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ABSTRACT In this paper, we propose a novel end-to-end learnable architecture based on Dense Convolu-
tional Networks (DCN) for the classification of electrocardiogram (ECG) signals. This architecture is based
on two main modules: the first is a generative module and the second is a discriminative one. The task of the
generative module is to convert the one dimensional ECG signal into an image by means of fully connected,
up-sampling, and convolution layers. The discriminative module takes as input the generated image and
carries out feature learning and classification. To handle the data imbalance problem characterizing the ECG
data, we propose to use the focal loss (FL) that is based on the idea of reshaping the standard cross-entropy
loss such that it reduces the loss assigned to well-classified ECG beats. In the experiments, we validate the
method using the well-known MIT-BIH arrhythmia database in four different scenarios, using four classes
in the first scenario, five in the second and 12 in the third. Finally, supraventricular versus the other three
and ventricular versus the other three from the scenario with four classes are used as the fourth scenario. The
results obtained show that the method proposed here achieves a significant accuracy improvement over all
previous state-of-the-art methods.

INDEX TERMS Generative, discriminative, ECG, classification, arrhythmia.

I. INTRODUCTION
The classification of electrocardiogram signals is one of the
areas that has received the most attention in the field of
biosignal analysis. Cardiac arrhythmias refer to a large group
of conditions in which there is abnormal activity or behavior
in the heart and represent an important group of cardio-
vascular diseases (CVD). The algorithms in computer-aided
diagnosis systems play an important role in the detection
and classification of cardiac arrhythmias. These algorithms
have been designed to automate the process of ECG clas-
sification. This, in turn, will help greatly the cardiologists
to monitor the physiological conditions of the heart at regu-
lar intervals. Towards this end, various strategies have been
put forward to handle the classification problem [1]–[15].
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Some of these strategies focus on signal processing tech-
niques, such as frequency analysis [9], wavelet trans-
form [10], hidden Markov models [12], support vector
machines [13] and mixture-of-experts methods [15]. Because
of the inter-subject variability of the ECG signals, the afore-
mentioned techniques have not performed well in classifying
a new patient’s ECG signal. To address this problem
new strategies have recently been introduced [16]–[22].
A multi-view learning approach for heartbeat classification
was proposed in [16], it consists of twomodels, a general clas-
sificationmodel, and a specific classificationmodel. The gen-
eral model is trained using similar subjects out of a population
dataset, where a pattern matching based algorithm is devel-
oped to select the subjects that are ‘‘similar’’ to the particular
test subject. The two models complement each other and are
combined to achieve an improved subject-specific ECG anal-
ysis. Marinho in [17] also used handcrafted features extracted
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using Fourier analysis, Goertzel, Higher-Order Statistics, and
structural co-occurrence matrix. These features were then
used to train several machine-learning algorithm including
support vector machine and multilayer perceptron networks.
In [18] an energy-efficient electrocardiogram (ECG) proces-
sor with weak-strong hybrid classifier was put forwards for
arrhythmia detection, the proposedmethod uses a weak linear
classifier (WLC), which is only used to identify beats with
distinct characteristics. It does this by performing a simple
threshold comparison based on the beat interval features and a
novel morphology feature called the QRS area ratio. Luo et al.
introduced a similar method, incorporating a subject-specific
constraint to improve the classification performance of the
deep neural network [21]. In [22], P. Li et al. implemented a
parallel general regression neural network (GRNN) to clas-
sify heartbeats and designed an online learning program to
form a personalized classification model for each patient.
Recently deep learning techniques have generated a lot of
interest as powerful computer-basedmethods capable of solv-
ing various recognition problems. First introduced by Hinton
in [23], they focus on obtaining a good feature representation
automatically from the input data [23]–[27].

Deep convolutional neural networks (CNNs) have per-
formed well on a variety of applications including image
classification [28]–[30], object detection [31]–[34] and image
segmentation [35], [36]. In the biomedical engineering field,
several authors have used deep learning methods to solve
various problems such as detection and classification of brain
tumors in MR images [37]–[40], breast cancer diagnosis
and mass classification [41], [42], abdominal adipose tissue
extraction [43], and skeletal bone age assessment in X-ray
images [44].

Within the field of ECG research, there have been notable
studies using deep learning for ECG signal analysis and
arrhythmia detection. [20], [45]–[55]. A support vector
machine (SVM) classifier has been used to classify the beats
that are left unclassified by the WLC. In [20], Kiranyaz
proposed a patient-specific ECG classification and moni-
toring system, by applying the learning model 1-D CNN
to each patient in an adaptive manner. This method takes
advantage of the additional patient-specific information prior
to tackling the inter-class data variations caused by inter-
subject variability. In [46] the authors propose a classifica-
tion module for paroxysmal atrial fibrillation (PAF) based
on deep convolutional neural networks (CNN). The features
are learned directly from the raw ECG time series data by
using a CNN with one fully-connected layer. The learned
features can effectively replace the traditional ad-hoc and
time-consuming processes of hand-crafting user features. For
a long timemanually handcrafted features have been used and
are still used to classify arrhythmia such as in [48] were they
used a downsampled signal to generate handcrafted features
including RR intervals, heartbeat intervals, and segmented
morphologies. These features were the used to train a deep
belief network. Another work that uses handcrafted feature
is done by Sannino and De Pietro [49], they used features

FIGURE 1. Flowchart of the proposed method.

such as Pre-RR interval and local average RR interval as
input to a 7-layers multilayer perceptron networks and to
combat the imbalanced data problem they used a subsample
of the majority class in the data. In some papers no manual
features engineering was used for example Zhou and Tan [50]
used the raw signals as input to a convolutional neural
network trained in two stages first using backpropagation
then extreme learning machine fine turning of the last layer.
The convolutional network is a 1-D network which received
vector of length 250 as input.

In other work [51] rawECG signal was also used as input to
a deep learning network constructed as a restricted Boltzmann
machine. Each heartbeat is centered around R peak and either
padded or truncated to make all signal of the same length.
They try to improve the result by duplicating the minority
classes.

Recurrent neural network alongside convolutional network
was also used to classify ECG signals [52]. Here the input is
also a 1-D vector signal taken as a 10 seconds interval from
the original signal and labeled with the most occurring label
in the interval. Li et al. [53] tried to create patient-specific
network by first training in a large corpus of multiple patient
data then fine-tuning a network for individual patients. They
also used a 1-D vector from the ECG signals as input to the
network.

While most deep learning approaches including the ones
using convolutional networks, use 1-D signal approach, there
were some attempts to utilize 2-D convolution network by
converting the 1-D ECG signal into a 2-D one. For example
in [54] each signal is divided into 10 seconds intervals then a
short-time Fourier transform was used in the small chunks to
transform them into 2-D signal as spectrogram. These spec-
trograms are then used to train convolutional neural network
to classify arrhythmias. Kim et al. [55] also used 2-D signal
but not to classify arrhythmias. They used it to recognize users
based on ECG feature using MIT-BHI NSRDB database.
They projected the 1-D signal into 2-D space by minimizing
a loss function then used the resulted 2-D signal as input to
an ensemble of deep convolutional network. While the work
in [54] and [55] converted the signal into a 2-D image using
handcrafted features, the method used is not robust enough
to discover latent features of the signal and convert them into
pixel values.

In this paper, we propose an alternative approach based on
deep learning for the classification of ECG signals. Typically,
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FIGURE 2. Generator network.

our approach uses a two-stage CNNs for carrying classifica-
tion. The first module aims to convert the one dimensional
ECG signal to an image using set an opportune generative net-
work. The second one called discriminative network mainly
based on dense convolutional networks (DCNs) takes the
output of the generative module and carries out classification
as in standard image classification paradigms. To handle the
class imbalance problem, we propose to exploit the focal
loss (FL) instead of the cross-entropy loss to down-weight the
loss for the well-classified ECG beats. This paper conveys the
following main contribution:

1) Propose a novel end-to-end learnable architecture for
the classification of ECG signals with signal to image
conversion using a generator network;

2) Handle the class unbalance problem using the focal
loss;

3) The experimental results obtained on the MIT-BIH
database confirm its promising capabilities compared
to state-of-the-art method in terms of classification
accuracy.

The remainder of the paper is organized as follows.
In Section II, a detailed description of the proposed
method is presented. Results and discussion are shown in
Section III. Finally, our conclusions and future developments
are sketched out in Section IV.

II. PROPOSED METHOD
The Let Tr = {xi, yi}ni=1 be a training set where xi ∈ Rd is
an ECG beat signal , yi ∈ {1, 2, . . . ,K } is its correspond-
ing class label, K is the number of classes and n is the
number of training samples. Our aim is to develop a CNN
architecture that allows the classification of the test ECG
record Ts =

{
xj

}n+m
j=n+1 based on the available training set.

Fig. 1 shows a flowchart of the proposed method, which
consists of two modules. The detailed descriptions for these
modules are provided in the next subsections.

A. GENERATIVE MODULE
The task of the generative network is to convert the one
dimensional ECG beat into an image. Fig. 2 shows the main
architecture of the generator network. It is composed of two
fully-connected (FC) layers, a reshape layer, two sets of up-
sampling / convolution layer blocks and a final convolution
layer. In the first stage, the signal is fed into two consecutive
fully-connected layers to generate the ECG features, with
dimensions 1024 and 1568 respectively. The second step is to
reshape the 1D feature tensor of shape (1568,1) into a tensor
of dimensions (32,7,7) (channels, height, width), as shown
in figure 2. We can describe the process with the equation:

X rt = reshape (ReLU (Xt))
7
7 (1)

After that, the signal is fed through two up-sampling/
convolution blocks to obtain a tensor of dimensions
(128,28,28) (channels, height, width). The final tensor is then
passed through a convolution layer to obtain an image of
dimension (3,28,28) (channels, height, width).

It is worth recalling that the first FC layer is followed
by a batch-normalization, a ReLU activation function, and
a dropout. The reshape layer is also followed by batch
normalization, activation, and dropout layers. Each of the
up-sampling/convolution blocks consist of a layer of up-
sampling followed by convolution, batch normalization,
ReLU activation then dropout regularization layers. Batch
normalization allows each layer of the network to learn
by itself a little more independently of other layers, while
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FIGURE 3. Discriminative module.

dropout is a regularization technique used to prevent overfit-
ting during the training phase, by randomly dropping nodes
from the hidden layers.

B. DISCRIMINATIVE MODULE
The discriminative module takes the images produced by the
generative module as its input and classifies them into their
respective classes. Fig 3. shows the discriminative module,
it consists mainly of DenseNet blocks [56].

In traditional convolutional networks, a single image x0 or
a single batch of images is passed through the network, which
is comprised of L layers. Each layer performs a non-linear
transformation H`(.) on the image or batch of images, where
` is the layer index. H`(.) can be a composite function of
operations, such as Batch Normalization (BN) [57], rectified
linear units (ReLU) [58], Pooling [59] or Convolution (Conv).
We denote the output of the `th layer as x`. In traditional con-
volutional networks, the input of layer ` comes exclusively
from the layer `− 1.
To enhance the information sharing and information flow

between layers, direct connections from any layer to its subse-
quent layers were introduced [56]. Fig. 4 shows the DenseNet
block connectivity between layers.

With this configuration, the l th layer receives the feature-
maps of all preceding layers , x0, x1, . . . ,x`−1 as input, and
its output becomes:

x` = H`([x0, x1, . . . ,x`−1]) (2)

where [x0, x1, . . . ,x`−1] refers to the concatenation of
feature-maps from previous layers.

FIGURE 4. DensNet.

The concatenation operation used in Eq. (2) will not func-
tion correctly if the size of the feature-map from one of the
previous ` − 1 layers is not the same as the current layer `.
As down-sampling is an essential part of convolutional net-
works, changing the size of feature-maps, the connectiv-
ity after these down-sampling layers is treated differently.
To include down-sampling, the network is divided into mul-
tiple densely-connected dense blocks, as shown in Fig3. The
layers between the dense blocks are referred to as transition
layers; they perform the convolution and pooling.

C. HANDLING CLASS IMBALANCE USING FL
Imbalanced data sets can negatively affect the overall perfor-
mance of classification systems. To overcome this issue, one
can apply sampling strategies such as a Synthetic Minority
Over-sampling Technique (SMOTE) [60]. Another possible
solution is to exploit the focal loss introduced recently in the
context of object recognition. It relies mainly on
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The focal loss technique [61] is designed to address the
scenario in which there is an extreme imbalance between the
classes during the dataset training (e.g., in the DS1 large class
imbalance, N = 54777, S = 973, V = 3769, and F = 414).
In focal loss, a modulating factor, (1− pt )γ is added to the
cross entropy loss, with tunable focusing parameter γ ≥ 0.
The focal loss is defined as:

FL (pt) = − (1− pt)γ log (pt) (3)

With the values of γ ∈ [0, 5] .

III. EXPERIMENTAL RESULTS
A. DATASET DESCRIPTION
In experiments, we used three ECG databases to evaluate
our method. The first is the MIT-BIH Arrhythmia database
(MIT-BIH)) [62], [63]. This Database contains 48 excerpts
of two-channel ambulatory ECG recordings, obtained from
47 subjects. The recordings were collected from a mixed
population of inpatients (∼ 60%) and outpatients (∼ 40%).
Of the 47 patients there were 25men aged from 32 to 89 years
old, and 22 women aged from 23 to 89 years old. Each record
is slightly over 30 minutes long and sampled at 360 Hz.
The original raw dataset consists of 4000 24-hour ambulatory
ECG recordings, for the MIT-BIH dataset the first 23 records
were chosen at random from this raw dataset, they were
numbered from 100 to 124 inclusive with some numbers
missing. The remaining 25 records were selected from the
same original set to include a variety of rare but clinically
significant arrhythmias.

The second database is INCART. It consists of 75 records
which are annotated and derived from 32 Holter records.
Each record includes 12 generic leads and was obtained from
number of patients (17 men and 15 women, aged between
18 to 80 ) undergoing tests for coronary artery disease. Each
record is 30 minutes and sampled at 257 Hz. An automatic
algorithm generated the initial annotations, then the annota-
tion was corrected manually.

The third database is called MITBIH Supraventricular
Arrhythmia Database (SVDB) and consists of 78 two-lead
records of approximately 30 minutes and 128 Hz sam-
pling rate. The recordings ’ beat type annotations were
first performed automatically by the Marquette Electronics
8000 Holter scanner and then checked and updated by a
medical student.

Table 1. shows classes distribution in this scenario, it is
clear that class S and F are minor classes comparing to classes
N, and V.

B. EXPERIMENTAL SETTINGS
The training was done for 250 epochs and the batch size was
set to 100. Adam optimizer with learning rate of 0.001 was
used for weight update. The gamma value for the focal loss
(in equation 3) was set to 0.5. The DenseNet consisted of 3
blocks and a total of 16 layers. The initial filter size in the
DenseNet was 32 with a growth rate of 4 and dropout of 0.5.
For a detailed explanation of these parameters refer to the

TABLE 1. Classes distribution in the training and testing datasets.

DenseNet paper [47]. The experiments were carried out using
a computer with Intel Xeon E5620 processer, 24 GB RAM,
andNVIDIAGeForceGTX1060GPUwith 6GB ofmemory.

The experiments were carried out using three strategies:
cross-entropy, focal loss, and cross-entropy with resampling.
The cross-entropy strategy takes the unmodified training
dataset and uses the cross-entropy loss to update the network
weights. The focal loss strategy also takes the unmodified
training dataset but uses instead the focal loss to update
network weights, to combat the unbalanced classes problem.
The last strategy is the cross-entropy with the resampling
method; this strategy uses the cross-entropy loss, but to deal
with unbalanced classes it uses the resampling technique to
oversample the classes with low numbers of samples. Fig
5. shows the convergence when using focal loss and resam-
pling strategies. These strategies were used in four different
scenarios: 4 classes, 5 classes, 12 classes, and a scenario
with class S (Supraventricular) versus the other classes and
class V (ventricular) versus the other classes. More details
about these scenarios are provided in the next section.

C. RESULTS
According to state-of-the-art ECG classification techniques,
performance can be measured using standard metrics such
as classification accuracy (Acc), sensitivity (Sen), specificity
(Spe) and positive predictivity (Ppr). While accuracy mea-
sures the system performance across all classes of ECG beats,
the other metrics are specific to each class, and they measure
the ability of the classification algorithm to distinguish cer-
tain events. The respective definitions of these four common
metrics using true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) are written as:

Acc =
TP+ TN

TP+ TN + FP+ FN
(4)

Ppr =
TP

TP+ FP
(5)

Sen =
TP

TP+ FN
(6)

Spe =
TN

TN + FP
(7)

In order to evaluate the proposed approach, we used six
different scenarios as shown in Table 1. These are described
in the following sections:

1) SCENARIO 1
In this scenario the performance measurements are based in
terms of four classes: 1 - Normal (N); 2 - Supraventricular (S);
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FIGURE 5. Loss convergence plot by using: a) focal loss strategy, b)
resampling strategy.

TABLE 2. Training and test datasets for proposed scenarios.

3 - Ventricular (V) and 4 - Fusion (F). Fig 6. shows examples
of these classes.

In all experiments, similar to [64], we constructed the
training set DS1 = {101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220,
223, 230} of the MIT-BIH dataset. The remaining records of
this database are taken to form DS2 = {100, 103, 105, 111,
113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221,
222, 228, 231, 232, 233, 234}, which is used as the testing set.

TABLE 3. Classification performance for scenario 1 vs. methods in the
literature.

FIGURE 6. ECG example for four different classes.

FIGURE 7. Example of the generator’s output images for the classes N, S,
V, and F.

Table 2. shows the distribution of classes in this scenario, it is
clear that class S and F are minor classes comparing to classes
N, and V.

Table 3. shows the classification performance of the pro-
posed method in terms of four classes in three different
strategies (focal loss, cross entropy, and cross entropy with
resampling).

Fig. 7 shows an example of the image produced from
the generator network for the different classes. Fig. 8 shows
an example of the intermediate feature-maps from the
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FIGURE 8. Example of feature maps form the discriminator (dense
block 2 output) for the classes N,S,V, and F.

FIGURE 9. Example of the final features vector used for classification
form the discriminator for the classes N,S,V, and F.

discriminator network for the different classes, taken from the
output of the second dense block. Fig 9 shows an example of
the final feature-maps (after the global average pooling, but
before the Softmax in Fig3) which are used for classification.

As can be seen in Table 3, the values of (Sen, Ppr) for all
classes using the focal loss strategy are equal to (0.99, and
0.99) for class N, (0.77, and 0.94) for class S, (0.97, and
0.95) for class V and (0.80, and 0.68) for class F. With cross
entropy, the values of (Sen, Ppr) for all classes are equal to
(0.99, and 0.99) for class N, (0.77, and 0.92) for class S, (0.97,
and 0.95) for class V and (0.78, and 0.67) for class F. Finally,
by using cross entropy with resampling the values of (Sen,
Ppr) are equal to (0.99, and 0.99) for class N, (0.80, and 0.80)
for class S, (0.97, and 0.94) for class V and (0.73, and 0.75)
for class F. We can conclude that using focal loss achieves
better results than the other two strategies.

2) SCENARIO 2
In this experiment, in accordance with [22], 17 records were
selected from the MIT-BIH arrhythmia database [62], [63],
the serial numbers of these records were 100, 103, 104, 106,
112, 119, 122, 200, 203, 208, 209, 217, 222, 223, 230, 232
and 233. We then randomly selected 50% of the data as the

TABLE 4. Confusion matrix for scenario 2 (5 classes): a) without
normalization b) with normalization.

TABLE 5. Classification performance for scenario 2 vs. methods in the
literature.

training set and the other 50% as the test data, with the results
presented in terms of five classes: 1 - N (Normal); 2 – S;
3 - Ventricular (V); 4 - F (Fusion) and 5 – Unknown (Q).
Table 4. presents confusion matrices for the ECG beat clas-
sification of the 17 records in terms of the 5 classes using
focal loss. Table 5. presents the classification performances
using the three different strategies comparing with previous
proposed method in [22], one can see that our method per-
forms better.

3) SCENARIO 3
In this scenario, we have 12 ECG heartbeats classes. Each
class is randomly halved, 50% are used for training and
the other 50% are used for testing. The confusion matrices
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TABLE 6. Classification performance for scenario 3 ((A): First 6 classes),
and (B) The remaining classes).

TABLE 7. Confusion matrix for the ECG beat classification for scenario 3
using focal loss: a) Without normalization b) With normalization.

below show the classification results of these classes.
Table 7-9 shows the confusion matrix for this 12 class

TABLE 8. Confusion matrix for the ECG beat classification for scenario
3 using entropy: A) Without normalization B) With normalization.

scenario using a) focal loss, b) Entropy and c) Entropy
with resampling. Table 6 shows the obtained classification
results.

4) SCENARIO 4
In this scenario the results have been proposed in terms of
VEB (V versus the other three classes) and SVEB (S versus
the other three classes) detection using three different cases
for building the test set: Case 1: Using the 11 common testing
records for VEB (records 200, 202, 210, 213, 214, 219, 221,
228, 231, 233 and 234), and 14 testing records for SVEB
(records 200, 202, 210,212, 213, 214, 219, 221, 222, 228,
231, 232, 233 and 234). Case 2: Using the 24 common testing
records from 200 up to 234. Case 3: Using the 48 records as
test set (i.e. DS1 and DS2).

Of the state-of-the-art techniques, the method in [20]
achieved the highest sensitivity score with 95.1% for class V
(VEB), and 68.8% for class S (SVEB). The proposedmethods
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TABLE 9. Confusion matrix for the ECG beat classification for scenario 3 using entropy resampling: a) Without normalization b) With normalization.

TABLE 10. VEB and SVEB classification performance for scenario 4 vs. methods in the literature.

obtain 98.2% for VEB and 78.0% for SVEB, in addition to
successes in the other cases. The present results found across
different methods outperform the state-of-the-art techniques
in terms of Acc, Sen, Spe and Ppr inVEB and SVEB as shown
in Table 10.

5) SCENARIO 5
In this scenario, INCART dataset was used as a test set while
the training was DS1. Table 1 shows the distribution classes

for this testing data set. Figure 10 shows example of the
original input signal for the classes (N, S, V, and F ) Fig. 11.
shows an example of the image produced from the generator
network for the input classes. Fig. 12 shows an example of
the intermediate feature-maps from the discriminator network
for these classes, taken from the output of the second dense
block. Fig. 13 shows an example of the final feature-maps
(after the global average pooling, but before the Softmax
in Fig. 3) which are used for classification. Table 11 shows
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TABLE 11. Classification performance of the proposed method in the
term of (TN, FN, TP, and FP) on incart as test set.

FIGURE 10. Example of original input signal for the classes N, S, V, and F
(INCART).

FIGURE 11. Example of the generator’s output images for the classes N,
S, V, and F (INCART).

TABLE 12. VEB and SVEB classification performance for scenario 5 vs.
methods in the literature.

the classification results in terms of (TN, FN, TP, and FP).
The method proposed in [66] achieved the highest sensitivity

FIGURE 12. Example of feature maps form the discriminator (dense
block 2 output) for the classes N,S,V, and F (INCART).

FIGURE 13. Example of the final features vector used for classification
form the discriminator for the classes N,S,V, and F (INCART).

TABLE 13. Classification performance of the proposed method in the
term of (TN, FN, TP, AND FP) on SVDB as test set.

TABLE 14. VEB and SVEB classification performance for scenario 6 vs.
methods in the literature.

score of 84% for class V (VEB), and 77% for class S (SVEB).
The proposed method obtains 93% for VEB and 78% for
SVEB. The present results found across different methods is
shown in Table 12.

182234 VOLUME 7, 2019



M. M. Al Rahhal et al.: DCN With FL and Image Generation for ECG Classification

FIGURE 14. Example of orginal input signal for the classes N, S, V, and
F (SVDB).

FIGURE 15. Example of the generator’s output images for the classes N,
S, V, and F (SVDB).

FIGURE 16. Example of feature maps form the discriminator (dense
block 2 output) for the classes N,S,V, and F (SVDB).

6) SCENARIO 6
In this scenario SVDB dataset was also used to test the gener-
alization of the method. Table 1 shows the distribution classes
for this testing data set. Fig. 14 shows example of original

FIGURE 17. Example of the final features vector used for classification
form the discriminator for the classes N,S,V, and F (SVDB).

input signal for the classes (N, S, V, and F) it is clear that the
input signal is a noisy signal. Fig. 15 shows an example of
the image produced from the generator network for the input
classes. Fig. 16 shows an example of the intermediate feature-
maps from the discriminator network for these classes, taken
from the output of the second dense block. Fig. 17 shows an
example of the final feature-maps.

Tables 13 shows the automatic classification results in
terms of (TN , FN , TP, and FP) Table 14 presents the results in
the terms of VEB and SVEB samples, the (Acc, Sen, Spe, and
Ppr) are (97%, 85%, 98%, and 79%) and (74%, 67%, 98%,
and 51%) for VEB and SVEB respectively. Table 14 confirms
that the obtained results are better than stat of the methods.

IV. CONCLUSION
Our experiments show that by converting the raw 1D ECG
signal data into a 2D image using a generative neural network
the image can be easily fed into a state of the art convo-
lutional neural network such as DenseNet. This produces a
highly accurate classification ability, with high sensitivity and
specificity. Using 4 classes N, S, V, F as well as focal loss to
deal with the shortcoming of data balance performed better
than oversampling theminority classes or using cross-entropy
loss. When classifying V versus the other three classes and
S versus the other three classes, the proposed method out-
performs the state-of-the-art methods in terms of accuracy,
sensitivity, and specificity.
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