). The
algorithm of generating a neighboring solution is presented
as Algorithm 3.

D. DYNAMIC SELECTION PROBABILITY
ADJUSTMENT SCHEME
The proposed ISA employs a dynamic selection probability
adjustment scheme [39] to dynamically change the proba-
bilities of selecting three neighborhood searching operators
(i.e., π1, π2, π3) according to performance of their respective
cost values. The algorithm of the dynamic selection proba-
bility adjustment scheme is presented as Algorithm 4. The
initial values of π1, π2, and π3 are set equally as 1/3 (Line 3
of Algorithm 1). After obtaining the neighboring solution X ′

of the current solution X , Algorithm 4 compares the cost
values of the two solutions. If the neighboring solution is
better (i.e., δ(X ′) < δ(X )), then Line 2 computes a normalized
cost variation 1v1 as follows:

1v1 = (δ(X )− δ(X ′))/(δ(X )+ δ(X ′)) (13)

Let s denote the index of the neighborhood searching oper-
ator selected in this iteration of the ISA. Then, based on1v1,
Lines 3 – 12 adjust the three probabilities as follows:

πs = πs +1v1, ∀s ∈ {1, 2, 3} ; (14)

πh = πh −1v1/2, ∀h ∈ {1, 2, 3} , h 6= s. (15)

That is, the probability of selecting operator s increases with
1v1, while the other two probabilities decrease with 1v1/2.
With the above adjustment, the probability of selecting oper-
ator swill be higher in the next iteration of the ISA, while the
probabilities of selecting other two operators will be lower.

If the cost value of the neighboring solution is not better
than that of the current solution (i.e., δ(X ′) ≥ δ(X )), then
Lines 14 – 24 also adjust the three probabilities similarly,
but the variation is scaled with a ratio α between 0 and 1 as
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follows:

1v2 = (δ(X ′)− δ(X ))/(δ(X )+ δ(X ′)) · α; (16)

πs = πs +1v2, ∀s ∈ {1, 2, 3} ; (17)

πh = πh −1v2/2, ∀h ∈ {1, 2, 3} , h 6= s. (18)

Finally, to avoid an overly large or small probability of
a certain operator and the results tending toward a single
operator, we set an upper bound of 0.8 and a lower bound
of 0.1.When the probability of the selected operator s is larger
than 0.8, it is maintained at 0.8, whereas when this probability
is less than 0.1, it would is at 0.1. Lines 26 − 34 conduct
the adjustments based on the values of 0.8 and 0.1, which is
similar to the above adjustment schemes.

In light of the above, the proposed dynamic selection prob-
ability adjustment scheme is not a greedy approach.

Note that different from the SA, the ISA additionally
adopts Algorithm 4 and mathematical equations (13) – (18).

Also note that in general, the deployment of IoT sink nodes
is not modified frequently after these nodes are deployed in
the park. Once the environment of the park is changed due to
natural calamities (such as storm, flood, and mist), the park
managers can execute the proposed algorithm to generate a
new deployment of sink nodes to adapt to the environment
change, and then they adjust the existing deployment of sink
nodes according to the new deployment result.

V. EXPERIMENTAL RESULTS AND ANALYSIS
Based on the ISA detailed in the last section, this section
implements the ISA, conducts simulation, and compares
experimental results. This section first gives the experimental
setting and environment, then analyzes the parameters used in
the ISA, then compares experimental results using different
approaches, then analyzes the weight of SQI in the objective
function, then analyzes various minimal distances between
sink nodes, and finally analyzes the effect of canceling the
score threshold in the distance constraint between sink nodes.

A. EXPERIMENTAL SETTING AND ENVIRONMENT
The experiments in this section is conducted on a PC with
an Intel CoreTM i7-7700CPU @ 3.60GHz CPU and memory
of 8 GB. The study area is the Huisun Forest Recreation Area
(HFRA) in Taichung, Taiwan, which has an area of 7477
hectares, and whose altitude is between 450 and 2419 meters.
This study divides the major area of the HFRA into 14× 22
grids (Figure 4(a)); each of these grid points has a 3D
coordinate, and the side length of each grid is 100 meters.
Figure 4(b) presents a simplified map of the HFRA; the
green area is inside the HFRA, and the white area is not.
Cooperated with the HFRA staff, we collected single-day
visitor flows of the HFRA, and determined the importance
of the tourism attractiveness of each tourist attraction within
the park; different scores were assigned to different grids (see
the number labeled on each grid in Figure 4(b)) according
to visitor flows in Table 3. Then, we adjusted these scores
according to crucial facilities. Figure 5(a) shows target nodes

FIGURE 4. (a) The HFRA map (with contour lines) is divided into 14 ×
22 grids, and the length of each 2D grid is 100 meters. (b) A simplified
HFRA map, in which each grid is attached with a score number according
to visitor flow.

TABLE 3. Relation between one-day visitor flows and scores.

FIGURE 5. (a) Distribution of target nodes in the HFRA. (b) Distribution of
crucial facility nodes in the HFRA.

colored in purple, and Figure 5(b) shows crucial facility nodes
colored in blue.

Based on the case of the HFRA, the experimental parame-
ters are set as follows. This study first assumes that the MSAI
is as important as the SQI (i.e.,ω = 0.5). The coverage radius
R of each sink node is 150 meters, and the maximal score sum
U of all target nodes covered by a sink node is 30. The mini-
mum distance MD between sink nodes is 240 meters. Based
on the data of the HFRA, we decide that the target nodes,
candidate nodes, and the crucial facility nodes emphasized by
managers which include toilets, specific tourist attractions,
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and specific trails. The other parameters are set as follows:
Q = 20, Mh = 100,Ms = 10, Sth = 5, and α = 0.5.

As mentioned in Section 1, most studies focused on
deployment of the IoT system that optimizes various objec-
tives unrelated to management service benefits, but this study
considers the objective with optimal management service
benefits. Most studies investigated deployment of IoT sys-
tems in 2D spaces, regardless of actual 3D topographic dif-
ferences, but this study considers 3D deployment of IoT
systems. Most studies assumed all targets to be equally
crucial, but this study considers that the importance of each
target may be different. Most studies rarely investigated the
service level index, but this study does. As a consequence, the
experimental results of the proposed approach are compared
with previous studies.

B. ANALYSIS ON ALGORITHMIC PARAMETERS
This subsection analyzes the experimental results under vari-
ous settings of the parameters of the proposed ISA, including
the Boltzmann constant κ , highest temperature τh, lowest
temperature τl , dwell times L, and temperature-cooling
scale γ ; additionally, and the maximal length ε of the
substring adopted in the inversion neighborhood searching
operator. In Table 4, each statistical value is obtained from 20
experiments under different combinations of parameters L,
γ , and ε. Based on the results in Table 4, the ISA parameters
in the later experimental results are set as follows: κ = 1/5,
τh = 1000, τl = 10, L = 500, γ = 0.99, and ε = 20.

TABLE 4. Experimental analysis of the parameters used in the
proposed ISA.

C. EXPERIMENTAL COMPARISON OF
DIFFERENT APPROACHES
This subsection analyzes experimental results using three
different approaches: (1) classical SA, (2) multi-search

simulated annealing (MSA) with three neighbor search-
ing operators (i.e., the ISA without the dynamic selection
probability adjustment scheme, so that the three operators
are selected with an equal probability), and (3) the pro-
posed ISA (including three neighbor searching operators and
the dynamic selection probability adjustment scheme). This
enables us to gain knowledge of whether superior perfor-
mance could be found in the results after different mecha-
nisms are incorporated.

TABLE 5. Comparison of the experimental results using different
approaches.

Table 5 shows the best, average, and worst cost values as
well as the standard deviation and mean computation time
for executing SA, MSA, and ISA 50 times. Some of the
SA results include feasible solutions. The best cost value
of the proposed ISA is 0.3101, which is superior to those
of SA and MSA. In terms of the average and worst cost
values and standard deviation, the proposed ISA still exhibits
superior performance. In terms of mean computation time,
it is reasonable that the proposed ISA takes much more CPU
time. To observe the stability of the three approaches, each of
the three approaches are executed 50 times. Figure 6 indicates
that both MSA and ISA have high stability and feasibility,
as well as that ISA has superior performance overall.

FIGURE 6. Comparison of the results of executing each of three
approaches 50 times.

Figure 7 shows the convergence results of executing three
approaches. In terms of convergence speeds, both SA and
MSA are faster than ISA. However, in terms of the ability to
search for optimal solutions, a comparison of final cost values
indicates that the cost value for SA was 0.9151, that for MSA
was 0.6754, and that for ISA was 0.3403, demonstrating that
the proposed ISA has superior cost value. Figure 8 shows box
plots, respectively, for executing SA, MSA, and ISA 50 times
each. In terms of cost comparison, the experimental results of
ISA are superior those of SA and MSA.
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FIGURE 7. Convergence results of executing three approaches.

FIGURE 8. Box plot for executing SA, MSA, and ISA 50 times each.

D. ANALYSIS ON THE WEIGHT OF SQI IN
THE OBJECTIVE FUNCTION
The weight ω of the SQI determines the importance degree of
the SQI to which the park managers emphasize, as compared
with the MSAI. To observe how different values of the SQI
weight ω would affect the deployment results, weight ω is
set under 0.1 and 0.9, and the deployment results of 20 sink
nodes are presented in Figures 9(a) and 9(b), respectively.
When the weight ω of the SQI is 0.1, this indicates that the
weight (1 − ω) of the MSAI is 0.9. The blue grids represent
crucial facility grids emphasized by parkmanagers, which are
nearly covered by sink nodes (Figure 9(a)). When the weight
ω of the SQI is 0.9, this indicates that the weight (1 − ω) of

FIGURE 9. The experimental results of deploying sink nodes in the HFRA
when (a) ω = 0.1 and (b) ω = 0.9.

the MSAI is 0.1; the purple grids represent the target nodes
(i.e., those with visitor flows), which are nearly covered by
sink nodes (Figure 9(b)).

E. ANALYSIS ON VARIOUS MINIMAL DISTANCES
BETWEEN SINK NODES
The setting of the minimal distance between the sink
nodes (MD) affects the distance between two adjacent sink
nodes. Figures 10(a) and 10(b) setMD as 100 and 270meters,
respectively, and present the deployment results of 20 sink
nodes. In the two figures, the 2D grid has a side length
of 100 meters and a sink-node coverage radius of 150 meters.
WhenMD is 100meters, this means that the distance between
adjacent sink nodes is allowed to be short, resulting in dense
overall deployment results (Figure 10(a)). However, when
MD is 270 meters, this indicates that the distance between
adjacent sink nodes is allowed to be long, resulting in a more
dispersed overall deployment result (Figure 10(b)).

FIGURE 10. The experimental results of deploying sink nodes in the HFRA
when (a) MD = 100 and (b) MD = 270.

F. ANALYSIS ON THE SCORE THRESHOLD CANCELING
THE DISTANCE CONSTRAINT BETWEEN SINK NODES
When the score threshold in the distance constraint between
sink nodes (Sth) is set as 3, the deployment of sink nodes
on grids with scores 3, 4, and 5 is not restricted to the
MD, as shown in Figure 11(a). We have checked that the
3D distance between any two grids labeled by numbers
in Figure 11(a) is less than the MD, which is set as 240. That
is, theMD constraint is canceled for higher-score grids.When
Sth is set as 5, the deployment of sink nodes on grids with
score 5 is not restricted to the MD, as shown in Figure 11(b).
We have checked that the 3D distance between any two grids
labeled by ‘5’ in Figure 11(a) is less than the MD, which is
set as 240.

Figure 4(a) shows the actual 3D topographic differences
of the study area, in which the dark areas represent the steep
mountainside; the blue curve represents a surrounding river;
the white curve represents a winding road; and the contour
lines of mountains are illustrated. From the visualization of
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FIGURE 11. The experimental results of deploying sink nodes in the HFRA
when (a) Sth = 3 and (b) Sth = 5.

all the experimental results (Figures 9–11), we observe that
the environment factors influence the results (e.g., the moun-
tainside areas without target nodes and crucial facility nodes
are not deployed with sink nodes; and rivers are not deployed
as well); the deployment is noised by artificial constructions
(e.g., because crucial facilities are constructed along the arti-
ficial winding road, sink nodes tend to be deployed along the
winding road).

VI. CONCLUSION
This study has proposed an ISA algorithm to solve the prob-
lem of deploying an IoT system to cover targets with different
scores based on tourist attractiveness in a 3D forest recreation
park with optimal service benefits, which is represented as a
weighted sum of SQI andMSAI, which could help forest park
managers to evaluate the quality of their IoT deployments
and their deployment needs. The proposed ISA includes three
neighborhood searching operators, and the probabilities of
these operators are adjusted by a dynamic selection proba-
bility adjustment scheme. Through simulation, the proposed
ISA was found to have excellent ability in searching for
solutions. Specifically, the optimal deployment location of
sink nodes was determined in a manner that facilitated satis-
fying the deployment needs of forest creation park managers,
thereby maximizing managerial service benefits. Moreover,
this study provides a reference to forest recreation park
managers who wish to integrate smart tourism management
through introducing an IoT system. However, the range of
applications is not limited to forest parks; it can also be
introduced to theme parks, water parks, and large outdoor
playgrounds.

Future studies can be extended in the following directions.
First, the locations where sink nodes are placed should be
continuous and must not be limited by the location of candi-
date nodes, which would enable actual deployment locations
to be more precise. Furthermore, because forest recre-
ation parks would have different landscapes during different
seasons, special festivals can be held to change visitor flows.

This would allow for the dynamic adjustment of tourist
attraction scores according to seasons and times. Sink nodes
are heterogeneous, and different device functions have dif-
ferent sensing radii. Their sensing state is to start, sleep,
malfunction, and die, which can be scheduled according to
the coverage conditions. In addition, this work does not con-
sider communication of visitors under water, because it is
related with a different sensor type such as underwater acous-
tic sensors [40]. It would be of future interest to investigate the
heterogeneous IoT system with underwater acoustic sensors.
Furthermore, some location-based recommendation methods
(e.g., [41], [42]) may be considered to be incorporated with
the proposed approach in the future.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things

(IoT): A vision, architectural elements, and future directions,’’ Future
Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[2] U.Gretzel,M. Sigala, Z. Xiang, andC.Koo, ‘‘Smart tourism: Foundations
and developments,’’ Electron. Markets, vol. 25, no. 3, pp. 179–188, 2015.

[3] D. Z. Jovicic, ‘‘From the traditional understanding of tourism destination
to the smart tourism destination,’’ Current Issues Tourism, vol. 22, no. 3,
pp. 276–282, 2019.

[4] E.Mäntymaa, V. Ovaskainen, A. Juutinen, and L. Tyrväinen, ‘‘Integrating
nature-based tourism and forestry in private lands under heterogeneous
visitor preferences for forest attributes,’’ J. Environ. Planning Manage.,
vol. 61, no. 4, pp. 724–746, 2018.

[5] S. Sengupta, S. Das, M. D. Nasir, and B. K. Panigrahi, ‘‘Multi-objective
node deployment in WSNs: In search of an optimal trade-off among
coverage, lifetime, energy consumption, and connectivity,’’ Eng. Appl.
Artif. Intell., vol. 26, no. 1, pp. 405–416, 2013.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey
on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[7] C. Y. Tsai, H. T. Chang, and R. J. Kuo, ‘‘An ant colony based optimization
for RFID reader deployment in theme parks under service level consider-
ation,’’ Tourism Manage., vol. 58, pp. 1–14, Feb. 2017.

[8] D. W. Engels and S. E. Sarma, ‘‘The reader collision problem,’’ in Proc.
IEEE Int. Conf. Syst., Man Cybern. (SMC), Oct. 2002, p. 6.

[9] F. Campioni, S. Choudhury, and F. Al-Turjman, ‘‘Scheduling RFID net-
works in the IoT and smart health era,’’ J. Ambient Intell. Humanized
Comput., vol. 10, no. 10, pp. 4043–4057, Oct. 2019.

[10] Y. J. Gong, M. Shen, J. Zhang, O. Kaynak, W. N. Chen, and Z. H. Zhan,
‘‘Optimizing RFID Network Planning by Using a Particle Swarm Opti-
mization Algorithm With Redundant Reader Elimination,’’ IEEE Trans
Ind. Informat., vol. 8, no. 4, pp. 900–912, Nov. 2012.

[11] S. Tang, C. Wang, X. Y. Li, and C. Jiang, ‘‘Reader activation scheduling
in multi-reader RFID systems: A study of general case,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp., May 2011, pp. 1147–1155.

[12] M. Rebai, M. Le Berre, H. Snoussi, F. Hnaien, and L. Khoukhi, ‘‘Sensor
deployment optimization methods to achieve both coverage and con-
nectivity in wireless sensor networks,’’ Comput. Oper. Res., vol. 59,
pp. 11–21, Jul. 2015.

[13] I. Khoufi, P. Minet, A. Laouiti, and S. Mahfoudh, ‘‘Survey of deployment
algorithms in wireless sensor networks: Coverage and connectivity issues
and challenges,’’ Int. J. Auton. Adapt. Commun. Syst., vol. 10, no. 4,
pp. 341–390, 2017.

[14] A. Maheshwari and N. Chand, ‘‘A survey on wireless sensor networks
coverage problems,’’ in Proc. 2nd Int. Conf. Commun., Comput. Netw.
(Lecture Notes in Networks and Systems), vol. 46. Singapore: Springer,
2019, pp. 153–164.

[15] M. Farsi, M. A. Elhosseini, M. Badawy, H. Arafat, and H. ZainEldin,
‘‘Deployment techniques in wireless sensor networks, coverage and con-
nectivity: A survey,’’ IEEE Access, vol. 7, pp. 28940–28954, 2019.

[16] S. Mini, S. K. Udgata, and S. L. Sabat, ‘‘Sensor deployment in 3-D terrain
using artificial bee colony algorithm,’’ in Proc. Int. Conf. Swarm, Evol.,
Memetic Comput. (SEMCCO) (Lecture Notes in Computer Science),
vol. 6466. Singapore: Springer, 2010, pp. 424–431.

VOLUME 7, 2019 182379



C.-C. Lin et al.: Three-Dimensional IoT Deployment With Optimal Management Service Benefits

[17] S. Mini, S. K. Udgata, and S. L. Sabat, ‘‘Sensor deployment and schedul-
ing for target coverage problem in wireless sensor networks,’’ IEEE
Sensors J., vol. 14, no. 3, pp. 636–644, Mar. 2014.

[18] L. Sitanayah, ‘‘Robust sensor network deployment with priority based
on failure centrality,’’ in Proc. 10th Int. Conf. Inf. Technol. Electr. Eng.
(ICITEE), Jul. 2018, pp. 175–180.

[19] S. Abdollahzadeh and N. J. Navimipour, ‘‘Deployment strategies in the
wireless sensor network: A comprehensive review,’’ Comput. Commun.,
vol. 91, pp. 1–16, Oct. 2016.

[20] L. Hervert-Escobar, N. R. Smith, T. I. Matis, and C. Vargas-Rosales,
‘‘Optimal location of RFID reader antennas in a three dimensional space,’’
Ann. Oper. Res., vol. 258, no. 2, pp. 815–823, 2017.

[21] M. S. Lin, J. S. Leu, K. H. Li, and J. L. C. Wu, ‘‘Zigbee-based Inter-
net of Things in 3D terrains,’’ Comput. Electr. Eng., vol. 39, no. 6,
pp. 1667–1683, 2013.

[22] B. Cao, J. Zhao, Z. Lv, X. Liu, X. Kang, and S. Yang, ‘‘Deployment
optimization for 3D industrial wireless sensor networks based on particle
swarm optimizers with distributed parallelism,’’ J. Netw. Comput. Appl.,
vol. 103, pp. 225–238, Feb. 2018.

[23] J. Naveen, P. J. A. Alphonse, and S. Chinnasamy, ‘‘3D grid clustering
scheme for wireless sensor networks,’’ J. Supercomput., to be published.

[24] T. Qasim, M. Zia, Q.-A. Minhas, N. Bhatti, K. Saleem, T. Qasim, and
H. Mahmood, ‘‘An ant colony optimization based approach for minimum
cost coverage on 3-D grid in wireless sensor networks,’’ IEEE Commun.
Lett., vol. 22, no. 6, pp. 1140–1143, Jun. 2018.

[25] S. Mnasri, N. Nasri, A. van den Bossche, and T. Val, ‘‘Improved many-
objective optimization algorithms for the 3D indoor deployment prob-
lem,’’ Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3883–3904, 2019.

[26] J. Deng, B. King, and T. Bauer, ‘‘Evaluating natural attractions for
tourism,’’ Ann. Tourism Res., vol. 29, no. 2, pp. 422–438, 2002.

[27] C. F. Lee, H. I. Huang, and H. R. Yeh, ‘‘Developing an evaluation model
for destination attractiveness: Sustainable forest recreation tourism in
Taiwan,’’ J. Sustain. Tourism, vol. 18, no. 6, pp. 811–828, 2010.

[28] T. L. Saaty, ‘‘What is the analytic hierarchy process?’’ in Math. Models
Decision Support. Berlin, Germany: Springer, 1998, pp. 109–121.

[29] Y. Hu and J. B. Ritchie, ‘‘Measuring destination attractiveness: A contex-
tual approach,’’ J. Travel Res., vol. 32, no. 2, pp. 25–34, 1993.

[30] Z. Y. Y. Wang Jin and D. B. Liu Li Zhang, ‘‘Comparing social media data
and survey data in assessing the attractiveness of Beijing Olympic Forest
Park,’’ Sustainability, vol. 10, no. 2, 2018, Art. no. 382.

[31] J. Markowski, M. Bartos, A. Rzenca, and P. Namiecinski, ‘‘An evaluation
of destination attractiveness for nature-based tourism: Recommendations
for the management of national parks in Vietnam,’’ Nature Conservation,
vol. 32, pp. 51–80, Mar. 2019.

[32] O. A. Schipor, R. D. Vatavu, and J. Vanderdonckt, ‘‘Euphoria: A Scalable,
event-driven architecture for designing interactions across heterogeneous
devices in smart environments,’’ Inf. Softw. Technol., vol. 109, pp. 43–59,
May 2019.

[33] S. Korpilo, T. Virtanen, and S. Lehvävirta, ‘‘Smartphone GPS tracking—
Inexpensive and efficient data collection on recreational movement,’’
Landscape Urban Planning, vol. 157, pp. 608–617, Jan. 2017.

[34] S. Korpilo, T. Virtanen, T. Saukkonen, and S. Lehvävirta, ‘‘More than
A to B: Understanding and managing visitor spatial behaviour in urban
forests using public participation GIS,’’ J. Environ. Manage., vol. 207,
pp. 124–133, Feb. 2018.

[35] S. F. McCool, G. H. Stankey, and R. N. Clark, ‘‘Choosing recreation
settings: Processes, findings, and research directions,’’ US Forest Service
General, Washington, DC, USA, Tech. Rep. INT 184 l-8, 1985.

[36] P. Z. Chen and W. Y. Liu, ‘‘Assessing management performance of
the national forest park using impact range-performance analysis and
impact-asymmetry analysis,’’ Forest Policy Econ., vol. 104, pp. 121–138,
Jul. 2019.

[37] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, ‘‘Equation of state calculations by fast computing machines,’’
J. Chem. Phys. vol. 21, no. 6, pp. 1087–1092, 1953.

[38] S. W. Lin and V. F. Yu, ‘‘Solving the team orienteering problem with
time windows and mandatory visits by multi-start simulated annealing,’’
Comput. Ind. Eng., vol. 114, pp. 195–205, Dec. 2017.

[39] C. Soza, R. L. Becerra, M. C. Riff, and C. A. C. Coello, ‘‘Solving
timetabling problems using a cultural algorithm,’’ Appl. Soft Comput.,
vol. 11, no. 1, pp. 337–344, 2011.

[40] C.-C. Lin, D.-J. Deng, and S.-B. Wang, ‘‘Extending the lifetime of
dynamic underwater acoustic sensor networks using multi-population
harmony search algorithm,’’ IEEE Sensors J., vol. 16, no. 11,
pp. 4034–4042, Jun. 2016.

[41] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel, ‘‘Recommendations in
location-based social networks: A survey,’’ GeoInformatica, vol. 19,
no. 3, pp. 525–565, 2015.

[42] W. Luan, G. Liu, C. Jiang, and M. Zhou, ‘‘MPTR: A maximal-
marginal-relevance-based personalized trip recommendation method,’’
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3461–3474,
Nov. 2018.

CHUN-CHENG LIN (S’06–M’08–SM’17)
received the B.S. degree in mathematics,
the M.B.A. degree in business administration, and
the Ph.D. degree in electrical engineering from
National Taiwan University, in 2000, 2007, and
2009, respectively. He was an Assistant Professor
with the University of Taipei, from 2010 to 2011,
and the National Kaohsiung University of Sci-
ence and Technology, from 2009 to 2010. He has
been a Professor with Industrial Engineering and

Management, since 2016, and the Associate Dean of the College of
Management, National Chiao Tung University, since 2017, where he joined
as an Assistant Professor, in 2011. His main research interests include
operations research, algorithm, the Internet of Things, and computational
management science. He served as a treasure of the IEEE Taipei Section.

WAN-YU LIU received the B.B.A. degree
in finance from National Chengchi University
(NCCU), Taiwan, in 2002, the M.S. degree in
agricultural economics and the Ph.D. degree in
agricultural economics fromNational Taiwan Uni-
versity (NTU), Taiwan, in 2004 and 2008, respec-
tively. She then joined the faculty of the Applied
Natural Resources Department, Aletheia Univer-
sity (AU), Taiwan. In February 2016, she moved
to the Forestry Department, National Chung Hsing

University (NCHU), where she is currently a Professor. She has been a
Distinguished Professor, since August 2018. Her research interests include
forest/farm tourism, environmental economics, and modeling, as well as
leisure and recreation.

YU-WEN LU received the B.S. degree in indus-
trial engineering and enterprise information from
Tunghai University, Taiwan, in 2017, and the M.S.
degree in industrial engineering and management
from National Chiao Tung University, Taiwan,
in 2019. Her main research interests include opera-
tions research, metaheuristic algorithms, machine
learning, and wireless networks, as well as the
Internet of Things.

182380 VOLUME 7, 2019


