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ABSTRACT This paper presents a quadruple-band low noise amplifier (LNA) which utilizes a differential
pair common-source (CS) cascode amplifier to drive a LC-tank loading. The capacitors array are parallel with
the LC-tank to implement the central frequency selection. The band-selection switch employs the binary
voltage controlling to alter the equivalent capacitance of capacitors array of the loading LC-tank, which
results in the central frequency of the LNA is switched. The body self-biasing technique is designed to
minimize the noise contribution caused by the body effect of the MOS devices. In addition, the analysis
of the transistors dimension ratio versus output referred 1-dB compression point (OP;_4p) is presented to
describe the design of the linearity optimization in CS cascode LNA. The |S>;|is 16.8, 16.63, 16.78, 16.39 dB
at 2.35, 2.4, 2.45, 2.55 GHz, respectively. The noise figure (NF) is under 2.75 dB between the quadruple-
band mode. This proposed LNA is simulated by 55 nm RF CMOS process and consumes 3.75 mW excluding

output buffer from 1.25 V supply.

INDEX TERMS CMOS, RFIC, low-noise amplifier (LNA), quadruple-band, common-source, cascode, body

biasing.

I. INTRODUCTION

Due to the increasing demands for many wireless commu-
nication applications and standards nowadays, for examples,
802.11 WLAN, LTE, and BLE. Band-selection has been
an important function in RF transceivers. There are many
methodologies which have been proposed for the design of
dual-band LNAs [1]-[10]. However, it is more difficult than
dual-band LNAs to design the multi-band LNAs due to the
more complicated methodologies and challenges [11]-[17].
One approach utilizes the series of LC-ladder configura-
tion to achieve the tapped capacitors configuration to realize
a switched multi-band resonators [11]-[13]. Tzeng et al.
proposed a tapped capacitor topology between two load-
ing inductors to realize a switched tri-band resonators [11].
However, this topology occupies larger area than single-
band LC-tank loading impedance. In addition, the bandwidth
is also restricted by the operation frequency because it is
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inversely proportional to the equivalent loading capacitance
of the resonator [18]. Although C. C. Chen et al. proposed
a gain-bandwidth product (GBW) optimization technique to
extend the bandwidth of the tuned amplifier, the linearity
weakens due to the dc bias near the triode region boundary
[6], [12]. Yu et al. proposed a switched multi-tap transformer
utilized in the input matching network of an inductively
degenerated CS amplifier [13]. However, it also needed a
mutual inductance with larger area than single-band input
impedance matching network, which results in more man-
ufacture cost. Another approach employs the notch filters
to achieve multi-band performance in a LNA [14], [15].
Although this approach can achieve good noise figure and
stopband rejection ratios, it is based on the design of the
wide bandwidith including multi-band notch filter. Therefore,
this topology needs the costs of high power consumption and
large area occupation. The other approach involves the use of
the RF switches to achieve band-selection by the time division
duplex (TDD) technique [16], [17]. However, this approach
needs to utilize several LNAs with different output resonant
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frequency, and switch between each other. Hence, the area
and cost are much higher several times than single LNA.

Additionally, researchers presented the performance of the
operation characteristic corresponding to the forward body
biasing (FBB) of MOS [19]-[23]. H. Rashtian et al. proposed
the analysis results of the gain, linearity, and input matching
with FBB technique, which indicates that the linearity was
improved by the forward bias of the body in CS amplifier
[19]. T. P. Wang proposed a methodology to minimize the
junction leakage current and noise contribution by connect-
ing high impedance between the device bulks and forward
bias [20]. In [21], H. Rashtian also proposed the analysis
results of the optimized noise figure by altering the voltage
Vps between the device bulks and forward bias. By this
method, the forward bias Vg could be found with the best
noise performance. B. K. Kim et al. presented the third-
order distortion cancelling methodology by FBB technique
in a CMOS CS amplifier [22]. However, this approach needs
to dissipate high current to maintain the power gain of the
amplifier. M. Parvizi et al. proposed the use of FBB to
mitigate output conductance degradation due to short chan-
nel effects [23]. This approach could enhance the intrinsic
gain of LNAs. However, it needs to use a higher voltage
supply.

Hence, in order to improve the drawback of high power
dissipation of multi-band LNAsS, a capacitance array is used
to achieve a band-selection function in this proposed LNA,
which consumes lower power than LNAs with notch filter
technique. In addition, the body self-biasing technique is
employed to minimize the noise contribution of the transistors
in the proposed CS cascode LNA without sacrificing the

> linearity. The band of ISM and LTE has been applied for

wireless communication application due to the increasingly
growing of mobile device demand. According to the defi-
nition of Industrial Scientific Medical (ISM) Band by ITU
Radio-communication Sector (ITU-R), there is a common
unlicensed wireless spectrum during 2.4—2.4835 GHz for
open worldwide communication [24]. For examples, both
of WLAN IEEE 802.11 b/g/n and Bluetooth are located at
2.4 GHz ISM band. In addition, by the definition of LTE
standard of Universal Mobile Telecommunications System
(UMTS) by The 3rd Generation Partnership Project (3GPP),
the operating band of TDD-LTE contains 2300—2400 MHz
(Band 40) and 2496—2690 MHz (Band 41) [25]. Therefore,
the proposed LNA is suitable for use in the RF receiver
frontend integrating 2.4/2.45 GHz ISM band as well as
2.35/2.55 GHz TDD-LTE band.

The remainder of this paper is organized as follows.
Section II introduces the proposed noise minimization using
body self-biasing technique, input impedance matching, lin-
earity design in CS cascode amplifier, noise analysis of
the proposed quadruple-band CS cascode CMOS LNA.
Section III presents the simulation results demonstrating the
feasibility of the proposed technique. Section IV provides
conclusions.
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FIGURE 1. The differential CS amplifier with body self-biasing schematic.
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FIGURE 2. The simulated noise analysis about resistor Rgg dimension of
the body self-biasing amplifier schematic.

Il. PRINCIPLES OF LNA DESIGN

A. NOISE MINIMIZATION USING BODY SELF-BIASING
TECHNIQUE

Fig. 1 shows the differential input CS amplifier schematic
with body-self biasing, where the model of all MOS tran-
sistors was applied with triple-well configuration including
deep n-well. The noise contribution from the bulk of MOS
cannot be ignored due to the distributed physical bulk resis-
tance [20]. Additionally, the voltage Vsp between source and
body causes the body-effect which decreases the transcon-
ductance of MOS. Therefore, the input-referred drain-current
noise factor of MOS would increase because the noise factor
is inversely ratio to the transconductance g,, of MOS [26],
which is expressed as follows:

1

14
Farain—current = — - (1)
o ngs
where
, W
8m = kn : f - (Vgs — Vi) 2)
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FIGURE 3. The differential common-source amplifier topology with input impedance matching network.

and

Vi=Vio+o (\/ |2¢7 + Vsp| — v |2¢f|> 3
where g, = gm.M1 = &mM2, & = gm/8d0, gao is the drain-
source conductance at Vps = 0, y is the measured noise
coefficient of CMOS process technology, k;, is equal to j, Cpyx
of the MOS, W/L is the ratio of MOS dimension, V; is the
threshold voltage of the MOS, V;¢ is the threshold voltage
for zero substrate bias, o is the fabrication-process parameter,
and ¢ is the substrate Fermi potential, respectively. By sub-
stituting (3) into (2), we could obtain that the g, would lower
while Vgp raises. Hence, the body-self biasing is employed
to make Vg = 0 in order to minimize the noise contribution
corresponding to the body-effect [21].

As seen from Fig. 1, node X which is the body terminals
of both the MOS transistors connects to the source terminals
of M and M, with resistors Rsp. Hence, Vsp is equal to zero
under common-mode condition and the node X could be seen
as a virtual ground in differential-mode. As above mentioned,
there is noise contribution due to the bulk resistance of MOS
transistor. Therefore, the junction leakage current and noise
figure could be reduced effectively by connecting the resistors
Rgp [20]. Fig. 2 shows the simulated noise analysis about the
resistor Rgp dimension of the proposed paper. When Rgp is
designed to be KS2 level so that the noise contribution from
body resistance could be minimized.

B. INPUT IMPEDANCE MATCHING NETWORK

Fig. 3 presents the differential CS amplifier topology includ-
ing input impedance matching network. The Cgy1 and Cyy are
the designed capacitors including the parasitical capacitance
between gate and source terminals. Hence, the source degen-
eration differential inductor Lg and the Cgs and Cgyr would
form a real part impedance with MOS conductance g, =
gml = &m2, Where the gate inductors L) and Ly provide
a imaginary part reactance to make the resonant frequency

VOLUME 7, 2019

locate at 2.45 GHz. The transfer function of input impedance
is expressed as follows:

2Co(§ +Lo)+sgn +1
+Ra |l

Z' =
in (8) = - Cor

“

where Cj, = Ciy1 = Cin, Cgs = Cgs1 = Cgs2, Lg =Lg =
Lg2, and Rg is a K level resistor which is much larger than
1002 differential characteristic impedance Zg. Therefore,
the input impedance could be expressed approximately as
follows:

2 8m Lg/2 1
N STV SC, W2t T Calls/2HL0)
Zin (S) ~ C; + s
SCin Ls/2+Lg
1 s% + s% + a)zi )
SCin L5/2S+L(;
where
0 2 e (B 41
in = gmLs gs ) G
. ©)
Woi =
Lg
Cys > + Lg

substituting s = jow into (5), the input impedance transfer
function could be expressed as real part and the imaginary
part respectively as follows:
gm Ls Lg
R{Zn}=-" = =owr —
Cos 2 2
3 (N
Cos + Cin [1 - @*Cys (5 + L)

X{Zin} =
{Zin} o CnCon

Therefore, the imaginary part X{Z;,} is equal to 1/(jw,iCin)
when w = w,;. Additionally, C;, is a pF level capacitor which

183763

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174



75

176

77

178

179

180

%

1

%)

%

183

184

185

86

187

188

193

94

195

196

197

198

199

200

201

202

203

204

IEEE Access

Y.-C. Wang et al.: 2.35/2.4/2.45/2.55 GHz LNA Design Using Body Self-Biasing Technique for ISM and LTE Band Application

VDD i i VDD
T IE ‘—I I
4—
i M, Rse Rse M,
|8 =
rel—
M R Rgp M,
w2 L MWL w2
—

V tail

Ita il

FIGURE 4. The differential CS cascode amplifier topology schematic.

is almost a very small impedance in high frequency circuit.
Hence, the signal path through Cj, could be seen as a short
circuit so that the input impedance is approximately purely
resistive at the middle frequency 2.45 GHz. The real part
of Z;, is shown as R{Z;,} in (6). By substituting the design
parameters of g, = 21.8 mS, Cy; =400 {F, and Ly =4.12 nH
into (6), the input impedance Z;;, = 112.3Q2. Hence, the dif-
ferential half-circuit input impedance 56.15%2 was obtained,
which is close to the characteristic impedance 50%2.

C. CASCODE TOPOLOGY AND LINEARITY DESIGN

Fig. 4 shows the differential CS cascode amplifier topology
schematic. Comparing with the single-stage CS amplifier,
the cascode amplifier could optimize the gain-bandwidth
product(GBW) by shrinking the dimension of M3 and M4 [6].
However, in order to keep all of the transistors to operate at
saturation region that must conform the characteristic func-
tion conditions as follows:

vps =2 vgs — Vi

®)

. 1 w
ip k- T (vgs — Vi)?

= E n
Hence, for example, the Vg3 increases while Wj,;3 is reduced
under the conditions of constant tail current source I,;.
However, the DC operation condition of cascode amplifier
in Fig. 4 is as follows:

Vpst = Voo — Vit — VGs3 9)

Here, V3, is the voltage produced by current source /4, and
Vpp— Vi 1s a constant. Therefore, Vpg1 must decrease while
Vis3 raises. It means that the headroom of Vpg; is easily
compressed to make M; enter the triode region while large
signal inputs the cascode LNA. Therefore, the DC operation
conditions and the dimension of cascode transistors influence
seriously the linearity performance of amplifier. Fig. 5 shows
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FIGURE 5. The OP,_gg analysis of cascode transistors width ratio.

the simulated CS cascode LNA OP;_gp analysis results ver-
sus the ratio x of transistors dimension in Fig. 4. According
to the analysis results, if x is smaller than 0.2, the linearity
would decrease. It is because that M; and M, enter triode
region. However, when the width of M| and M> is larger,
the linearity also reduces intensely under the same conditions
of ratio of x and current. It is because that Vps3 + Vps1 +
Viait ® Vpp in this proposed LNA, and there is a dc voltage
trade-off between Vpg; and Vpg3. Oppositely, the headroom
of Vps3 would be compressed to make linearity decrease
while the width of M3 increases. Especially, the dimension of
M and M is larger, the attenuation of linearity is more obvi-
ous. From the results of Fig. 5, we choose Wy;; = 128 um
because that the linearity is more stable than other conditions,
where x = 0.89 and W3 = 114 um, so do M, and My. The
channel length of all NMOS transistors is 60 nm.

D. FREQUENCY RESPONSE OF NOISE

Fig. 6 presents the equivalent circuit of the proposed dif-
ferential CS cascode LNA half-circuit including the input
impedance matching network in Fig. 4 for noise calculation.
In this section, the gain of LNA is assumed to be large enough
at resonant frequency, and all of the transistors are designed
in saturation region. Hence, the noise contribution of the
resonator loading can be disregarded. The noise factor Fyya
of the LNA is expressed as follows, (10)-(15), as shown at
the bottom of the next page, where iy o,; represents the total
output noise current composed by the noise current compo-
Nents iy, ijgo, irgos ilsos ind1o> aNd iyg30, Wwhich are produced by
the noise sources egy, €jq, €rg, €5, ind1, and iyg3, TEspectively.
These noise generators are from the parasitical resistance Ry,
Ry, and Rys of the circuit components as well as channel

thermal noise of transistors. Fy;1 = |znd10|/|z§0’ and Fy3 =

|iﬁ 3 0| / |i§0| represent the noise factor contributions of iyg1,
and i,43, corresponding to the transistors.

By analyzing the output noise current of the LNA of Fig. 6.
|i§0 , iﬁ 41o]> and }li d30} could be obtaiped as the top of this
page, where o and «3 represent the ratio of g, to g40 of M
and M3, w1 = gm1/Cgs1, and wr3 = g3/ Cgy3, respectively.
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The gg0 is the drain—source conductance of MOS at Vpg =

2
LG erg Rrg

Cgsl

=S

2
Rls
2
s

FIGURE 6. The equivalent circuit of the proposed differential CS cascode LNA half-circuit for noise calculation.

+
Vysl <

Py

y ngVgsl <

0. Substituting (11)—(13) into (10), Fa1 and Fys3 could be

derived as (14)—(15). Finally, Fyya could be obtained by

calculating the parameters.

E. PROPOSED QUADRUPLE-BAND COMMON-SOURCE

CASCODE LNA

D c%

VgsS
+

1

mZVgs3

AN

v iZ

n,out

AN

AV

i2

Uhas

frequency f.s is expressed as follows:

f res —

2 - \/Lload . (Cload + Carray)

(16)

where Cypqy is the equivalent capacitance of the loading
capacitance array, and the function is represented as follows:

Fig. 7 depicts the proposed quadruple-band LNA schematic

. . . : . 0; when SWy = off , SW1 = off
including the LC-tank loading with the capacitance array of - hen SWo — SW —
band-switching by body self-biasing technique, where the Carray = Ly whenoWo = on, 1=off (17)
LC-tank loading impedance provides four resonant frequen- 2Cr; when SWo = off, SWi = on
cies by switching the capacitance array. The loading resonant 3Cr; when SWy = on, SW1 = on
[i.ou |
i
F — n,out
LNA >
%]
: ; ; ; . . 2
- ‘lso + ligo + lrgo + Uiso + lnd1o + lnd3a‘
%]
i2 i2 ) ) B
_ ‘llg" ol il |, liatol | linasol
Lt I L O [ B 4 B [
Rig + Ry +R
e I S BT Y (10)
Rs
_ . . C;
2] = 4KTRs Af - Sl T3 " Zin (1)
(s + wr3) [SZ (% + LG) CinCgs1 +5- (wTT‘LS + Rs) CinCgs1 + Cin + Cgsl]
T 4 T3
= 4KT —gm1 Af - 12
|lnd10| o gm Af S+ ors (12)
2
I 14
i = 4KT —g,3Af - 13
o s | (13)
Y 2 (Ls or1Ls 2
Fyi = — 5|5 + L ) CinCys1 + 5 - + Rs ) CinCgs1 + Cin + Cgs1 (14)
gm1RsCjy 2 2
2
y 5Cos3 Lg wriLs
Fys = S ‘( = ) : [sz (— + LG> CinCost + 5+ ( + Rs ) CinCys1 + Cin + Cgq1 (15)
gm3a3Rs Ci, gml 2
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FIGURE 7. The proposed quadruple-band common-source cascode LNA schematic.

»s9 The capacitance array utilizes binary controlling technique
x0 to alter the loading equivalent capacitance. The method of
21 two switch controlling could be used to realize four resonant
x frequencies, where the switches are applied by deep N-well
23 (DNW) RF PMOS device. The PMOS switches of Ms and
x4 Mg are conducted by supplying the gate voltage between
%5 0V or1.25 V. Therefore, the resonant frequency will follow a
6 difference of capacitance Cy while the capacitance switch is
7 adjusted step by step. The quadruple frequencies is realized
xs from (16)—(17) in this proposed LNA. In addition, we also
0 need to select the suitable dimension of loading inductor
a0 Ligaqg With the maximum Q-value at the middle resonant fre-
a1 quency 2.4 GHz in order to maximize the equivalent loading
o resistance and voltage gain of the LNA [27]. It is because
273 that the spiral inductor is not ideal at present CMOS process
o4 technology. Therefore, we found the loading inductor Ljygg
s size, where the inner radius = 90 um, coil turns = 4, line
26 width = 8 pum, and the inductance value = 6.13 nH. Then,
77 the capacitance Cjyqq = 371.9 fF, and Cp = 49.84 {F.

23 IIl. SIMULATION RESULTS

2 The proposed LNA was designed in a 55 nm RFCMOS pro-
0 cess. Fig. 8 depicts the layout graph including the buffer for
» measurement. The area of layout occupies 0.83 mm? exclud-
;2 ing pads. The testing phase considers on-wafer measurements
3 using  ground-signal-ground-signal-ground (GSGSG) on

183766

FIGURE 8. The layout graph of the proposed quadruple-band LNA.

differential input/output and DC probes. Fig. 9—12 present
the post-simulation results of the proposed LNA. Fig. 9
presents the post-simulated |S21| in dB. The post-simulated
maximum |S71| of the proposed LNA achieves 16.8, 16.63,
16.78, and 16.39 dB, which locate at 2.35, 2.4, 2.45, and
2.55 GHz, respectively. Fig. 10 shows the post-simulated
|S11] of the proposed LNA, which is under —12.5 dB dur-
ing 2.35—2.55 GHz. Fig. 11 presents the calculated and
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FIGURE 9. The post-simulated |S,;| of the proposed quadruple-band LNA.
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FIGURE 10. The post-simulated |S,]| of the proposed quadruple-band
LNA.
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2.0
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Noise Figure (dB)

1.5
1.8G 2.0G 22G 24G 26G 28G 3.0G 3.2G
Frequency (Hz)

FIGURE 11. The calculated and post-simulated noise figures of the
proposed quadruple-band LNA.

» post-simulated NFs of the LNA, where the NFs of the four

switch modes are 2.54, 2.58, 2.6, and 2.75 dB at 2.35,
2.4, 2.45, and 2.55 GHz, respectively. There is a difference
about 0.5 dB of NF between calculation and post-simulation
due to the parasitical resistance in signal and ground path
of the post-layout model. The frequency response of NF
during 2.35—2.55 GHz is more similar between calculation
and post-simulation due to the enough gain. Fig. 12 shows
the post-simulated input referred 1-dB compression point
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FIGURE 12. The post-simulated IP,_gg and 11P3 of the proposed
quadruple-band LNA.

TABLE 1. Performance summary of the proposed Quadruple-Band LNA.

Cap. Array | Operation | [S21] [ [Si1] NF [IP;_4p | 1P3
Function Frequency | (dB) (dB) (dB) | (dBm) (dBm)
SWi=on, 2.35 16.8 | —18.04 | 2.54 | —17.92 | —12.73
SWo=on GHz

SWi=on, 2.4 16.63 | —17.41 | 2.58 | —17.79 | —12.53
SWo=off GHz

SW =off, 2.45 16.78 | —16.37 | 2.6 | —17.82 | —12.66
SWo=on GHz

SW =off, 2.55 16.39 | —12.53 | 2.75 | —17.61 | —12.02
SWo=off GHz

Current 3 mA

Dissipation @ 125V

(IPy_4p) and third-order intermodulation characteristics of
the proposed LNA including output buffer with two-tone fre-
quencies of 2350+20 MHz, 2400+20 MHz, 24504+-20 MHz,
and 2550120 MHz, respectively. The post-simulated IP_;p
points are —17.92 dBm at 2.35 GHz, —17.79 dBm at 2.4 GHz,
—17.82 dBm at 2.45 GHz, and —17.61 dBm at 2.55 GHz,
respectively. The post-simulated input-referred third-order
intercept points (IIP3) are —12.73 dBm at 2.35 GHz,
—12.53 dBm at 2.4 GHz, —12.66 dBm at 2.45 GHz, and
—12.02 dBm at 2.55 GHz, respectively. In this post-simulated
case, it is applied by 1.25 V supply voltage, and dissipates
3 mA. Summing up the above results, the performance
summary of each switched band in this proposed LNA is
presented as Table 1.

Table 2 summarizes the performances of the recently pub-
lished dual-band, triple-band, and quadruple-band LNAs. The
figure of merit (FoM) factor listed in the last row repre-
sents the comprehensive performance of the references. Here,
the FoM is expressed as follows:

S - IIP3
FoM — 15211 Abs.) (mW)

 Paissmw) - (F — Daps,)

(18)

where [S21]aps.) represents the average voltage gain of the
referred LNA in magnitude, and (F — 1)(4ps.) Tepresents the
excess noise factor in magnitude. From (18), the FoM is
normalized to the voltage gain, IIP3, power consumption, and
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TABLE 2. Performance summary of the developed Dual-Band LNAs and Tri-Band LNAs.

Reference Technology Band-Selection Frequency [Sa1] [S11] NF 11P3 Power FoM
Topology (GHz) (dB) (dB) (dB) (dBm) Consumption (mW)
[1] MWCL CMOS Dual 1.8 15 -15 4 +11 28 1.68
2010¢ 90nm Band 2.0 16 -15 3.5 +11 2.29
[3] TCSI CMOS Dual 2.45 13 -12.62 1.76 —4.3¢ 2.79 1.185
2012P 0.13pm Band 6 9 -4.8 5.3 —5.6° w/o Buff.¢ 0.116
[5] IEEE CMOS Dual 2.4 19.3 —16.8 32 —20.1 2.4 0.034
ACCESS 20172 0.13um Band 52 17.5 —194 33 —18.1 0.041
[6] CSSP CMOS Dual 4 13.74 —16.91 4 —10¢ 9.1 0.035
2017° 0.18um Band 8.4 13.23 —10.74 5.62 —12¢ w/o Buff.© 0.012
[71 TMTT CMOS Dual 3 22 —154 1.75 —12.5¢ 7.2 w/o Buff.© 0.197
2017 0.13pm Band 5 27 —13.5 2.1 —13.8¢ 3.6 w/o Buff.© 0.42
[8] TCSI SiGe Dual 21.5 24.5 —11 3.9 —14.1¢ 73.8¢ 0.006
2018P 0.18um Band 36 24 —12 3.9 —16.1¢ 0.004
[10] TCSI CMOS Dual 2.4 9.7 —12 1.6 +2 11.7 0.92
2019¢ 0.18um Band 5 11 —19 2.6 +5 1.17
[11] TCSII CMOS Triple 4.9 11 —35 3.8 —2.2¢ 1.02¢ 1.499
2008 0.13pm Band 52 12.5 —18.5 3.45 —5.6° 0.937
TC LNAP 5.8 15.7 —18 3.25 —6.7¢ 1.149
[11] TCSII CMOS Triple 4.9 14 —20 2.35 —1.5¢ 5.28¢ 0.936
2008 0.13pum Band 52 15 —24.5 22 —3.4° 0.737
TILNAP 5.8 17 —255 2.05 —5.9¢ 0.571
[12] CSSP CMOS Triple 2.4 12.47 —22.53 4.1 —7¢ 3.6 0.149
2017 0.18m Band 5.2 15.78 —19.87 4.39 —16°¢ w/o Buff.¢ 0.024
5.8 15.34 —20.11 4.51 —16° 0.022
[13] TMTT CMOS Triple 2.8 17 —20 1.95 —4¢ 6.4 0.776
2013P 0.13pum Band 33 14.2 —-9.7 2.8 —2¢ w/o Buff.¢ 0.559
4.6 14.2 —12 32 —3.2° 0.353
[15] TMTT SiGe Triple 13.5 21.2 —10.5 33 —13.5¢ 36¢ 0.013
2013P 0.18um Band 24 21.8 —14.5 3.1 —17.1¢ 0.006
35 19.7 —13.8 3.7 —16.1°¢ 0.005
[16]JSSC CMOS Quadruple 1.91 15.89 N.A. 5 —6 6 0.12
2014¢ 45nm Band 2.31 14.89 5 —5.2 w/o Buff. 0.13
SOI 2.6 14.24 5 —4.8 0.13
341 14.69 2.6 —6.5 0.24
[28] TMTT GaAs Dual 2.4 20 —10 2.2 —8.5 33 0.064
2016¢ 0.15pum Band 5 15 —7 2 —4 0.12
This CMOS Quadruple 2.35 16.8 —18.04 2.54 —12.73 3.75 0.124
workP 55nm Band 2.4 16.63 —17.41 2.58 —12.53 w/o Buff. 0.124
2.45 16.78 —16.37 2.6 —12.66 0.122
2.55 16.39 —12.53 2.75 —12.02 0.125

2 Pre-Simulated Results
b Post-Simulated Results

€ Measured Results
d Voltage Gain

noise factor, which is introduced to reveal the importance of
the proposed quadruple-band LNA.

Comparing with other published multi-band LNAs,
the proposed LNA achieves good FoMs in the four bands.
Although the cross-coupled CG LNA [1] achieves excellent
linearity, it dissipates up to 24 mA DC current in the output
buffer to maintain the highest linear output signal power.
From [3], a very high FoM is shown in both band mode,
however, the gain variation of |S71| is up to 9.5 dB due to
the low equivalent parallel resistance of the resonator load
when the LNA is switched to low-band mode. Although [10]
performs the excellent NF using integrated passive device
(IPD) configuration, the area of the dual-band LNA occupies
up to 3.9 mm?. It means that the cost would increase very
much. Hence, the proposed LNA presents a good FoM includ-
ing the comprehensive consideration of gain, noise figure,
and power consumption to be suitable for multi-band SDR
application.
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IV. CONCLUSION

This paper presented a 2.35, 2.4, 2.45, and 2.55 GHz
quadruple-band differential CS cascode CMOS LNA with
a single band-selection switch. A body self-biasing tech-
nique was employed to minimize the noise contribution due
to the transconductance degradation caused by the body-
effect. In other words, the better noise performance could be
achieved with less current. In addition, the resistor connected
between the terminals of source and body of MOS could
block effectively the junction leakage as well as noise current
due to bulk resistance. The linearity of the CS cascode ampli-
fier could be optimized by analyzing the DC characteristics.
It is helpful for circuit designers to find the most suitable
MOS dimension of the cascode amplifier configuration by
utilizing the proposed optimization technique. To realize the
multi-band LNA for SDR application, the binary switch
of capacitor array was utilized at the loading resonator of
the proposed LNA. Hence, by the binary switch method,
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the capacitor array could be used to plan the required com-
munication band more efficiently.
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