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ABSTRACT Recently, there have been significant advances in image super-resolution based on generative
adversarial networks (GANs) to achieve breakthroughs in generating more images with high subjective
quality. However, there are remaining challenges needs to bemet, such as simultaneously recovering the finer
texture details for large upscaling factors and mitigating the geometric transformation effects. In this paper,
we propose a novel robust super-resolution GAN (i.e. namely RSR-GAN)which can simultaneously perform
both the geometric transformation and recovering the finer texture details. Specifically, since the performance
of the generator depends on the discreminator, we propose a novel discriminator design by incorporating the
spatial transformer module with residual learning to improve the discrimination of fake and true images
through removing the geometric noise, in order to enhance the super-resolution of geometric corrected
images. Finally, to further improve the perceptual quality, we introduce an additional DCT loss term into
the existing loss function. Extensive experiments, measured by both PSNR and SSIM measurements, show
that our proposed method achieves a high level of robustness against a number of geometric transformations,
including rotation, translation, a combination of rotation and scaling effects, and a cobmination of rotaion,
transalation and scaling effects. Benchmarked by the existing state-of-the-arts SR methods, our proposed
delivers superior performances on a wide range of datasets which are publicly available and widely adopted
across research communities.

INDEX TERMS Super-resolution, generative adversarial networks, spatial transformer network, robust
image super-resolution, robust generative adversarial network.

I. INTRODUCTION
Single image super-resolution (SISR) has attracted increasing
attention in the research community and numerous image
SR methods have been reported to deal with this non-trivial
problem [1]. Single image super-resolution (SISR) is a pro-
cess which recover high-resolution (HR) images from its
lower resolution (LR) version with better visual quality and
refined details. SISR enjoys a wide range of real-world appli-
cations, such as medical imaging [2]–[4], surveillance and
security [5]–[7], amongst others.

In recent years, a variety of classical non deep
learning super-resolution methods have been proposed,
including prediction-based methods [8]–[10], edge-based
methods [11], [12], statistical methods [13], [14],
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patch-based methods [15], [16] and sparse representation
methods [13], [17], etc.

With the rapid development of deep learning techniques
in recent years, deep learning based super-resolution mod-
els have been extensively explored and often achieve the
state-of-the-art performance on various benchmarks of super-
resolution. A variety of deep learningmethods using convolu-
tional neural networks (CNN) have been applied to tackle SR
tasks [18]–[35]. These deep learning techniques can easily
learn the correlation between the LR and HR images and
then achieve better performance compared with conventional
methods. The CNN based SR networks are utilized common
mean square error ( MSE ) loss function to minimize the
error between the LR and HR images. Due to the fact that
MSE is not able to measure the complex signal structure
including the texture regions, the network tend to output over-
smoothed results without sufficient high-frequency details.
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FIGURE 1. Visual comparison samples of our proposed framework and various benchmarks: Top and third rows: original image. Under
each row: The desired output, rotated input patch, our proposed framework output with generative loss function (PSNR/SSIM), our
proposed framework output with our loss function output (PSNR/SSIM), existing STN, existing VDST, STN based GAN network with
generative loss function, STN based GAN network with our proposed loss function output (PSNR/SSIM), and VDSR, respectively.

Thus, the MSE loss is not always proportional to human
perception quality, and it is not sufficient for recovering HR
images with finer details.

To address the weakness of the existing single image super-
resolution (SISR) approaches for recovering the finer details
of HR images and producing more realistic images, several
perceptual-driven methods have been proposed to improve
the visual quality of SR results. The discovery of Genera-
tive Adversarial Networks (GAN) leads to better perceptual
quality. (GAN) [36], [37] employ a game-theoretic approach
where two components of the model, namely a generator and
discriminator, where the generator try to fool the discrimi-
nator. Specifically, the generator creates SR images that a
discriminator cannot distinguish as a real HR image or an
artificially super-resolved output. In this manner, HR images
with better perceptual quality are generated. For example, the
authors in [25], [38] have proposed the perceptual loss tomin-
imize the error between the target image and the generated
image by the deep network in the feature space instead of
pixel space. The authors in [39] proposed utilizing the gener-
ative adversarial network (GAN) [36] in SR to encourage the
network to favor solutions that look more like natural images.

However, the GAN based network does not take into
account the practical scenario. Specifically, practical appli-
cations of single image super-resolution indicate that the
real LR measurements usually suffer from various types of
corruptions, such as geometric transformations, noise, and
blurring. Additionally, although the GAN is able to generate
high frequency (HF) details, some artifacts and noise are
generated with HR images.

In this paper, we propose a novel robust framework which
is able to solve both challenges mentioned above. Specifi-
cally, we introduce a robust generative adversarial network
which is able to mitigate the geometric transformation and

recovering the high frequency details of the images simulta-
neously. To be more precise, our proposed framework con-
tains two parts including the generator and discriminator.
Structurally, we propose to use our spatially transformed
module which is presented in [26] to overcome the geometric
transformation distortion. Moreover, we propose a new com-
bined loss function to produce more realistic images. Addi-
tionally, a novel discriminator design is presented to improve
the generator ability to produce HRwith more high frequency
details. We have added a spatial transformer module with
the existing discriminator design. The spatial transformer
module is able to remove the geometric transformation and
background noises. Thus, the ability of the discriminator
to distinguish between the fake and real images increased.
Consequently, the generator ability to produce more realis-
tic images is improved. Fig.1, shows the robustness of our
proposed framework against the transformation effect and
produce more realistic images than the existing state-of-the-
art methods. As shown, VDSR network is not able to mitigate
the transformation effect but it is able to generate HR with
non correct direction. Moreover, the results in Fig. 1, show
that the performance of our proposed framework still better
that the existing spatial transformer network [40].

In summary, our contributions can be highlighted as fol-
lows:
• We propose a robust super-resolution generative adver-
sarial network which is designed to simultaneously per-
form geometric corrections and generate more realistic
images;

• We propose a novel discriminator design which is able
to improve the capability of discriminating between fake
and true images;

• We propose to add a DCT loss term to the generator
loss function to bridge the gap between MSE loss and
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adversarial loss to improve the perceptual quality of the
recovering images.

• In comparison with existing SR image methods, our
proposed framework achieves much lower training cost
and learning complexity due to the fact that our proposed
deep model requires significantly less number of model
parameters.;

• In comparison with the existing state of the art SR
methods reported in the literature, experimental results
support and verify that our proposed achieves superior
performances in terms of both PSNR and SSIM.

II. RELATED WORK
Super-resolution methods can be broadly divided into two
main categories: traditional and deep learning methods. Tra-
ditional algorithms have been around for decades now, but
are out-performed by their deep learning based counterparts.
Therefore, most recent algorithms rely on data driven deep
learning models to reconstruct the required details for accu-
rate super-resolution.

Super-Resolution Convolutional Neural Network abbrevi-
ated as SRCNN [1] is the first successful attempt towards
using CNN for super-resolution. SRCNN be considered as
the pioneering work in deep learning based SR that inspired
several later attempts in this direction. Unlike the shallow
network architectures used SRCNN, Very Deep Super- Reso-
lution (VDSR) is based on a deep CNN architecture originally
proposed in [19]. VDSR shows that deeper networks can
provide better contextualization and learn generalizable rep-
resentations that can be used for multi-scale super-resolution.
The authors in [20]–[25], propose deep neural network struc-
ture which is relay on the skip connections, residual blocks,
and Laplacian pyramids. Although, these networks show a
better performance but it still suffer from the geometric trans-
formation effects. Thus, its performance is degraded with
these effects.

The authors of [40] introduce the spatial transformer net-
work (STN) which is able to mitigate the transformation
effects and increase the robustness of the network against the
various transformation effects. Spatial transformer unit [40]
aims to perform a geometric transformation on an input map
so that CNNs are provided with the ability to be spatially
invariant to the input data in a computationally efficient man-
ner. This differentiable module can be inserted into existing
CNN architectures since the parameters of the transformation
that are applied to feature maps are learnt by means of a back-
propagation algorithm. Spatial transformer networks consist
of 3 elements: the localisation network, the grid generator
and the sampler. Although, STN shows a wide success in
various computer visions problems. Inspired by STN, we pro-
posed a novel spatial transformer module In [26] and then
we have called it Very Deep Spatial Transformer (VDST)
module. In addition, we propose a novel robust SR frame-
work which is able to mitigate the geometric transformation
effects and generate HR image with better PSNR and SSIM
values than existing STN. Our simulation results confirmed

the superiority ofVDST over the existing STNunder different
geometric transformation effects. However, all the aforemen-
tioned networks are utilized the MSE as loss function to min-
imize the error between HR and target image, they produce a
blury images, since it has an average effect.

The generative adversarial network (GAN) [36], shows
an improvement in the subjective quality of the recovered
images. Consequently, various networks have been proposed
utilizingGAN in SRfield [39], [41]–[45]. The authors in [39],
propose to use the a combined loss function which contains
two parts including the adversarial and content losses. They
proposes to use the MSE loss and VGG loss to improve the
visual quality with adversarial loss. Consequently, the pro-
posed network successfully improver th e subjective quality
over the existing networks. However, there are still artifacts
produces with the generated images. In [41], the authors
propose to add texture matching loss to the generator loss
function to produce more realistic textures and further reduce
the occurrence of visually implausible artifacts. Although the
success of [41] to produce more ralistic images with more
HF details, the PSNR and SSIM have been reduced. Also,
the authors in [42] propose a novel generator loss function
with the EUSR network [46]. In the proposed generator,
the authors propose to uses content loss and differential
content loss, which both use L1-norm. Additionally, they
have utilized DCT loss to measure the similarity on the fre-
quency domain between the recovered and the target images.
Although it reduces unpleasing HF and succeeds in achieving
high objective quality in terms of PSNR and SSIM, it has a
higher perceptual index (PI) value than SR-GAN (a high PI
value indicates a low subjective quality).

The authors in [43], proposes a pre-trained feature domain
discriminator using a generator network with short-and-long
range skip connections. They justify their use of multi-
discriminators by obtaining high PSNR and SSIM values
along with clarity close to the ground-truth. However, the use
of VGG based discriminator has a limitation in terms of
signal accuracy. Since VGG has been proposed for image
classication, pooling layers are included and the VGG fea-
tures are low-resolution. Thus, VGG feature maps tend to
be global rather than local, leading to the occurrence of
new artifacts around the edge region. The authors of [44],
proposed an novel network with relativistic discriminator.
The authors utilized the relativistic discriminator to judge
whether one image is more realistic than another, which
guides the generator to synthesize more detailed textures.
In addition, the authors use L1 content loss instead of the
MSE. Moreover, the authors propose to improve the percep-
tual loss for the generator loss function. Consequently, they
achieve consistently better performance than conventional
SR methods in terms of subjective and objective qualities.
The author of [47], propose multi perspective discriminator
fo image super resolution. The authors propose to use mul-
tiple discriminator to improve the subjective qality through
reducing the effect of the artifacts. Specifically, they propose
three different discriminators including DCT perspective
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discriminator, gradient perspective discriminator, and spatial
perspective discriminator. These proposed multi-perspective
discriminators can easily identify artifacts, and they can help
the generator reproduce artifact-less SR images.

To this end, all aforementioned proposed GAN networks
lead to improve the subjective quality, but there are still
challenges need to bemet. First, the aforementioned networks
still suffer form the noise generated with the recovered HR
images. Additionally, all the above study dose not take into
account the robustness of the network against the various
geometric transformation effects including rotation(R), scal-
ing (S), translation(T), a combination of rotation and scaling
(RS), and combination of rotation, translation and scaling.
In this paper, we introduce a robust GAN for image super-
resolution to be able to mitigate the geometric transforma-
tion effects and reduce the noise generated with recovered
images. Specifically, we propose our VDST [26] module as a
generator to overcome the transformation effects. Addition-
ally, we propose a novel discriminator design through inte-
gration of our spatial transformer module with the existing
discriminator in order to improve its ability to distinguish the
real and fake image. Moreover, we introduce a new com-
bined loss function to add more high frequency details to
the recovered images. The proposed loss function contains
from three parts including adversarial loss, content loss and
the DCT loss.

III. OUR PROPOSED ROBUST SUPER
RESOLUTION GAN NETWORK
Our main objective is to create a robust SR network to allevi-
ate the geometric transformation effects and generating more
natural HR images that similar to the ground truth images
simultaneously. The key aspect of achieving this goal is to
alleviate the effect of spatial transforms for corrupted LR
images. In other words, our proposed framework is able to
mitigate the geometric transformation effects and recover-
ing high frequency details of HR images. The flow chart
of our proposed framework is shown in Fig.2. As shown
in Fig.2, our proposed framework contains from two parts
including the generator and discriminator. The flow of our
proposed framework is started by feeding the transformed
input to the generator. Our proposed generator tries to alle-
viate the transformation effects by producing a correct HR
image. Then, this output is connected to the discrimina-
tor with the ground truth. The discriminator tries to decide
that the generator output is fake or real image. Addition-
ally, the DCT loss and MSE loss are calculated using both
generator output and ground truth images. Then, the total
loss is obtained by combining the adversarial loss with
DCT and MSE losses. After that, the generator parameter is
updated utilizing the value of the total loss function. In this
section, we illustrate the details of our proposed framework,
including the proposed discriminator, the deep residual learn-
ing based spatial transform module, and the improved loss
functions.

FIGURE 2. Illustration of our proposed framework flow chart.

A. OUR PROPOSED NETWORK ARCHITECTURE
As seen in Fig.3, our proposed network contains two parts:
a) the generator and b) the discriminator. Structurally, Our
proposed generator consists of VDST module [26]. We have
shown in [26] that VDST is able to mitigate the geomet-
ric transformation effects. But, in our previous work [26],
we have used VDSR module to refine the output of VDST in
order to obtain HR image with better PSN and SSIM values.
However, in this work, we propose to use only VDST mod-
ule to overcome the transformation effects. Consequently,
the number of the parameter needed to be estimated are
reduced. Our VDST module of three parts namely localiza-
tion network, grid generator, and sample. The first part is a
localization network, which takes the input image through
convolutional neural network (CNN) and estimate the warp-
ing parameters from the input image. We proposed a new
localization design network namely deeper residual learning
localization network (DRLN). DRLN is able to exploit wider
contextual information inside the input images. In the DRLN,
we propose to stack 20 convolutional layers to extract the
features of the input LR image. the proposed DRLN is a
deeper network with only 64 feature maps per layer, which is
more powerful yet requires less parameters. In the second part
of VDST, the predicted transformation or warping parameters
are utilized to form a sampling grid, which is implemented
by a grid generator. In the third part, the input image and the
sampling grid are taken as inputs to the sampler, in order to
interpolate the output image. Then the final correct HR image
can be obtained. This HR image is passed to our proposed
discriminator to decide if it is fake or real image compared
with the ground truth.

Fig.3 shows our proposed discriminator. As seen, our pro-
posed discriminator contains from two parts. First, we pro-
pose to use VDST again as a first stage. The principle behind
adding of VDST as first stage is that spatial transformer net-
works learn to remove the geometric noise and background
so that only the interesting zones of the input are forwarded
to the next layers of the network [48]. Thus, the discriminator
ability to distinguish tehe fake and real image increased.
Consequently, the discriminator si drive the generator to pro-
duce more real mages similar to the ground truth images.
The second part contains from eight convolution layer with
kernel size 3 × 3. In addition, these convolution layer are
followed by two dense layers and sigmoid layer.
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FIGURE 3. Illustration of our proposed framework architecture: a) our proposed generator b) our proposed discriminator.

B. OUR PROPOSED LOSS FUNCTION
Recently, most of the SR networks utilize only the pixel-wise
loss functions such as MSE as an objective function. How-
ever, minimizing MSE encourages finding pixel-wise aver-
ages of plausible solutions which are typically overly-smooth
and thus have poor perceptual quality. As proposed in [36],
the authors tackled this problem by employing (GANs) [36]
used for the application of image generation To obtain a
more realistic images. To achieve this task, they proposed
to utilize the adversarial loss function to train the GAN
network. Specifically, the generator is feed by LR image
and then producing HR images. These images are passed
to the discriminator network to distinguishes between the
original image (i.e the target image) and the generated HR
images. As the generator and discriminator try to compete
each other, the generator improve its ability to produce more
realistic images similar to the target images. However, this
technique achieves better results, but the are some artifacts are
generated insideHR images that produced from the generator.
So, in this paper. we propose a combined loss function in
order to produce more realistic images with lower artifcats.
Specifically, we propose to combine the loss functions includ-
ing the conventional adversarial loss function for GAN (lgen)
and content loss function (i.e MSE loss function (lMSE )).
In addition, we propose to add one more content related loss
term, (ldct ), based on the discrete cosine transform (DCT) to

strengthen the reconstruction quality in high frequency details
for all output images. To this end, we can describe the total
loss function for the generator as:

lSR = α1 × lgen + α2 × lMSE + α3 × ldct (1)

where α1,α1, α1 are the loss functions wights. The details of
the loss functions are described below:

1) ADVERSARIAL LOSS
The general idea behind the adversarial loss is to train the
generator model with the goal of fooling a differentiable
discriminator that is trained to distinguish super-resolved
images from the real images. This approach encourages the
generative component to favour the solution which is percep-
tually more similar to the natural images by trying to fool the
discriminator network.

The generator network is trained as a feed-forward
CNN GθG parametrized by θG. Hence, θG denotes the
weights and biases of the generator layers. These weights is
obtained by optimizing lSR loss function. Then, θG can be
described as:

θ̂G = argminθG
1
N

N∑
n=1

lsr
(
GθG

(
ILRn
)
, IHRn

)
(2)

where ILR, IHR are LR and HR images, respectively. N is
the number of the training images. In this work, we propose
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to use the loss function as in Eq.1, which is as a weighted
combination of several loss components.

The discriminatorDθD and parameters θD are similar to the
GθG and θG for the generator, respectively.

θ̂D = argminθD
1
N

N∑
n=1

lsr
(
GθG

(
ILRn
)
,DθD (I

HR
n )

)
(3)

Then, the adversarial min-max problem of GAN can be
formulated as:

min
θG

max
θD

N∑
n=1

logDθD
(
IHR

)
+ log(1− DθD

(
GθG

(
ILR
))

)

(4)

whereDθD is the probability generated by the discriminator to
distinguish the likelihood of reconstructed image GθG

(
ILR
)

generated by the generator to be a natural HR image.
As mentioned above, by adding the generative loss func-

tion to our proposed loss function as in Eq.1 encourages
the G to to favour solutions that reside on the manifold of
natural images, by trying to fool the discriminator network.
Then, the generative loss lgen is defined based on the the
probabilities of the discriminator DθD

(
GθG

(
ILR
))

and cab be
represented as:

lgen =
N∑
n=1

−logDθD
(
GθG

(
ILR
))

(5)

In our proposed framework, we improve the ability of the
discriminator to distinguish between the real and generated
HR images by incorporating the spatial transformer into the
discriminator (as shown in Fig.3 (b)). As a results, the dis-
criminator is able to remove the geomatic transformation and
background noise. Thus, the discriminator pushes the gener-
ator to reduce the error between the generated image and the
real image, and hence producing images more similar to the
target image.

2) CONTENT LOSS
In this section, we propose to use the pixel-wise MSE loss as
a content loss function. As mentioned in Section. II, utilizing
the adversarial loss leads to reduce the PSNR and SSIM
values of the generated HR images. So, we propose to use
the MSE loss function to increase these values. We propose
to control in the contribution amount of the content loss by
introducing α2 weight. This content loss function tries to
minimizes the error between the super-resolved images and
the real images. For our proposed generator, the MSE Loss
can be described as:

lMSE =
∥∥∥ÎHR − IHR∥∥∥

2
(6)

where ÎHR is the generated image by our proposed generator.
As we mentioned, our proposed generator not only tries

to alleviate the geometric transformation, but also tries to

produce HR images more similar to the target images. Then,
we can rewrite the content loss function as:

lMSE = argminθA
∥∥∥ILR(θA)− ÎT

∥∥∥2
2

+ argminθG
∥∥∥N (ÎT , θG)− IHR

∥∥∥2
2

(7)

where ÎT is the output image after performing the spatial
transformation, and ÎHR = N (X̂T , θG) is the estimated HR
image, θG is the model parameters of the generator network.
θA represents the estimated geometric/affine transformation
parameters. As seen fromEq. 7, we can conclude that the con-
tent loss function can be divide into two parts. The first part
of this equation is represented the first task of our proposed
generator which is mitigation the geometric transformation
effect by estimation θA. Then, we interpolate the transformed
images by utilizing these parameters. The second part of the
equation is used to minimize the errors between the estimated
output after performing the spatial transformation and the
target images.

3) DCT LOSS
As mentioned in Section. II that the various GAN networks
suffer from some artifacts with the recovered image which
leads to reduce the PSNR and SSIM values [47]. So, we pro-
pose to add a new DCT loss term to the total loss function to
train the overall network as in Eq.1. For further performance
improvement, the added DCT loss term enables our proposed
generator to explicitly compare the two images in the fre-
quency domain. More specifically, while different SR images
can have the similar value of lMSE and lgen, the DCT loss term
encourages the model to generate the final image having the
frequency distribution as similar to the HR image as possible.
In this way, the frequency distribution constraint compensates
the gap between lMSE and lgen to generate more statistically
consistent results in frequency domain. The forward DCT
transform can be represented as:

DCTu,v(I ) =
1
2N

N−1∑
x=0

N−1∑
y=0

I (x, y) (8)

cos[
π

N
u(x +

1
2
)]cos[

π

N
v(y+

1
2
)] (9)

where each frequency band u, v corresponds to different DCT
frequency components of texture units to be optimized to
match the grouth truth. Hence, the L2-norm is applied for the
DCT loss function:

ldct =
∥∥∥DCT (IHR)− DCT (ISR)∥∥∥

2
(10)

IV. EVALUATIONS AND EXPERIMENTAL
RESULT ANALYSIS
To test the robustness of our proposed framework, we carry
out various experiments and illustrate our experimental
results as well as their analyses. To make it convenient for
benchmarking and comparative studies, we follow the exper-
imental procedures as described in [26], [39]. First, to test
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FIGURE 4. Visual comparison samples of our proposed discriminator and existing
SRGAN [39]. Top and fourth rows: original images. The target, input, and the output patches
of our proposed and the existing SRGAN are given underneath each original image, and the
bottom row presents the corresponding outputs measured in PSNR/SSIM values.

the performance of our proposed discriminator, we repeat the
experiment in [39] for scaling×4. Specifically, we have used
the same generator as in [39], but we replace the existing
discriminator by our proposed as in Fig. 3.(b). To ensure a
fair comparison, we have used the same loss function used
in [39] to complete this experiment and then, we compare the
obtained results with our proposed framework results.

Secondly, we contacted various experiments to show the
robustness our proposed against the geometric transformation
effects.We compare our the performance of our proposed net-
work with various benchmarks including existing STN [40],
VDST [26] and VDSR [19]. Finally, we compare our pro-
posed with the different benchmarks over the number of
modelling parameters to illustrate that the proposed network
overwhelms the existing networks in terms of computing cost
and learning complexity.

A. EXPERIMENT DESIGN AND SETUP
1) DATASET FOR TRANING AND TESTING
For the training purpose, we utilize 91 images from the
Yang et al. [49] and 200 images from the training set of

Berkeley Segmentation dataset [50] as our training data.
To increase the size of the training dataset used, we augment
the training data in three ways including the rotation, scaling
andmirror effects. To generate the LR training images, we use
the bicubic down-sampling and forming the images with size
48 × 48. In our experiments, we downscale all the training
images using scale ×4.
For the testing purpose, we carry out experiments using

5 publicly available datasets, including: BSDS100 [50], SET5
[51], SET14 [52], URBAN100 [53] and MANGA109 [54].

2) IMPLEMENTATION DETAILS
To test our proposed framework with different geometric
transformation effects, we simulate the effect of the geometric
transformations, we generate the transformed LR training
image by four different transformations, including: (i) the
rotation effect represented by R, in which the original image
is rotated clockwise by 20 degrees; (ii) the effect of both
rotation and scaling represented by RS; (iii) translation repre-
sented by T, in which the LR images are translated by 5 pixels
in both X and Y directions; and finally (iv) combinational
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FIGURE 5. PSNR and SSIM values of our proposed and the existing SRGAN: The PSNR values are shown in (a), and SSIM values
are shown in (b).

FIGURE 6. Illustration of ten natural images used to validate our proposed framework.

effect of rotation, scaling and translation represented by RTS.
All the previous effects are performed on the downsampled
images under scaling ×4.

For training our network, we utilize SGD optimization
algorithm with learning rate 0.001 and no learning rate decay.
The weight decay is set to 0.0001 and momentum is 0. Fur-
ther, our proposed framework is trained in an end-to-endman-
ner. We train all experiments over 10 epochs with batch size
25 and all the training is performed on NVIDIA Tesla P100.
The evaluation results of all experiments are presented in term
of two metrics widely used in the SR research community,
which are Peak-signal-to-noise-ratio (PSNR) and Structural
Similarity Index (SSIM).

3) BENCHMARKS COMPARISONS
To validate the performance of the proposed framework,
we compare the performance of our proposed network with
different benchmarks. Firstly, we compare our proposed
discriminator design with SRGAN [39], by replacing the
discriminator used with SRGAN by our proposed. In this
comparison, we use the same loss function presented in [39].
To fair comparison, we repeat the experiment by using our
generating training and testing datasets as in section IV-A.2.

To test the performance of our proposed network against
the geometric transformation effect, we compare our pro-
posed with three different benchmarks, including the existing
STN [40], VDST [26] and VDSR [19]. Moreover, we have
formed one more benchmark by integrating the existing
VDST and existing discriminator. Structurally, we construct a
new GAN network by utilizing the VDST as a generator and
the discriminator which is presented in [39], and called it
as ‘‘VDST with old discriminator’’. One more Benchmarks,
we construct another GAN network using the existing STN
(i.e as a generator ) and our proposed discriminator. These
benchmarks can be divided into two groups: a)Pixel-wise
benchmarks; b) adversarial benchmarks. First, the pixel-wise
benchmarks are utilized only MSE loss to train the network.
Secondly, the adversarial benchmarks, are utilized the con-
ventional GAN loss function and our proposed loss function
as loss function.

B. COMPARISON WITH THE STATE-OF-THE-ART
To validate the performance of our proposed discriminator
design, we compare our proposed discriminator with one
of the state-of-the-art network (i.e SRGAN [39]. Practi-
cally, we keep the generator design as described in [39].
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FIGURE 7. PSNR and SSIM values of our proposed framework and various benchmarks trained with generative loss function:
The original images are rotated by 20 degrees in clockwise direction. The PSNR values are shown in (a), and SSIM values are
shown in (b).

FIGURE 8. PSNR and SSIM values of our proposed framework and various benchmarks trained with generative loss function:
The original images are transformed by a combination of rotation and scaling effects. The PSNR values are shown in (a), and
SSIM values are shown in (b).

However, we replace the discriminator used with SRGAN
by our proposed design. Then, we compare the the per-
formance of our proposed design with the existing dis-
criminator design. To fair comparison, we generate the
LR traning dataset as described sectionIV-A.2. Specifically,
we generate the LR images using bicubic downsample
with scale ×4 and the image image size is 48 × 48. Then,
we train the existing SRGAN with our generated dataset.
The reason behind changing the size of the LR images
than the original SRGAN is that the size limitation of
our GPU memory. So, we reduce the LR images size to
be 48 × 48.

To evaluate the performance of our proposed, we select
various images from the test datasets (i.e. Set5 [51], Set14
[52]). For visual inspections and comparisons between our
proposed and the existing SRGAN [39], Fig.4 shows six
samples of the test images under scaling factor ×4. It can
be seen that the GAN based SR network with our pro-
posed discriminator design can generate images with more
sharp details than SRGAN. For example, as seen in Fig.4,
GAN based SR network with our proposed discriminator

design is able to generate realistic images as in woman,
boys and lena images. In addition, it is able to recover
more details as shown in Baboon image. Further, the PSNR
and SSIM values of our proposed discriminator is also
much better than the exist SRGAN by 1dB. The reason
behind this improvement is that our proposed discrimina-
tor able to remove the geometric noise and background so
that only the interesting zones of the input are forwarded
to the next layers of the network. Thus, the discriminator
forces the generator to produce images which are more sim-
ilar to the target images. Consequently, the error between
the generated HR and its target images can be reduced.
In other words, a discriminator network is essentially trained
to discriminate those real HR images from the generated
SR samples.

Fig.5 shows the objective evaluation results in terms of
PSNR/SSIM under downsampled factor ×4. As seen again,
our proposed achieves higher PSNR/SSIM values over the
existing SRGAN.

To further evaluate our proposed, we conduct another
experiment to test the performance of the proposed
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FIGURE 9. PSNR and SSIM values of our proposed framework and various benchmarks trained with generative loss function:
The original images are translated in X, and Y direction by 5 pixels. The PSNR values are shown in (a), and SSIM values are
shown in (b).

TABLE 1. Experimental results (PSNR/SSIM) achieved by the existing SRGAN compared with our proposed framework with the scaling factor ×4.

FIGURE 10. PSNR and SSIM values of our proposed framework and various benchmarks trained with generative loss function:
The original images are transformed by a combination of rotation, translation and scaling effects. The PSNR values are shown in
(a), and SSIM values are shown in (b).

discriminator using five testing datasets. All the results are
illustrated in Table 1. From the results shown in Table 1,
we can see that our proposed outperforms the existing
SRGAN.

C. EXPERIMENTS ON EFFECTIVENESS AND ROBUSTNESS
OF OUR PROPOSED DISCRIMINATOR
To validate the effectiveness and the accuracy of the pro-
posed framework using our proposed discriminator design,
we have carried out a range of experiments upon natu-
ral images to estimate the affine transformation parameters

and mitigate the geometric transformation effects. Firstly,
we compare our proposed with five benchmarks, including
the existing STN [40], the existing VDSR [19], the existing
VDST [26], STN based GAN network with our proposed
discriminator design, and VDST based GAN network with
existing discriminator design over the number of modelling
parameters. Secondly, we validate the effectiveness of the
proposed framework by experiments on recovery of trans-
formed images, illustrating the advantage that the proposed
framework can be turned into a robust end-to-end deep net-
work against the effect of not only geometric transformations
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FIGURE 11. PSNR and SSIM values of our proposed framework and various benchmarks trained with our proposed loss function:
The original images are rotated by 20 degrees in clockwise direction. The PSNR values are shown in (a), and SSIM values are
shown in (b).

TABLE 2. Structural comparisons between the proposed framework and the existing benchmarks.

but also recovering high details information due to corrup-
tions. As a result, our proposed is a powerful learning tool,
which is able to simultaneously handle geometric transforma-
tions and recovery of high details information for corrupted
images.

D. COMPUTATIONAL COMPLEXITY EVALUATION
We utilize the number of parameters as the evaluating criteria
to compare our proposed framework with various bench-
marks, the comparative results between our proposed frame-
work and the existing STN + VDSR, and existing VDST +
VDSR are shown in Table 2. The VDST + VDSR model as
described in [26] contains two parts, which includes the deep
spatial transformer (VDST) to alleviate the effect of spatial
transforms for corrupted LR images, and the super resolution
module (i.e. VDSR network) to refine the output of VDST to

generate theHR image similar to the target image. In addition,
the authors in [26], compare their work with the existing STN
+ VDSR. However, in our proposed framework, we train
VDST without the super-resolution module not only for
mitigating the transformation effects but also for generating
HR images. In addition, inspired by the existing work [55],
which is a typical application using the STN, we follow their
design to produce 200 feature maps as the first convolutional
layer and 300 feature maps as the second layer, as shown
in Table 2.
In Table 2, the convolution layer is represented by

Conv(ki, ni, ci), where the variables ki, ni, ci represent the
filter size, the number of filters and the number of feature
maps, respectively, and the linear layer is represented by
Linear (mi, oi), where the variablesmi, oi represent the size of
the input vector and the size of the output vector, respectively.
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FIGURE 12. PSNR and SSIM values of our proposed framework and various benchmarks trained with proposed loss function: The
original images are transformed by a combination of rotation and scaling effects. The PSNR values are shown in (a), and SSIM
values are shown in (b).

FIGURE 13. PSNR and SSIM values of our proposed framework and various benchmarks trained with proposed loss function: The
original images are translated in X, and Y direction by 5 pixels. The PSNR values are shown in (a), and SSIM values are
shown in (b).

As seen, the results given in Table 2 indicate that our proposed
is powerful in structure, cost-effective in learning, and com-
pared wit the existing benchmarks, leading to the improved
performances.

E. EXPERIMENTS ON EFFECTIVENESS AND ROBUSTNESS
OF OUR PROPOSED FRAMEWORK
To test the effectiveness and the accuracy of our proposed
framework, we have carried out a range of experiments upon
natural images to estimate the affine transformation parame-
ters and mitigate the geometric transformation effects. Fig.6
illustrates seven samples of such natural images adopted as
the test images in our experiments.

To evaluate the performance of our proposed, we compare
our proposed framework with different benchmarks which
are mentioned in section IV-A.3. In addition, we train our
proposed framework using generative loss function and our
proposed loss function. Moreover, we transformed the orig-
inal images using the various transformation effects as men-
tioned in section IV-A.2. Then, we explore the robustness of
our proposed framework against geometric transformations
compared with the various benchmarks.

Fig. 7, 8, 9 and 10 show the objective evaluation results
in terms of PSNR/SSIM when the original images are trans-
formed using various transformation effects with generative
loss function. Specifically, In Fig. 7, we rotated the original
images by 20 degrees and thenwe trained the proposed frame-
work and GAN based benchmarks with the existing gener-
ative loss function. In addition, we compare our proposed
framework with pixel-wise benchmarks. From Fig.7, we can
notice that our framework achieves higher PSNR/SSIM val-
ues over the existing benchmarks. To evaluate the perforam-
nce of our proposed framework with different transformation
effects, we have transformed the original images including:
1) the combinational effect of rotation, and scaling effects
2) the translation effect, and the experimental results are
illustrated in Fig. 8 and 9, respectively. As seen, our proposed
framework still achieves superior performance over the vari-
ous benchmarks.

To test the robustness of our proposed against stronger
transformation effects, we apply the combinational effect of
rotation, translation and scaling, and the corresponding exper-
imental results are illustrated in Fig. 10. As seen, the simu-
lation results indicate that our proposed spatial transformer
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TABLE 3. Experimental results (PSNR/SSIM) achieved by the existing various benchmarks compared with our proposed framework with the scaling
factor ×4 and generative loss function.

TABLE 4. Experimental results (PSNR/SSIM) achieved by the existing various benchmarks compared with our proposed framework with the scaling
factor ×4 and our proposed loss function.

still outperforms the existing STN in estimating the affine
parameters and mitigating the transformation effects.

To evaluate our proposed loss (i.e MSE, adversarial, and
DCT losses), we repeat the previous experiment using the
same testing images in Fig. 6. Specifically, we have trans-
formed the original images using the same transformation
and then we train the proposed framework and GAN based
benchmarks using our proposed loss function. All experimen-
tal results are given in Fig. 11, 12, 13, and 14. From these

figures, we can see that our proposed framework still produce
better have higher PSNR/SSIM values over the numerous
benchmarks.

We test the robustness of our proposed framework against
the different geometric transformations, including rotation
(R), rotation and scaling (RS), translation (T), and combi-
nation of rotation, scaling and translation (RTS), we carried
out four experiments in total to evaluate the performances
of our proposed in comparison with the existing state of the
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FIGURE 14. PSNR and SSIM values of our proposed framework and various benchmarks trained with proposed loss function:
The original images are transformed by a combination of rotation, translation and scaling effects. The PSNR values are shown in
(a), and SSIM values are shown in (b).

FIGURE 15. Visual comparison samples of our proposed framework and various benchmarks: Top and third
rows: original image. Under each row: The desired output, rotated input patch, our proposed framework
output with generative loss function (PSNR/SSIM), our proposed framework output with our loss function
output (PSNR/SSIM), existing STN, existing VDST, STN based GAN network with generative loss function,
STN based GAN network with our proposed loss function output (PSNR/SSIM), respectively.

art benchmarks. In addition, we test our proposed framework
performance utilizing the existing generative loss and our
proposed loss functions. Then, we compare the simulation
results of our proposed framework obtained with the different
benchmarks.

Table 3 shows the comparative experimental results
between the existing benchmarks and our proposed frame-
work under a number of the transformation effects with the
generative loss function, and the scaling factors ×4. From

the simulation results given in Table 3, we can notice that
our proposed framework significantly outperforms different
benchmarks in terms of both PSNR and SSIM. Specifically,
we can seen that our proposed framework have 1 2 dB incre-
ment in PSNR values. Our explanation for this improvement
is that our proposed framework is able to remove the geomet-
ric and background noises. Consequently, the discriminator is
able to differentiate between the generated and real image is
improved. Then, the generator tries generate image which are
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FIGURE 16. Visual comparison samples of our proposed framework and various benchmarks: Top and
third rows: original image. Under each row: The desired output, RTS input patch, our proposed framework
output with generative loss function (PSNR/SSIM), our proposed framework output with our loss function
output (PSNR/SSIM), existing STN, existing VDST, STN based GAN network with generative loss function,
STN based GAN network with our proposed loss function output (PSNR/SSIM), respectively.

more realistic by reducing the error between both generated
and target images.

Table 4 show the experimental results between the exist-
ing benchmarks and our proposed framework under a num-
ber of the transformation effects with our proposed loss
function, the scaling factors ×4. It can also be seen that
our proposed framework outperforms the existing bench-
marks in both PSNR and SSIM values. Correspondingly,
it can be concluded that our proposed successfully provides a
well-validated solution for tackling the effects of geometric
transformations, and achieve a robust single image super-
resolution.

To visually compare the experimental results between our
proposed framework trained by various versions of the loss
function and the existing benchmarks, we illustrate a number
of samples in Fig.15 and Fig. 16 for visual inspections and
subjective assessments. In Fig.15, we show visual compar-
isons on Set5, Set14 with a scaling factor of ×4 under the
rotation(R) effect. From Fig. 15, we can conclude that our
proposed framework is able to generate HR images which
are more realistic and closer to the ground truth images than
other benchmarks.Moreover, we can notice that our proposed
framework which utilizes the loss function with the DCT
loss term is able to produce more realistic images with more
texture details.

To test the robustness of our proposed against stronger
transformation effects, we apply the combinational effect

of rotation, translation and scaling, and the corresponding
experimental results are illustrated in Fig. 16. As notice again,
the proposed framework still produce better performance than
other benchmarks.

V. CONCLUSION
In this paper, we propose a novel deep generative adversar-
ial network to achieve robust single image super-resolution
reconstruction. Specifically, we propose an improved dis-
criminator to enhance its capability in discriminating the fake
and the original images in order to generate more realistic
images. Compared with the existing state of the arts, our
proposed framework is able to simultaneously perform both
geometric corrections and super-resolution reconstruction.
In addition, we also propose to add a new DCT loss term
to improve the perceptual quality of the generated images.
Extensive evaluations on widely used datasets in compari-
son with the existing state-of-the-art networks show that our
proposed framework is able to produce more realistic and
more similar images to the ground truth than those compared
benchmarks.
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